Radial point interpolation based finite difference method for mechanics problems
A radial point interpolation based finite difference method (RFDM) is proposed in this paper. In this novel method, radial point interpolation using local irregular nodes is used together with the conventional finite difference procedure to achieve both the adaptivity to irregular domain and the sta...
Saved in:
| Published in: | International journal for numerical methods in engineering Vol. 68; no. 7; pp. 728 - 754 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
12.11.2006
Wiley |
| Subjects: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A radial point interpolation based finite difference method (RFDM) is proposed in this paper. In this novel method, radial point interpolation using local irregular nodes is used together with the conventional finite difference procedure to achieve both the adaptivity to irregular domain and the stability in the solution that is often encountered in the collocation methods. A least‐square technique is adopted, which leads to a system matrix with good properties such as symmetry and positive definiteness. Several numerical examples are presented to demonstrate the accuracy and stability of the RFDM for problems with complex shapes and regular and extremely irregular nodes. The results are examined in detail in comparison with other numerical approaches such as the radial point collocation method that uses local nodes, conventional finite difference and finite element methods. Copyright © 2006 John Wiley & Sons, Ltd. |
|---|---|
| Bibliography: | ArticleID:NME1733 ark:/67375/WNG-LKPJ3QL9-2 istex:158BCBFE05BBB3CF1EB31D06EEABA745F2AFF369 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0029-5981 1097-0207 |
| DOI: | 10.1002/nme.1733 |