Restrictions on the coefficients of hyperbolic systems of partial differential equations

THE PAPER DEALS WITH HYPERBOLIC HOMOGENEOUS SYSTEMS [FORMULA: see text] of partial differential equations with constant coefficients for an N-vector u(t,x(1),...,x(n)). Here, P is a matrix form of order N and degree m. In the scalar case (N = 1), every hyperbolic P is limit of strictly hyperbolic on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 74; číslo 10; s. 4150
Hlavní autor: John, F
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.10.1977
ISSN:0027-8424
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:THE PAPER DEALS WITH HYPERBOLIC HOMOGENEOUS SYSTEMS [FORMULA: see text] of partial differential equations with constant coefficients for an N-vector u(t,x(1),...,x(n)). Here, P is a matrix form of order N and degree m. In the scalar case (N = 1), every hyperbolic P is limit of strictly hyperbolic ones. This does not hold for systems as is shown here for the special case N = n = 3, m = 2. Assuming P(1,0,...,0) to be the unit matrix, we represent P by a point in R(81). The hyperbolic P form a closed set H in R(81), the strictly hyperbolic ones an open subset H(s) of H. An example is given for a P in H which is not in the closure of H(s). Moreover, it is shown that near that P the set H coincides with an algebraic manifold of codimension 4.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
DOI:10.1073/pnas.74.10.4150