Getting out what you put in: Copper in mitochondria and its impacts on human disease

Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, wh...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Molecular cell research Vol. 1868; no. 1; p. 118867
Main Authors: Cobine, Paul A., Moore, Stanley A., Leary, Scot C.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.01.2021
Subjects:
ISSN:0167-4889, 1879-2596, 1879-2596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways. •The mitochondrial carrier family protein Pic2/SLC25A3 transports copper to the matrix•The matrix copper pool is used for the maturation of cytochrome c oxidase and superoxide dismutase•The mitochondrial copper handling machinery modulates cellular copper homeostasis and facilitates inter-organ communication•The roles of mitochondrial signals are explored in the context of the evolutionary origins of copper homeostasis pathways
AbstractList Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways. •The mitochondrial carrier family protein Pic2/SLC25A3 transports copper to the matrix•The matrix copper pool is used for the maturation of cytochrome c oxidase and superoxide dismutase•The mitochondrial copper handling machinery modulates cellular copper homeostasis and facilitates inter-organ communication•The roles of mitochondrial signals are explored in the context of the evolutionary origins of copper homeostasis pathways
ArticleNumber 118867
Author Leary, Scot C.
Cobine, Paul A.
Moore, Stanley A.
AuthorAffiliation 2 Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
1 Department of Biological Sciences, Auburn University, Auburn, AL USA
AuthorAffiliation_xml – name: 1 Department of Biological Sciences, Auburn University, Auburn, AL USA
– name: 2 Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
Author_xml – sequence: 1
  givenname: Paul A.
  surname: Cobine
  fullname: Cobine, Paul A.
  email: paul.cobine@auburn.edu
  organization: Department of Biological Sciences, Auburn University, Auburn, AL, USA
– sequence: 2
  givenname: Stanley A.
  surname: Moore
  fullname: Moore, Stanley A.
  organization: Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
– sequence: 3
  givenname: Scot C.
  surname: Leary
  fullname: Leary, Scot C.
  email: scot.leary@usask.ca
  organization: Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32979421$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3Rb-AUI-cskSO45j94CEVtBWqsSlnK2JM-l6tbGD7RT13-PVbhFwAF_GY78P6b0LcuaDR0LesnrNaiY_7NZ9D5ONa17z8sSUkt0LsmKq0xVvtTwjqwLrKqGUPicXKe3qckTXviLnDdedFpytyP015uz8Aw1Lpj-2kOlTWOhcFuev6CbMM8ZypZPLwW6DH6IDCn6gLifqphlsmcHT7TKBp4NLCAlfk5cj7BO-Oc1L8u3L5_vNTXX39fp28-muskI2uRoHibppbMuh1RrA8r4bOVd9z4VlrIUOoEc2SMmh0TXqUTWWj6i0LViUzSX5eNSdl37CwaLPEfZmjm6C-GQCOPPnj3db8xAeTSdVLbgoAu9PAjF8XzBlM7lkcb8Hj2FJhgshZad43RXou9-9fpk8R1kAV0eAjSGliKOxLkN24WDt9obV5tCb2Zljb-bQmzn2VsjiL_Kz_n9opwCwpPzoMJpkHXqLg4tosxmC-7fAT2mdtVU
CitedBy_id crossref_primary_10_1016_j_envpol_2025_126710
crossref_primary_10_3389_fonc_2022_927028
crossref_primary_10_1016_j_biopha_2025_117814
crossref_primary_10_3389_fcell_2021_720656
crossref_primary_10_3389_fonc_2023_1117164
crossref_primary_10_1039_D1SC03516A
crossref_primary_10_1016_j_redox_2025_103872
crossref_primary_10_1016_j_phrs_2024_107258
crossref_primary_10_3389_fphar_2024_1527901
crossref_primary_10_1002_ctm2_1724
crossref_primary_10_3389_fcvm_2025_1611449
crossref_primary_10_3389_fnmol_2024_1408159
crossref_primary_10_1093_hmg_ddaf123
crossref_primary_10_3389_fonc_2022_925411
crossref_primary_10_1007_s13258_023_01406_5
crossref_primary_10_1016_j_ccr_2023_215395
crossref_primary_10_3390_biom14111356
crossref_primary_10_3389_fimmu_2024_1336839
crossref_primary_10_1016_j_bbadis_2024_167623
crossref_primary_10_3389_fonc_2022_1030802
crossref_primary_10_1016_j_cpt_2024_03_004
crossref_primary_10_1016_j_jbc_2025_110368
crossref_primary_10_1016_j_bbcan_2025_189379
crossref_primary_10_1016_j_intimp_2025_114391
crossref_primary_10_1093_mtomcs_mfac086
crossref_primary_10_1093_mtomcs_mfac087
crossref_primary_10_1016_j_bcp_2022_115168
crossref_primary_10_1007_s12672_025_01994_6
crossref_primary_10_1109_JSEN_2024_3510639
crossref_primary_10_1038_s41420_023_01796_1
crossref_primary_10_3390_jcm13226979
crossref_primary_10_7554_eLife_64690
crossref_primary_10_1016_j_heliyon_2024_e35700
crossref_primary_10_3233_CBM_220259
crossref_primary_10_3390_genes13101725
crossref_primary_10_3390_ijms26189173
crossref_primary_10_1007_s00420_025_02124_z
crossref_primary_10_1007_s10495_025_02161_6
crossref_primary_10_1038_s41375_024_02442_0
crossref_primary_10_1016_j_biopha_2023_115730
crossref_primary_10_1016_j_isci_2025_112450
crossref_primary_10_3389_fnmol_2024_1504802
crossref_primary_10_1002_advs_202401396
crossref_primary_10_1016_j_jhazmat_2023_131093
crossref_primary_10_1016_j_molcel_2025_08_024
crossref_primary_10_3390_ijms24119367
crossref_primary_10_1186_s13046_025_03486_5
crossref_primary_10_3389_fpubh_2022_973887
crossref_primary_10_1186_s12935_025_03864_1
crossref_primary_10_1089_ars_2023_0487
crossref_primary_10_1172_JCI154684
crossref_primary_10_4103_NRR_NRR_D_24_00110
crossref_primary_10_1007_s10495_025_02150_9
crossref_primary_10_1016_j_nbd_2025_106974
crossref_primary_10_1097_MD_0000000000032808
crossref_primary_10_3389_fonc_2022_1015235
crossref_primary_10_3390_biomedicines9040391
crossref_primary_10_3389_fmolb_2022_1037941
crossref_primary_10_3390_antiox14060723
crossref_primary_10_1016_j_abb_2025_110466
crossref_primary_10_1093_mtomcs_mfae046
crossref_primary_10_1038_s41467_024_50041_5
crossref_primary_10_1016_j_mehy_2023_111067
crossref_primary_10_3390_pharmaceutics15041099
crossref_primary_10_1016_j_heliyon_2024_e35404
crossref_primary_10_1186_s12894_023_01292_9
crossref_primary_10_1038_s41392_025_02192_0
crossref_primary_10_2217_nnm_2021_0374
crossref_primary_10_3390_inorganics13050137
crossref_primary_10_1155_2023_5533444
crossref_primary_10_3389_fonc_2023_999193
crossref_primary_10_1186_s12964_024_01726_3
crossref_primary_10_1016_j_jtemb_2024_127483
crossref_primary_10_3390_antiox12091654
crossref_primary_10_1007_s12011_024_04401_3
crossref_primary_10_3389_fmolb_2021_711227
crossref_primary_10_1007_s10495_025_02149_2
crossref_primary_10_1016_j_bbrc_2025_152330
crossref_primary_10_3389_fonc_2022_1009036
crossref_primary_10_1007_s12672_025_02578_0
crossref_primary_10_15212_AMM_2023_0016
crossref_primary_10_3389_fcell_2022_989882
crossref_primary_10_3390_ijms25179409
crossref_primary_10_3389_fphar_2023_1271613
crossref_primary_10_3390_toxics13030202
crossref_primary_10_1016_j_tjnut_2025_09_026
crossref_primary_10_1097_MD_0000000000031930
crossref_primary_10_3389_fonc_2023_1288504
crossref_primary_10_1007_s10555_025_10266_2
crossref_primary_10_3389_fonc_2023_1108128
crossref_primary_10_1016_j_heliyon_2024_e34011
crossref_primary_10_3389_fcell_2025_1570131
crossref_primary_10_1016_j_biopha_2023_116115
crossref_primary_10_1016_j_cub_2021_03_054
crossref_primary_10_3390_ijms252111462
crossref_primary_10_7554_eLife_85779
crossref_primary_10_1111_jcmm_17985
crossref_primary_10_1007_s11596_024_2841_y
crossref_primary_10_1038_s41568_021_00417_2
crossref_primary_10_3389_fcell_2022_892069
crossref_primary_10_1016_j_jbc_2021_100485
crossref_primary_10_1111_ejn_16370
crossref_primary_10_1155_2022_5418376
crossref_primary_10_3389_fonc_2023_1116305
crossref_primary_10_1007_s12011_023_03765_2
crossref_primary_10_3390_ma15030822
crossref_primary_10_3389_fmolb_2022_910928
crossref_primary_10_1007_s13577_023_00914_6
crossref_primary_10_3390_ijms232214012
crossref_primary_10_1016_j_biopha_2024_116585
crossref_primary_10_1016_j_lfs_2023_122223
crossref_primary_10_1111_jcmm_70591
crossref_primary_10_2217_nnm_2023_0202
crossref_primary_10_3389_fmolb_2022_863296
crossref_primary_10_2478_rrlm_2025_0003
crossref_primary_10_3389_fcell_2022_973073
crossref_primary_10_1016_j_bcp_2025_117054
crossref_primary_10_1093_procel_pwae003
crossref_primary_10_1186_s12882_022_02991_5
crossref_primary_10_3389_fphar_2024_1409317
crossref_primary_10_1242_jcs_240523
crossref_primary_10_3389_fgene_2022_982888
crossref_primary_10_1016_j_apsusc_2022_155632
crossref_primary_10_3390_ijms24054840
crossref_primary_10_1002_jcla_24638
crossref_primary_10_1016_j_intimp_2023_110717
crossref_primary_10_1016_j_bbrc_2022_09_022
crossref_primary_10_1002_cmdc_202400216
crossref_primary_10_3390_cancers16030647
crossref_primary_10_1007_s13193_024_02171_x
crossref_primary_10_1016_j_phrs_2024_107553
crossref_primary_10_1186_s12935_023_03207_y
crossref_primary_10_1016_j_marpolbul_2022_113650
crossref_primary_10_1111_cpr_13752
crossref_primary_10_3389_fimmu_2025_1592474
crossref_primary_10_3390_ph15091145
crossref_primary_10_1016_j_cpt_2024_07_005
crossref_primary_10_1016_j_mito_2023_05_003
crossref_primary_10_34133_bmr_0094
crossref_primary_10_1016_j_biopha_2023_114830
crossref_primary_10_1155_2022_5422698
crossref_primary_10_1016_j_heliyon_2024_e41600
crossref_primary_10_1002_jsp2_70057
crossref_primary_10_1073_pnas_2412816122
crossref_primary_10_3390_ph16071016
crossref_primary_10_1080_17474086_2022_2142113
crossref_primary_10_1042_BST20231183
crossref_primary_10_1186_s12943_023_01732_y
crossref_primary_10_3233_CH_242329
crossref_primary_10_3389_fpubh_2022_924103
crossref_primary_10_1016_j_jbc_2023_105435
crossref_primary_10_1016_j_devcel_2024_06_008
crossref_primary_10_1016_j_psep_2025_107905
crossref_primary_10_1016_j_drup_2023_101018
crossref_primary_10_1155_2022_7406636
crossref_primary_10_3389_fcell_2022_892325
crossref_primary_10_3389_fphys_2024_1243629
Cites_doi 10.1002/iub.50
10.1038/nchembio.2098
10.1074/jbc.M404747200
10.15252/embr.202050071
10.1093/molbev/msz147
10.3389/fnins.2019.00075
10.3389/fpls.2019.01449
10.1038/srep07949
10.1093/hmg/ddv265
10.1146/annurev-biochem-062917-012300
10.1074/jbc.M105296200
10.1002/humu.22385
10.1146/annurev-biochem-013118-111540
10.1016/j.jmb.2008.10.088
10.1038/nchembio.1913
10.1038/s41589-019-0291-9
10.1038/s41598-020-64521-3
10.1016/j.mito.2019.10.008
10.1016/j.mito.2018.12.005
10.1091/mbc.e12-10-0749
10.1089/ars.2010.3212
10.1093/hmg/ddu069
10.1038/nrm2646
10.1007/s00418-013-1123-8
10.1074/jbc.271.34.20531
10.1091/mbc.E14-11-1526
10.1172/JCI45401
10.1016/j.cub.2017.09.015
10.1074/jbc.M115.669440
10.1073/pnas.1505056112
10.1074/jbc.272.52.33191
10.1016/B978-0-444-59565-2.00045-9
10.1126/science.1098322
10.1016/j.celrep.2015.01.019
10.1016/j.bbamem.2009.03.004
10.1039/C7MT00221A
10.1021/bi5015437
10.1042/BJ20140107
10.1038/s41589-018-0062-z
10.1128/MCB.01685-08
10.1016/j.bbamcr.2008.05.002
10.1016/j.cmet.2015.04.012
10.1016/j.cell.2018.11.025
10.1074/jbc.M113.470674
10.1128/MCB.01920-07
10.1091/mbc.e12-09-0705
10.1111/nyas.12347
10.1111/mmi.12661
10.1074/jbc.RA117.000265
10.1172/JCI85226
10.1021/jacs.6b09567
10.1111/febs.12409
10.1016/j.semcdb.2017.08.055
10.1101/2020.05.01.072124
10.1111/nan.12096
10.1016/j.tibs.2019.11.001
10.1093/hmg/ddx344
10.1074/jbc.M117.817478
10.1038/nature04512
10.1128/mBio.01742-17
10.1021/ja2004158
10.1016/j.chembiol.2017.08.005
10.1016/j.bbadis.2009.07.013
10.1038/sj.emboj.7601861
10.1038/sj.emboj.7601862
10.1016/j.freeradbiomed.2012.03.017
10.1515/hsz-2020-0117
10.1093/hmg/ddp158
10.1016/j.cmet.2006.12.001
10.1016/j.jinorgbio.2014.04.004
10.1074/jbc.R117.787101
10.1073/pnas.1409796111
10.1038/s41556-020-0481-4
10.1007/s00424-003-1099-7
10.15252/embr.201948833
10.1038/nature13180
10.1074/jbc.R117.816132
10.1073/pnas.0406547102
10.1016/j.cell.2012.11.046
10.1021/acs.biochem.6b00216
10.1074/jbc.M311772200
10.1073/pnas.1900172116
10.3390/biom10040655
10.1128/AEM.02289-17
10.1016/j.nbd.2016.01.020
10.1042/BJ20130144
10.1016/j.cub.2016.03.053
10.1016/j.bbabio.2011.09.005
10.1016/j.jmb.2020.01.036
10.1128/MCB.05722-11
10.1074/jbc.M117.811752
10.1039/C6MT00083E
10.1016/j.ceb.2019.02.009
10.1038/nature02056
10.1016/j.celrep.2019.11.054
10.1021/bi100558z
10.1146/annurev-biochem-030409-143539
10.1073/pnas.1009932108
10.1128/MCB.00228-10
10.1126/science.aaz8899
10.1110/ps.051689905
10.1042/BJ20111036
10.1091/mbc.e11-04-0296
10.1091/mbc.e11-04-0293
10.1098/rsob.150223
10.1093/hmg/ddv503
10.1038/nmeth.2557
10.1016/j.biochi.2016.12.016
10.1074/jbc.M110.104786
10.1073/pnas.0800019105
10.1074/jbc.M312693200
10.1126/science.aat9528
10.1074/jbc.M606839200
10.1073/pnas.0809580105
10.1073/pnas.1806296115
10.1016/j.cmet.2012.07.013
10.1074/jbc.R117.000176
10.1126/science.1218530
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bbamcr.2020.118867
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-2596
EndPage 118867
ExternalDocumentID PMC7680424
32979421
10_1016_j_bbamcr_2020_118867
S0167488920302251
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120211
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
IXB
J1W
KOM
LX3
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c463t-fd6e933c52a599aac2b7f228bb24c115a7aabe1d662a390e9f83c2fe89cac2e63
ISICitedReferencesCount 192
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591723500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4889
1879-2596
IngestDate Tue Sep 30 16:55:02 EDT 2025
Thu Oct 02 05:46:26 EDT 2025
Mon Jul 21 06:00:46 EDT 2025
Tue Nov 18 22:12:04 EST 2025
Sat Nov 29 07:23:44 EST 2025
Fri Feb 23 02:41:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cytochrome c oxidase
Superoxide dismutase
Mitochondria
Mitochondrial carrier family
Copper
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-fd6e933c52a599aac2b7f228bb24c115a7aabe1d662a390e9f83c2fe89cac2e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Paul Cobine: Conceptualization, Writing- Original draft preparation, Writing- Reviewing and Editing, Visualization. Stanley Moore: Writing- Original draft preparation, Writing- Reviewing and Editing, Visualization. Scot Leary: Conceptualization, Writing- Original draft preparation, Writing- Reviewing and Editing.
Author Contributions
OpenAccessLink https://dx.doi.org/10.1016/j.bbamcr.2020.118867
PMID 32979421
PQID 2446678207
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680424
proquest_miscellaneous_2446678207
pubmed_primary_32979421
crossref_citationtrail_10_1016_j_bbamcr_2020_118867
crossref_primary_10_1016_j_bbamcr_2020_118867
elsevier_sciencedirect_doi_10_1016_j_bbamcr_2020_118867
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. Molecular cell research
PublicationTitleAlternate Biochim Biophys Acta Mol Cell Res
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zischka, Lichtmannegger (bb0110) 2014; 1315
Horn, Zhou, Trevisson, Al-Ali, Harris, Salviati, Barrientos (bb0300) 2010; 285
L.A. Sturtz, K. Diekert, L.T. Jensen, R. Lill, V.C. Culotta, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage, The Journal of Biological Chemistry 276(41) (2001) 38084–9.
Soma, Latimer, Chun, Vicary, Timbalia, Boulet, Rahn, Chan, Leary, Kim, Gitlin, Gohil (bb0140) 2018; 115
Nagai, Vo, Shin Ogawa, Chimmanamada, Inoue, Chu, Beaudette-Zlatanova, Lu, Blackman, Barsoum, Koya, Wada (bb0150) 2012; 52
Dodani, Leary, Cobine, Winge, Chang (bb0315) 2011; 133
Kaler (bb0060) 2013; 113
Reddi, Culotta (bb0590) 2013; 152
McCormick, Moore, Lindahl (bb0330) 2015; 54
Lill (bb0530) 2020; 401
Pacheu-Grau, Wasilewski, Oeljeklaus, Gibhardt, Aich, Chudenkova, Dennerlein, Deckers, Bogeski, Warscheid, Chacinska, Rehling (bb0225) 2020; 432
Lill, Freibert (bb0535) 2020; 89
Leary, Winge, Cobine (bb0090) 2009; 1793
Froschauer, Schweyen, Wiesenberger (bb0495) 2009; 1788
Maxfield, Heaton, Winge (bb0450) 2004; 279
Zischka, Lichtmannegger, Schmitt, Jagemann, Schulz, Wartini, Jennen, Rust, Larochette, Galluzzi, Chajes, Bandow, Gilles, DiSpirito, Esposito, Goettlicher, Summer, Kroemer (bb0115) 2011; 121
Reddehase, Grumbt, Neupert, Hell (bb0285) 2009; 385
Hadzhieva, Kirches, Mawrin (bb0540) 2014; 40
Turski, Brady, Kim, Kim, Nose, Counter, Winge, Thiele (bb0030) 2012; 32
Gudekar, Shanbhag, Wang, Ralle, Weisman, Petris (bb0080) 2020; 10
Tsvetkov, Detappe, Cai, Keys, Brune, Ying, Thiru, Reidy, Kugener, Rossen, Kocak, Kory, Tsherniak, Santagata, Whitesell, Ghobrial, Markley, Lindquist, Golub (bb0170) 2019; 15
Pebay-Peyroula, Dahout-Gonzalez, Kahn, Trezeguet, Lauquin, Brandolin (bb0385) 2003; 426
Vest, Leary, Winge, Cobine (bb0100) 2013; 288
Leary, Antonicka, Sasarman, Weraarpachai, Cobine, Pan, Brown, Brown, Majewski, Ha, Rahman, Shoubridge (bb0565) 2013; 34
C.N. Cunningham, J. Rutter, 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport, EMBO Rep (2020) e50071.
Krishnamoorthy, Cotruvo, Chan, Kaluarachchi, Muchenditsi, Pendyala, Jia, Aron, Ackerman, Wal, Guan, Smaga, Farhi, New, Lutsenko, Chang (bb0015) 2016; 12
Hartwig, Zlatic, Wallin, Vrailas-Mortimer, Fahrni, Faundez (bb0065) 2019; 59
Herzig, Raemy, Montessuit, Veuthey, Zamboni, Westermann, Kunji, Martinou (bb0405) 2012; 337
Horn, Barrientos (bb0425) 2008; 60
Llorens, Soriano, Calap-Quintana, Gonzalez-Cabo, Molto (bb0545) 2019; 13
Dodani, Firl, Chan, Nam, Aron, Onak, Ramos-Torres, Paek, Webster, Feller, Chang (bb0040) 2014; 111
Baker, Cobine, Leary (bb0085) 2017; 9
Vest, Hashemi, Cobine (bb0200) 2013; 12
Vest, Zhu, Cobine (bb0420) 2019
Vest, Cobine (bb0415) 2011
Halestrap (bb0410) 2012; 16
Timon-Gomez, Nyvltova, Abriata, Vila, Hosler, Barrientos (bb0430) 2018; 76
Jett, Leary (bb0095) 2018; 293
Cobine, Pierrel, Bestwick, Winge (bb0265) 2006; 281
J.J. Ruprecht, M.S. King, T. Zogg, A.A. Aleksandrova, E. Pardon, P.G. Crichton, J. Steyaert, E.R.S. Kunji, The molecular mechanism of transport by the mitochondrial ADP/ATP carrier, Cell 176(3) (2019) 435–447 e15.
Kory, Wyant, Prakash, Uit de Bos, Bottanelli, Pacold, Chan, Lewis, Wang, Keys, Guo, Sabatini (bb0395) 2018; 362
Yu, Yang, Bothe, Tonelli, Nokhrin, Dolgova, Braiterman, Lutsenko, Dmitriev (bb0055) 2017; 292
Rees, Johnson, Lewinson (bb0390) 2009; 10
Knight, Yoon, Pandey, Pain, Pain, Dancis (bb0560) 2019; 47
Cobine, Ojeda, Rigby, Winge (bb0305) 2004; 279
Bricker, Taylor, Schell, Orsak, Boutron, Chen, Cox, Cardon, Van Vranken, Dephoure, Redin, Boudina, Gygi, Brivet, Thummel, Rutter (bb0400) 2012; 337
Kloppel, Suzuki, Kojer, Petrungaro, Longen, Fiedler, Keller, Riemer (bb0280) 2011; 22
C.J. Hlynialuk, B. Ling, Z.N. Baker, P.A. Cobine, L.D. Yu, A. Boulet, T. Wai, A. Hossain, A.M. El Zawily, P.J. McFie, S.J. Stone, F. Diaz, C.T. Moraes, D. Viswanathan, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 is required to sustain expression of the high-affinity copper transporter CTR1 and preserve copper homeostasis, Cell Rep (2015) pii: S2211-1247(15)00032-7.
Dodani, Domaille, Nam, Miller, Finney, Vogt, Chang (bb0035) 2011; 108
Roger, Munoz-Gomez, Kamikawa (bb0600) 2017; 27
Bode, Woellhaf, Bohnert, van der Laan, Sommer, Jung, Zimmermann, Schroda, Herrmann (bb0210) 2015; 26
Varabyova, Topf, Kwiatkowska, Wrobel, Kaus-Drobek, Chacinska (bb0290) 2013; 280
Bestwick, Jeong, Khalimonchuk, Kim, Winge (bb0455) 2010; 30
Dennerlein, Rehling (bb0195) 2015; 128
J. Lichtmannegger, C. Leitzinger, R. Wimmer, S. Schmitt, S. Schulz, Y. Kabiri, C. Eberhagen, T. Rieder, D. Janik, F. Neff, B.K. Straub, P. Schirmacher, A.A. DiSpirito, N. Bandow, B.S. Baral, A. Flatley, E. Kremmer, G. Denk, F.P. Reiter, S. Hohenester, F. Eckardt-Schupp, N.A. Dencher, J. Adamski, V. Sauer, C. Niemietz, H.H. Schmidt, U. Merle, D.N. Gotthardt, G. Kroemer, K.H. Weiss, H. Zischka, Methanobactin reverses acute liver failure in a rat model of Wilson disease, J Clin Invest 126(7) (2016) 2721–35.
Glerum, Shtanko, Tzagoloff (bb0435) 1996; 271
S. Soma, M.N. Morgada, M.T. Naik, A. Boulet, A.A. Roesler, N. Dziuba, A. Ghosh, Q. Yu, P.A. Lindahl, J.B. Ames, S.C. Leary, A.J. Vila, V.M. Gohil, COA6 is structurally tuned to function as a thiol-disulfide oxidoreductase in copper delivery to mitochondrial cytochrome c oxidase, Cell Rep 29(12) (2019) 4114–4126 e5.
C. Vallieres, S.L. Holland, S.V. Avery, Mitochondrial ferredoxin determines vulnerability of cells to copper excess, Cell Chem Biol 24(10) (2017) 1228–1237 e3.
Ruprecht, Kunji (bb0370) 2020; 45
Williams, Trias, Beilby, Lopez, Labut, Bradford, Roberts, McAllum, Crouch, Rhoads, Pereira, Son, Elliott, Franco, Estevez, Barbeito, Beckman (bb0160) 2016; 89
Braymer, Lill (bb0525) 2017; 292
Brazzolotto, Pierrel, Pelosi (bb0490) 2014; 460
Yoon, Zhang, Pain, Lyver, Lesuisse, Pain, Dancis (bb0550) 2011; 440
Vacek, Novak, Treitli, Taborsky, Cepicka, Kolisko, Keeling, Hampl (bb0615) 2018; 35
Yang, McRae, Henary, Patel, Lai, Vogt, Fahrni (bb0325) 2005; 102
Palmieri (bb0510) 2004; 447
Kim, Graham, DiSpirito, Alterman, Galeva, Larive, Asunskis, Sherwood (bb0345) 2004; 305
Guthrie, Soma, Yuan, Silva, Zulkifli, Snavely, Greene, Nunez, Lynch, De Ville, Shanbhag, Lopez, Acharya, Petris, Kim, Gohil, Sacchettini (bb0155) 2020; 368
Kenney, Rosenzweig (bb0340) 2018; 87
Soto, Fontanesi, Liu, Barrientos (bb0190) 2012; 1817
Horn, Al-Ali, Barrientos (bb0295) 2008; 28
Shaw, Cope, Li, Corson, Hersey, Ackermann, Gwynn, Lambert, Wingert, Traver, Trede, Barut, Zhou, Minet, Donovan, Brownlie, Balzan, Weiss, Peters, Kaplan, Zon, Paw (bb0520) 2006; 440
D. Brancaccio, A. Gallo, M. Piccioli, E. Novellino, S. Ciofi-Baffoni, L. Banci, [4Fe-4S] cluster assembly in mitochondria and its impairment by copper, J Am Chem Soc 139(2) (2017) 719–730.
Wang, Wu (bb0605) 2015; 5
Diaz (bb0175) 2010; 1802
Jain, Dashner, Connolly (bb0505) 2019; 10
Morgada, Abriata, Cefaro, Gajda, Banci, Vila (bb0250) 2015; 112
Pacheu-Grau, Bareth, Dudek, Juris, Vogtle, Wissel, Leary, Dennerlein, Rehling, Deckers (bb0220) 2015; 21
McStay, Su, Tzagoloff (bb0185) 2013; 24
Foster, Dainty, Patterson, Pohl, Blackburn, Wilson, Hess, Rutherford, Quaranta, Corran, Robinson (bb0165) 2014; 93
M. Grasso, G.J. Bond, Y.-J. Kim, K.B. Alwan, S. Boyd, M.M. Dzebo, S. Valenzuela, T. Tsang, N.A. Schibrowsky, M.L. Matthews, G.M. Burslem, P. Wittung-Stafshede, D.D. Winkler, N.J. Blackburn, R. Marmorstein, D.C. Brady, Structural and molecular determinants of CCS-mediated copper activation of MEK1/2, bioRxiv (2020) 2020.05.01.072124.
Shen, Kolanowski, Tran, Kaur, Akerfeldt, Rahme, Hambley, New (bb0320) 2016; 8
Chang (bb0010) 2015; 11
Boulet, Vest, Maynard, Gammon, Russell, Mathews, Cole, Zhu, Phillips, Kwong, Dodani, Leary, Cobine (bb0105) 2018; 293
Mick, Wagner, van der Laan, Frazier, Perschil, Pawlas, Meyer, Warscheid, Rehling (bb0470) 2007; 26
Vest, Wang, Gammon, Maynard, White, Cobine, Mahone, Cobine (bb0485) 2016; 6
Z.N. Baker, K. Jett, A. Boulet, A. Hossain, P.A. Cobine, B.-E. Kim, A.M.E. Zawily, L. Lee, G.F. Tibbits, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart, Human Molecular Genetics Advance Article: ddx344 (2017).
Semrau, DiSpirito, Gu, Yoon (bb0350) 2018; 84
Ghosh, Trivedi, Timbalia, Griffin, Rahn, Chan, Gohil (bb0465) 2014; 23
Hasinoff, Yadav, Patel, Wu (bb0145) 2014; 137
Pierrel, Bestwick, Cobine, Khalimonchuk, Cricco, Winge (bb0460) 2007; 26
Tsang, Posimo, Gudiel, Cicchini, Feldser, Brady (bb0025) 2020; 22
Paradkar, Zumbrennen, Paw, Ward, Kaplan (bb0515) 2009; 29
Crichton, Lee, Kunji (bb0375) 2017; 134
Froschauer, Rietzschel, Hassler, Binder, Schweyen, Lill, Muhlenhoff, Wiesenberger (bb0555) 2013; 455
Christenson, Gallegos, Banerjee (bb0500) 2018; 293
Kawamata, Manfredi (bb0255) 2010; 13
Palmieri, Scarcia, Monne (bb0360) 2020; 10
Ackerman, Chang (bb0050) 2018; 293
Banci, Bertini, Ciofi-Baffoni, Hadjiloi, Martinelli, Palumaa (bb0205) 2008; 105
Brady, Crowe, Turski, Hobbs, Yao, Chaikuad, Knapp, Xiao, Campbell, Thiele, Counter (bb0020) 2014; 509
Polishchuk, Lutsenko (bb0070) 2013; 140
Stroud, Maher, Lindau, Vogtle, Frazier, Surgenor, Mountford, Singh, Bonas, Oeljeklaus, Warscheid, Meisinger, Thorburn, Ryan (bb0235) 2015; 24
Gross, Burgard, Reddehase, Leitch, Culotta, Hell (bb0275) 2011; 22
Monne, Chan, Slotboom, Kunji (bb0480) 2005; 14
Barros, McStay (bb0180) 2020; 50
S. Garcia-Santamarina, M.A. Uzarska, R.A. Festa, R. Lill, D.J. Thiele
Neal, Dabir, Tienson, Horn, Glaeser, Ogozalek Loo, Barrientos, Koehler (bb0270) 2015; 290
Karnkowska, Vacek, Zubacova, Treitli, Petrzelkova, Eme, Novak, Zarsky, Barlow, Herman, Soukal, Hroudova, Dolezal, Stairs, Roger, Elias, Dacks, Vlcek, Hampl (bb0610) 2016; 26
iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress, mBio 8(5) (2017).
Wang, Richter-Dennerlein, Pacheu-Grau, Liu, Zhu, Dennerlein, Rehling (bb0475) 2020; 21
Xiao, Ackerman, C
Neal (10.1016/j.bbamcr.2020.118867_bb0270) 2015; 290
Dennerlein (10.1016/j.bbamcr.2020.118867_bb0195) 2015; 128
Ruprecht (10.1016/j.bbamcr.2020.118867_bb0370) 2020; 45
Vest (10.1016/j.bbamcr.2020.118867_bb0485) 2016; 6
McStay (10.1016/j.bbamcr.2020.118867_bb0185) 2013; 24
Horn (10.1016/j.bbamcr.2020.118867_bb0425) 2008; 60
Froschauer (10.1016/j.bbamcr.2020.118867_bb0495) 2009; 1788
Chang (10.1016/j.bbamcr.2020.118867_bb0010) 2015; 11
Yu (10.1016/j.bbamcr.2020.118867_bb0055) 2017; 292
Knight (10.1016/j.bbamcr.2020.118867_bb0560) 2019; 47
Reddehase (10.1016/j.bbamcr.2020.118867_bb0285) 2009; 385
Lindahl (10.1016/j.bbamcr.2020.118867_bb0335) 2016; 55
Froschauer (10.1016/j.bbamcr.2020.118867_bb0555) 2013; 455
Horng (10.1016/j.bbamcr.2020.118867_bb0445) 2004; 279
Ghosh (10.1016/j.bbamcr.2020.118867_bb0215) 2016; 25
Dodani (10.1016/j.bbamcr.2020.118867_bb0035) 2011; 108
Varabyova (10.1016/j.bbamcr.2020.118867_bb0290) 2013; 280
Jett (10.1016/j.bbamcr.2020.118867_bb0095) 2018; 293
Rees (10.1016/j.bbamcr.2020.118867_bb0390) 2009; 10
Krishnamoorthy (10.1016/j.bbamcr.2020.118867_bb0015) 2016; 12
Zischka (10.1016/j.bbamcr.2020.118867_bb0115) 2011; 121
Yoon (10.1016/j.bbamcr.2020.118867_bb0550) 2011; 440
Wang (10.1016/j.bbamcr.2020.118867_bb0605) 2015; 5
Cobine (10.1016/j.bbamcr.2020.118867_bb0265) 2006; 281
Guthrie (10.1016/j.bbamcr.2020.118867_bb0155) 2020; 368
Shen (10.1016/j.bbamcr.2020.118867_bb0320) 2016; 8
Vest (10.1016/j.bbamcr.2020.118867_bb0200) 2013; 12
Horn (10.1016/j.bbamcr.2020.118867_bb0300) 2010; 285
Garber Morales (10.1016/j.bbamcr.2020.118867_bb0310) 2010; 49
Lill (10.1016/j.bbamcr.2020.118867_bb0535) 2020; 89
Ackerman (10.1016/j.bbamcr.2020.118867_bb0050) 2018; 293
Foster (10.1016/j.bbamcr.2020.118867_bb0165) 2014; 93
Barros (10.1016/j.bbamcr.2020.118867_bb0180) 2020; 50
Kenney (10.1016/j.bbamcr.2020.118867_bb0340) 2018; 87
Hartwig (10.1016/j.bbamcr.2020.118867_bb0065) 2019; 59
Tsvetkov (10.1016/j.bbamcr.2020.118867_bb0170) 2019; 15
Bestwick (10.1016/j.bbamcr.2020.118867_bb0455) 2010; 30
Palmieri (10.1016/j.bbamcr.2020.118867_bb0360) 2020; 10
Shaw (10.1016/j.bbamcr.2020.118867_bb0520) 2006; 440
Beers (10.1016/j.bbamcr.2020.118867_bb0440) 1997; 272
10.1016/j.bbamcr.2020.118867_bb0580
Ghosh (10.1016/j.bbamcr.2020.118867_bb0465) 2014; 23
Kloppel (10.1016/j.bbamcr.2020.118867_bb0280) 2011; 22
Nagai (10.1016/j.bbamcr.2020.118867_bb0150) 2012; 52
10.1016/j.bbamcr.2020.118867_bb0575
Xiao (10.1016/j.bbamcr.2020.118867_bb0045) 2018; 14
Zischka (10.1016/j.bbamcr.2020.118867_bb0110) 2014; 1315
Leary (10.1016/j.bbamcr.2020.118867_bb0240) 2009; 18
Monne (10.1016/j.bbamcr.2020.118867_bb0480) 2005; 14
Banci (10.1016/j.bbamcr.2020.118867_bb0205) 2008; 105
Vest (10.1016/j.bbamcr.2020.118867_bb0415) 2011
Semrau (10.1016/j.bbamcr.2020.118867_bb0350) 2018; 84
10.1016/j.bbamcr.2020.118867_bb0230
Leary (10.1016/j.bbamcr.2020.118867_bb0565) 2013; 34
Karnkowska (10.1016/j.bbamcr.2020.118867_bb0620) 2019; 36
Vest (10.1016/j.bbamcr.2020.118867_bb0100) 2013; 288
Brazzolotto (10.1016/j.bbamcr.2020.118867_bb0490) 2014; 460
Vacek (10.1016/j.bbamcr.2020.118867_bb0615) 2018; 35
Pierrel (10.1016/j.bbamcr.2020.118867_bb0460) 2007; 26
Leary (10.1016/j.bbamcr.2020.118867_bb0585) 2007; 5
10.1016/j.bbamcr.2020.118867_bb0625
Robinson (10.1016/j.bbamcr.2020.118867_bb0005) 2010; 79
Wang (10.1016/j.bbamcr.2020.118867_bb0475) 2020; 21
Maxfield (10.1016/j.bbamcr.2020.118867_bb0450) 2004; 279
Yang (10.1016/j.bbamcr.2020.118867_bb0325) 2005; 102
Reddi (10.1016/j.bbamcr.2020.118867_bb0590) 2013; 152
Braymer (10.1016/j.bbamcr.2020.118867_bb0525) 2017; 292
Pacheu-Grau (10.1016/j.bbamcr.2020.118867_bb0220) 2015; 21
Horng (10.1016/j.bbamcr.2020.118867_bb0245) 2004; 279
Herzig (10.1016/j.bbamcr.2020.118867_bb0405) 2012; 337
Kaler (10.1016/j.bbamcr.2020.118867_bb0060) 2013; 113
10.1016/j.bbamcr.2020.118867_bb0120
Bode (10.1016/j.bbamcr.2020.118867_bb0210) 2015; 26
Pebay-Peyroula (10.1016/j.bbamcr.2020.118867_bb0385) 2003; 426
Boulet (10.1016/j.bbamcr.2020.118867_bb0105) 2018; 293
Gross (10.1016/j.bbamcr.2020.118867_bb0275) 2011; 22
Karnkowska (10.1016/j.bbamcr.2020.118867_bb0610) 2016; 26
Crichton (10.1016/j.bbamcr.2020.118867_bb0375) 2017; 134
Lill (10.1016/j.bbamcr.2020.118867_bb0530) 2020; 401
Palmieri (10.1016/j.bbamcr.2020.118867_bb0510) 2004; 447
Morgada (10.1016/j.bbamcr.2020.118867_bb0250) 2015; 112
Brady (10.1016/j.bbamcr.2020.118867_bb0020) 2014; 509
10.1016/j.bbamcr.2020.118867_bb0355
10.1016/j.bbamcr.2020.118867_bb0595
Soma (10.1016/j.bbamcr.2020.118867_bb0140) 2018; 115
Polishchuk (10.1016/j.bbamcr.2020.118867_bb0070) 2013; 140
Christenson (10.1016/j.bbamcr.2020.118867_bb0500) 2018; 293
Vest (10.1016/j.bbamcr.2020.118867_bb0420) 2019
Soto (10.1016/j.bbamcr.2020.118867_bb0190) 2012; 1817
Turski (10.1016/j.bbamcr.2020.118867_bb0030) 2012; 32
10.1016/j.bbamcr.2020.118867_bb0130
Timon-Gomez (10.1016/j.bbamcr.2020.118867_bb0430) 2018; 76
Baker (10.1016/j.bbamcr.2020.118867_bb0085) 2017; 9
Kim (10.1016/j.bbamcr.2020.118867_bb0345) 2004; 305
Mick (10.1016/j.bbamcr.2020.118867_bb0470) 2007; 26
Leary (10.1016/j.bbamcr.2020.118867_bb0570) 2013; 24
Hadzhieva (10.1016/j.bbamcr.2020.118867_bb0540) 2014; 40
Hasinoff (10.1016/j.bbamcr.2020.118867_bb0145) 2014; 137
Bricker (10.1016/j.bbamcr.2020.118867_bb0400) 2012; 337
Jain (10.1016/j.bbamcr.2020.118867_bb0505) 2019; 10
Horn (10.1016/j.bbamcr.2020.118867_bb0295) 2008; 28
Roger (10.1016/j.bbamcr.2020.118867_bb0600) 2017; 27
Kawamata (10.1016/j.bbamcr.2020.118867_bb0255) 2010; 13
10.1016/j.bbamcr.2020.118867_bb0125
Paradkar (10.1016/j.bbamcr.2020.118867_bb0515) 2009; 29
Pacheu-Grau (10.1016/j.bbamcr.2020.118867_bb0225) 2020; 432
McCormick (10.1016/j.bbamcr.2020.118867_bb0330) 2015; 54
Cobine (10.1016/j.bbamcr.2020.118867_bb0305) 2004; 279
Halestrap (10.1016/j.bbamcr.2020.118867_bb0410) 2012; 16
10.1016/j.bbamcr.2020.118867_bb0380
10.1016/j.bbamcr.2020.118867_bb0260
Llorens (10.1016/j.bbamcr.2020.118867_bb0545) 2019; 13
Kory (10.1016/j.bbamcr.2020.118867_bb0395) 2018; 362
Morgan (10.1016/j.bbamcr.2020.118867_bb0075) 2019; 116
Diaz (10.1016/j.bbamcr.2020.118867_bb0175) 2010; 1802
Robinson (10.1016/j.bbamcr.2020.118867_bb0365) 2008; 105
Tsang (10.1016/j.bbamcr.2020.118867_bb0025) 2020; 22
Stroud (10.1016/j.bbamcr.2020.118867_bb0235) 2015; 24
Leary (10.1016/j.bbamcr.2020.118867_bb0090) 2009; 1793
Gudekar (10.1016/j.bbamcr.2020.118867_bb0080) 2020; 10
Dodani (10.1016/j.bbamcr.2020.118867_bb0040) 2014; 111
10.1016/j.bbamcr.2020.118867_bb0135
Williams (10.1016/j.bbamcr.2020.118867_bb0160) 2016; 89
Dodani (10.1016/j.bbamcr.2020.118867_bb0315) 2011; 133
Glerum (10.1016/j.bbamcr.2020.118867_bb0435) 1996; 271
References_xml – volume: 10
  start-page: 218
  year: 2009
  end-page: 227
  ident: bb0390
  article-title: ABC transporters: the power to change
  publication-title: Nat Rev Mol Cell Biol
– reference: Z.N. Baker, K. Jett, A. Boulet, A. Hossain, P.A. Cobine, B.-E. Kim, A.M.E. Zawily, L. Lee, G.F. Tibbits, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart, Human Molecular Genetics Advance Article: ddx344 (2017).
– volume: 26
  start-page: 4335
  year: 2007
  end-page: 4346
  ident: bb0460
  article-title: Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly
  publication-title: EMBO J.
– volume: 385
  start-page: 331
  year: 2009
  end-page: 338
  ident: bb0285
  article-title: The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1
  publication-title: J. Mol. Biol.
– volume: 337
  start-page: 93
  year: 2012
  end-page: 96
  ident: bb0405
  article-title: Identification and functional expression of the mitochondrial pyruvate carrier
  publication-title: Science
– reference: D. Mellacheruvu, Z. Wright, A.L. Couzens, J.P. Lambert, N.A. St-Denis, T. Li, Y.V. Miteva, S. Hauri, M.E. Sardiu, T.Y. Low, V.A. Halim, R.D. Bagshaw, N.C. Hubner, A. Al-Hakim, A. Bouchard, D. Faubert, D. Fermin, W.H. Dunham, M. Goudreault, Z.Y. Lin, B.G. Badillo, T. Pawson, D. Durocher, B. Coulombe, R. Aebersold, G. Superti-Furga, J. Colinge, A.J. Heck, H. Choi, M. Gstaiger, S. Mohammed, I.M. Cristea, K.L. Bennett, M.P. Washburn, B. Raught, R.M. Ewing, A.C. Gingras, A.I. Nesvizhskii, The CRAPome: a contaminant repository for affinity purification-mass spectrometry data, Nat Methods 10(8) (2013) 730–6.
– volume: 280
  start-page: 4943
  year: 2013
  end-page: 4959
  ident: bb0290
  article-title: Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1
  publication-title: FEBS J.
– reference: J. Lichtmannegger, C. Leitzinger, R. Wimmer, S. Schmitt, S. Schulz, Y. Kabiri, C. Eberhagen, T. Rieder, D. Janik, F. Neff, B.K. Straub, P. Schirmacher, A.A. DiSpirito, N. Bandow, B.S. Baral, A. Flatley, E. Kremmer, G. Denk, F.P. Reiter, S. Hohenester, F. Eckardt-Schupp, N.A. Dencher, J. Adamski, V. Sauer, C. Niemietz, H.H. Schmidt, U. Merle, D.N. Gotthardt, G. Kroemer, K.H. Weiss, H. Zischka, Methanobactin reverses acute liver failure in a rat model of Wilson disease, J Clin Invest 126(7) (2016) 2721–35.
– volume: 26
  start-page: 1274
  year: 2016
  end-page: 1284
  ident: bb0610
  article-title: A eukaryote without a mitochondrial organelle
  publication-title: Curr. Biol.
– reference: S. Soma, M.N. Morgada, M.T. Naik, A. Boulet, A.A. Roesler, N. Dziuba, A. Ghosh, Q. Yu, P.A. Lindahl, J.B. Ames, S.C. Leary, A.J. Vila, V.M. Gohil, COA6 is structurally tuned to function as a thiol-disulfide oxidoreductase in copper delivery to mitochondrial cytochrome c oxidase, Cell Rep 29(12) (2019) 4114–4126 e5.
– volume: 11
  start-page: 744
  year: 2015
  end-page: 747
  ident: bb0010
  article-title: Searching for harmony in transition-metal signaling
  publication-title: Nat. Chem. Biol.
– volume: 14
  start-page: 3048
  year: 2005
  end-page: 3056
  ident: bb0480
  article-title: Functional expression of eukaryotic membrane proteins in Lactococcus lactis
  publication-title: Protein Sci.
– volume: 34
  start-page: 1366
  year: 2013
  end-page: 1370
  ident: bb0565
  article-title: Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis
  publication-title: Hum. Mutat.
– volume: 5
  start-page: 7949
  year: 2015
  ident: bb0605
  article-title: An integrated phylogenomic approach toward pinpointing the origin of mitochondria
  publication-title: Sci. Rep.
– volume: 293
  start-page: 4628
  year: 2018
  end-page: 4635
  ident: bb0050
  article-title: Copper signaling in the brain and beyond
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 1007
  year: 2009
  end-page: 1016
  ident: bb0515
  article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2
  publication-title: Mol. Cell. Biol.
– volume: 279
  start-page: 35334
  year: 2004
  end-page: 35340
  ident: bb0245
  article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase
  publication-title: J. Biol. Chem.
– reference: C.N. Cunningham, J. Rutter, 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport, EMBO Rep (2020) e50071.
– volume: 50
  start-page: 94
  year: 2020
  end-page: 114
  ident: bb0180
  article-title: Modular biogenesis of mitochondrial respiratory complexes
  publication-title: Mitochondrion
– volume: 22
  start-page: 3749
  year: 2011
  end-page: 3757
  ident: bb0280
  article-title: Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol
  publication-title: Mol. Biol. Cell
– volume: 25
  start-page: 660
  year: 2016
  end-page: 671
  ident: bb0215
  article-title: Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis
  publication-title: Hum. Mol. Genet.
– reference: J.J. Ruprecht, M.S. King, T. Zogg, A.A. Aleksandrova, E. Pardon, P.G. Crichton, J. Steyaert, E.R.S. Kunji, The molecular mechanism of transport by the mitochondrial ADP/ATP carrier, Cell 176(3) (2019) 435–447 e15.
– volume: 26
  start-page: 4347
  year: 2007
  end-page: 4358
  ident: bb0470
  article-title: Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly
  publication-title: EMBO J.
– volume: 6
  start-page: 150223
  year: 2016
  ident: bb0485
  article-title: Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae
  publication-title: Open Biol.
– volume: 292
  start-page: 12754
  year: 2017
  end-page: 12763
  ident: bb0525
  article-title: Iron-sulfur cluster biogenesis and trafficking in mitochondria
  publication-title: J. Biol. Chem.
– volume: 460
  start-page: 79
  year: 2014
  end-page: 89
  ident: bb0490
  article-title: Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins
  publication-title: Biochem. J.
– volume: 1817
  start-page: 883
  year: 2012
  end-page: 897
  ident: bb0190
  article-title: Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core
  publication-title: Biochim. Biophys. Acta
– volume: 133
  start-page: 8606
  year: 2011
  end-page: 8616
  ident: bb0315
  article-title: A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 2385
  year: 2015
  end-page: 2401
  ident: bb0210
  article-title: Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase
  publication-title: Mol. Biol. Cell
– reference: C. Vallieres, S.L. Holland, S.V. Avery, Mitochondrial ferredoxin determines vulnerability of cells to copper excess, Cell Chem Biol 24(10) (2017) 1228–1237 e3.
– volume: 52
  start-page: 2142
  year: 2012
  end-page: 2150
  ident: bb0150
  article-title: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells
  publication-title: Free Radic. Biol. Med.
– volume: 10
  start-page: 1449
  year: 2019
  ident: bb0505
  article-title: Mitochondrial iron transporters (MIT1 and MIT2) are essential for Iron homeostasis and embryogenesis in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
– volume: 432
  start-page: 2067
  year: 2020
  end-page: 2079
  ident: bb0225
  article-title: COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria
  publication-title: J. Mol. Biol.
– volume: 35
  start-page: 2712
  year: 2018
  end-page: 2718
  ident: bb0615
  article-title: Fe-S cluster assembly in oxymonads and related protists
  publication-title: Mol. Biol. Evol.
– volume: 79
  start-page: 537
  year: 2010
  end-page: 562
  ident: bb0005
  article-title: Copper metallochaperones
  publication-title: Annu. Rev. Biochem.
– volume: 121
  start-page: 1508
  year: 2011
  end-page: 1518
  ident: bb0115
  article-title: Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease
  publication-title: J. Clin. Invest.
– volume: 1802
  start-page: 100
  year: 2010
  end-page: 110
  ident: bb0175
  article-title: Cytochrome c oxidase deficiency: patients and animal models
  publication-title: Biochim. Biophys. Acta
– reference: C.J. Hlynialuk, B. Ling, Z.N. Baker, P.A. Cobine, L.D. Yu, A. Boulet, T. Wai, A. Hossain, A.M. El Zawily, P.J. McFie, S.J. Stone, F. Diaz, C.T. Moraes, D. Viswanathan, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 is required to sustain expression of the high-affinity copper transporter CTR1 and preserve copper homeostasis, Cell Rep (2015) pii: S2211-1247(15)00032-7.
– volume: 1315
  start-page: 6
  year: 2014
  end-page: 15
  ident: bb0110
  article-title: Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 22
  start-page: 412
  year: 2020
  end-page: 424
  ident: bb0025
  article-title: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma
  publication-title: Nat. Cell Biol.
– volume: 134
  start-page: 35
  year: 2017
  end-page: 50
  ident: bb0375
  article-title: The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism
  publication-title: Biochimie
– volume: 105
  start-page: 6803
  year: 2008
  end-page: 6808
  ident: bb0205
  article-title: Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 16
  start-page: 141
  year: 2012
  end-page: 143
  ident: bb0410
  article-title: The mitochondrial pyruvate carrier: has it been unearthed at last?
  publication-title: Cell Metab.
– volume: 24
  start-page: 683
  year: 2013
  end-page: 691
  ident: bb0570
  article-title: COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux
  publication-title: Mol. Biol. Cell
– volume: 84
  year: 2018
  ident: bb0350
  article-title: Metals and methanotrophy
  publication-title: Appl. Environ. Microbiol.
– volume: 27
  start-page: R1177
  year: 2017
  end-page: R1192
  ident: bb0600
  article-title: The origin and diversification of mitochondria
  publication-title: Curr. Biol.
– reference: L.A. Sturtz, K. Diekert, L.T. Jensen, R. Lill, V.C. Culotta, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage, The Journal of Biological Chemistry 276(41) (2001) 38084–9.
– volume: 13
  start-page: 1375
  year: 2010
  end-page: 1384
  ident: bb0255
  article-title: Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space
  publication-title: Antioxid. Redox Signal.
– volume: 89
  start-page: 471
  year: 2020
  end-page: 499
  ident: bb0535
  article-title: Mechanisms of mitochondrial iron-sulfur protein biogenesis
  publication-title: Annu. Rev. Biochem.
– volume: 455
  start-page: 57
  year: 2013
  end-page: 65
  ident: bb0555
  article-title: The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron
  publication-title: Biochem. J.
– volume: 293
  start-page: 1887
  year: 2018
  end-page: 1896
  ident: bb0105
  article-title: The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 16280
  year: 2014
  end-page: 16285
  ident: bb0040
  article-title: Copper is an endogenous modulator of neural circuit spontaneous activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 426
  start-page: 39
  year: 2003
  end-page: 44
  ident: bb0385
  article-title: Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside
  publication-title: Nature
– volume: 47
  start-page: 256
  year: 2019
  end-page: 265
  ident: bb0560
  article-title: Splitting the functions of Rim2, a mitochondrial iron/pyrimidine carrier
  publication-title: Mitochondrion
– volume: 509
  start-page: 492
  year: 2014
  end-page: 496
  ident: bb0020
  article-title: Copper is required for oncogenic BRAF signalling and tumorigenesis
  publication-title: Nature
– volume: 9
  start-page: 1501
  year: 2017
  end-page: 1512
  ident: bb0085
  article-title: The mitochondrion: a central architect of copper homeostasis
  publication-title: Metallomics
– volume: 14
  start-page: 655
  year: 2018
  end-page: 663
  ident: bb0045
  article-title: Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system
  publication-title: Nat. Chem. Biol.
– volume: 102
  start-page: 11179
  year: 2005
  end-page: 11184
  ident: bb0325
  article-title: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  year: 2020
  ident: bb0360
  article-title: Diseases caused by mutations in mitochondrial carrier genes SLC25: a review
  publication-title: Biomolecules
– volume: 116
  start-page: 12167
  year: 2019
  end-page: 12172
  ident: bb0075
  article-title: Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 54
  start-page: 3442
  year: 2015
  end-page: 3453
  ident: bb0330
  article-title: Detection of labile low-molecular-mass transition metal complexes in mitochondria
  publication-title: Biochemistry
– volume: 290
  start-page: 20804
  year: 2015
  end-page: 20814
  ident: bb0270
  article-title: Mia40 protein serves as an electron sink in the Mia40-Erv1 import pathway
  publication-title: J. Biol. Chem.
– volume: 40
  start-page: 240
  year: 2014
  end-page: 257
  ident: bb0540
  article-title: Review: iron metabolism and the role of iron in neurodegenerative disorders
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 10
  start-page: 7856
  year: 2020
  ident: bb0080
  article-title: Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess
  publication-title: Sci. Rep.
– volume: 337
  start-page: 96
  year: 2012
  end-page: 100
  ident: bb0400
  article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast
  publication-title: Drosophila, and humans, Science
– volume: 105
  start-page: 17766
  year: 2008
  end-page: 17771
  ident: bb0365
  article-title: The mechanism of transport by mitochondrial carriers based on analysis of symmetry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 55
  start-page: 4140
  year: 2016
  end-page: 4153
  ident: bb0335
  article-title: Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field
  publication-title: Biochemistry
– start-page: 115
  year: 2019
  end-page: 126
  ident: bb0420
  article-title: Copper disposition in yeast
  publication-title: Clinical and Translational Perspectives on WILSON DISEASE
– volume: 288
  start-page: 23884
  year: 2013
  end-page: 23892
  ident: bb0100
  article-title: Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 681
  year: 2019
  end-page: 689
  ident: bb0170
  article-title: Mitochondrial metabolism promotes adaptation to proteotoxic stress
  publication-title: Nat. Chem. Biol.
– volume: 24
  start-page: 440
  year: 2013
  end-page: 452
  ident: bb0185
  article-title: Modular assembly of yeast cytochrome oxidase
  publication-title: Mol. Biol. Cell
– volume: 36
  start-page: 2292
  year: 2019
  end-page: 2312
  ident: bb0620
  article-title: The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion
  publication-title: Mol. Biol. Evol.
– volume: 279
  start-page: 14447
  year: 2004
  end-page: 14455
  ident: bb0305
  article-title: Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix
  publication-title: J. Biol. Chem.
– volume: 115
  start-page: 8161
  year: 2018
  end-page: 8166
  ident: bb0140
  article-title: Elesclomol restores mitochondrial function in genetic models of copper deficiency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 305
  start-page: 1612
  year: 2004
  end-page: 1615
  ident: bb0345
  article-title: Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria
  publication-title: Science
– reference: S. Garcia-Santamarina, M.A. Uzarska, R.A. Festa, R. Lill, D.J. Thiele,
– volume: 93
  start-page: 317
  year: 2014
  end-page: 330
  ident: bb0165
  article-title: A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
– volume: 13
  start-page: 75
  year: 2019
  ident: bb0545
  article-title: The role of iron in Friedreich’s ataxia: insights from studies in human tissues and cellular and animal models
  publication-title: Front. Neurosci.
– volume: 137
  start-page: 22
  year: 2014
  end-page: 30
  ident: bb0145
  article-title: The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II)
  publication-title: J. Inorg. Biochem.
– volume: 272
  start-page: 33191
  year: 1997
  end-page: 33196
  ident: bb0440
  article-title: Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 3758
  year: 2011
  end-page: 3767
  ident: bb0275
  article-title: Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system
  publication-title: Mol. Biol. Cell
– volume: 279
  start-page: 35334
  year: 2004
  end-page: 35340
  ident: bb0445
  article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase
  publication-title: J. Biol. Chem.
– volume: 440
  start-page: 96
  year: 2006
  end-page: 100
  ident: bb0520
  article-title: Mitoferrin is essential for erythroid iron assimilation
  publication-title: Nature
– volume: 113
  start-page: 1745
  year: 2013
  end-page: 1754
  ident: bb0060
  article-title: Inborn errors of copper metabolism
  publication-title: Handb. Clin. Neurol.
– volume: 76
  start-page: 163
  year: 2018
  end-page: 178
  ident: bb0430
  article-title: Mitochondrial cytochrome c oxidase biogenesis: recent developments
  publication-title: Semin. Cell Dev. Biol.
– volume: 112
  start-page: 11771
  year: 2015
  end-page: 11776
  ident: bb0250
  article-title: Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 279
  start-page: 5072
  year: 2004
  end-page: 5080
  ident: bb0450
  article-title: Cox17 is functional when tethered to the mitochondrial inner membrane
  publication-title: J. Biol. Chem.
– volume: 140
  start-page: 285
  year: 2013
  end-page: 295
  ident: bb0070
  article-title: Golgi in copper homeostasis: a view from the membrane trafficking field
  publication-title: Histochem. Cell Biol.
– volume: 401
  start-page: 855
  year: 2020
  end-page: 876
  ident: bb0530
  article-title: From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis
  publication-title: Biol. Chem.
– volume: 18
  start-page: 2230
  year: 2009
  end-page: 2240
  ident: bb0240
  article-title: Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1
  publication-title: Hum. Mol. Genet.
– volume: 60
  start-page: 421
  year: 2008
  end-page: 429
  ident: bb0425
  article-title: Mitochondrial copper metabolism and delivery to cytochrome c oxidase
  publication-title: IUBMB Life
– reference: D. Brancaccio, A. Gallo, M. Piccioli, E. Novellino, S. Ciofi-Baffoni, L. Banci, [4Fe-4S] cluster assembly in mitochondria and its impairment by copper, J Am Chem Soc 139(2) (2017) 719–730.
– volume: 59
  start-page: 24
  year: 2019
  end-page: 33
  ident: bb0065
  article-title: Trafficking mechanisms of P-type ATPase copper transporters
  publication-title: Curr. Opin. Cell Biol.
– volume: 293
  start-page: 4644
  year: 2018
  end-page: 4652
  ident: bb0095
  article-title: Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 3596
  year: 2014
  end-page: 3606
  ident: bb0465
  article-title: Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency
  publication-title: Hum. Mol. Genet.
– volume: 447
  start-page: 689
  year: 2004
  end-page: 709
  ident: bb0510
  article-title: The mitochondrial transporter family (SLC25): physiological and pathological implications
  publication-title: Pflugers Arch.
– volume: 271
  start-page: 20531
  year: 1996
  end-page: 20535
  ident: bb0435
  article-title: SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
– volume: 368
  start-page: 620
  year: 2020
  end-page: 625
  ident: bb0155
  article-title: Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice
  publication-title: Science
– volume: 89
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0160
  article-title: Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD
  publication-title: Neurobiol. Dis.
– volume: 108
  start-page: 5980
  year: 2011
  end-page: 5985
  ident: bb0035
  article-title: Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 4354
  year: 2008
  end-page: 4364
  ident: bb0295
  article-title: Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis
  publication-title: Mol. Cell. Biol.
– volume: 32
  start-page: 1284
  year: 2012
  end-page: 1295
  ident: bb0030
  article-title: A novel role for copper in Ras/mitogen-activated protein kinase signaling
  publication-title: Mol. Cell. Biol.
– volume: 362
  year: 2018
  ident: bb0395
  article-title: SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism
  publication-title: Science
– volume: 292
  start-page: 18169
  year: 2017
  end-page: 18177
  ident: bb0055
  article-title: The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 915
  year: 2016
  end-page: 919
  ident: bb0320
  article-title: A ratiometric fluorescent sensor for the mitochondrial copper pool
  publication-title: Metallomics
– volume: 21
  year: 2020
  ident: bb0475
  article-title: MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome-nascent chain complex
  publication-title: EMBO Rep.
– volume: 1793
  start-page: 146
  year: 2009
  end-page: 153
  ident: bb0090
  article-title: “Pulling the plug” on cellular copper: the role of mitochondria in copper export
  publication-title: Biochim. Biophys. Acta
– volume: 285
  start-page: 15088
  year: 2010
  end-page: 15099
  ident: bb0300
  article-title: The conserved mitochondrial twin Cx9C protein Cmc2 is a Cmc1 homologue essential for cytochrome c oxidase biogenesis
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 5404
  year: 2015
  end-page: 5415
  ident: bb0235
  article-title: COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2
  publication-title: Hum. Mol. Genet.
– reference: M. Grasso, G.J. Bond, Y.-J. Kim, K.B. Alwan, S. Boyd, M.M. Dzebo, S. Valenzuela, T. Tsang, N.A. Schibrowsky, M.L. Matthews, G.M. Burslem, P. Wittung-Stafshede, D.D. Winkler, N.J. Blackburn, R. Marmorstein, D.C. Brady, Structural and molecular determinants of CCS-mediated copper activation of MEK1/2, bioRxiv (2020) 2020.05.01.072124.
– reference: iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress, mBio 8(5) (2017).
– volume: 49
  start-page: 5436
  year: 2010
  end-page: 5444
  ident: bb0310
  article-title: Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast
  publication-title: Biochemistry
– volume: 152
  start-page: 224
  year: 2013
  end-page: 235
  ident: bb0590
  article-title: SOD1 integrates signals from oxygen and glucose to repress respiration
  publication-title: Cell
– volume: 5
  start-page: 9
  year: 2007
  end-page: 20
  ident: bb0585
  article-title: The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis
  publication-title: Cell Metab.
– volume: 12
  start-page: 451
  year: 2013
  end-page: 478
  ident: bb0200
  article-title: The copper metallome in eukaryotic cells
  publication-title: Met Ions Life Sci
– volume: 293
  start-page: 3819
  year: 2018
  end-page: 3828
  ident: bb0500
  article-title: In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1
  publication-title: J. Biol. Chem.
– volume: 87
  start-page: 645
  year: 2018
  end-page: 676
  ident: bb0340
  article-title: Chalkophores
  publication-title: Annu. Rev. Biochem.
– volume: 281
  start-page: 36552
  year: 2006
  end-page: 36559
  ident: bb0265
  article-title: Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 4480
  year: 2010
  end-page: 4491
  ident: bb0455
  article-title: Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family
  publication-title: Mol. Cell. Biol.
– volume: 12
  start-page: 586
  year: 2016
  end-page: 592
  ident: bb0015
  article-title: Copper regulates cyclic-AMP-dependent lipolysis
  publication-title: Nat. Chem. Biol.
– volume: 128
  start-page: 833
  year: 2015
  end-page: 837
  ident: bb0195
  article-title: Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance
  publication-title: J. Cell Sci.
– volume: 21
  start-page: 823
  year: 2015
  end-page: 833
  ident: bb0220
  article-title: Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies
  publication-title: Cell Metab.
– volume: 440
  start-page: 137
  year: 2011
  end-page: 146
  ident: bb0550
  article-title: Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria
  publication-title: Biochem. J.
– volume: 1788
  start-page: 1044
  year: 2009
  end-page: 1050
  ident: bb0495
  article-title: The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane
  publication-title: Biochim. Biophys. Acta
– volume: 45
  start-page: 244
  year: 2020
  end-page: 258
  ident: bb0370
  article-title: The SLC25 mitochondrial carrier family: structure and mechanism
  publication-title: Trends Biochem. Sci.
– start-page: 1
  year: 2011
  end-page: 12
  ident: bb0415
  article-title: Copper in mitochondria
  publication-title: Encyclopedia of Inorganic and Bioinorganic Chemistry
– volume: 60
  start-page: 421
  issue: 7
  year: 2008
  ident: 10.1016/j.bbamcr.2020.118867_bb0425
  article-title: Mitochondrial copper metabolism and delivery to cytochrome c oxidase
  publication-title: IUBMB Life
  doi: 10.1002/iub.50
– volume: 12
  start-page: 586
  issue: 8
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0015
  article-title: Copper regulates cyclic-AMP-dependent lipolysis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2098
– volume: 279
  start-page: 35334
  issue: 34
  year: 2004
  ident: 10.1016/j.bbamcr.2020.118867_bb0245
  article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M404747200
– ident: 10.1016/j.bbamcr.2020.118867_bb0355
  doi: 10.15252/embr.202050071
– volume: 36
  start-page: 2292
  issue: 10
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0620
  article-title: The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msz147
– volume: 13
  start-page: 75
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0545
  article-title: The role of iron in Friedreich’s ataxia: insights from studies in human tissues and cellular and animal models
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00075
– volume: 10
  start-page: 1449
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0505
  article-title: Mitochondrial iron transporters (MIT1 and MIT2) are essential for Iron homeostasis and embryogenesis in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01449
– volume: 5
  start-page: 7949
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0605
  article-title: An integrated phylogenomic approach toward pinpointing the origin of mitochondria
  publication-title: Sci. Rep.
  doi: 10.1038/srep07949
– volume: 24
  start-page: 5404
  issue: 19
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0235
  article-title: COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv265
– volume: 87
  start-page: 645
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0340
  article-title: Chalkophores
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-012300
– ident: 10.1016/j.bbamcr.2020.118867_bb0260
  doi: 10.1074/jbc.M105296200
– volume: 34
  start-page: 1366
  issue: 10
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0565
  article-title: Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22385
– volume: 89
  start-page: 471
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0535
  article-title: Mechanisms of mitochondrial iron-sulfur protein biogenesis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-013118-111540
– volume: 385
  start-page: 331
  issue: 2
  year: 2009
  ident: 10.1016/j.bbamcr.2020.118867_bb0285
  article-title: The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.10.088
– volume: 11
  start-page: 744
  issue: 10
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0010
  article-title: Searching for harmony in transition-metal signaling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1913
– volume: 15
  start-page: 681
  issue: 7
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0170
  article-title: Mitochondrial metabolism promotes adaptation to proteotoxic stress
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0291-9
– volume: 10
  start-page: 7856
  issue: 1
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0080
  article-title: Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64521-3
– volume: 50
  start-page: 94
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0180
  article-title: Modular biogenesis of mitochondrial respiratory complexes
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2019.10.008
– volume: 47
  start-page: 256
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0560
  article-title: Splitting the functions of Rim2, a mitochondrial iron/pyrimidine carrier
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2018.12.005
– volume: 24
  start-page: 440
  issue: 4
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0185
  article-title: Modular assembly of yeast cytochrome oxidase
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-10-0749
– volume: 13
  start-page: 1375
  issue: 9
  year: 2010
  ident: 10.1016/j.bbamcr.2020.118867_bb0255
  article-title: Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3212
– volume: 23
  start-page: 3596
  issue: 13
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0465
  article-title: Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu069
– volume: 10
  start-page: 218
  issue: 3
  year: 2009
  ident: 10.1016/j.bbamcr.2020.118867_bb0390
  article-title: ABC transporters: the power to change
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2646
– volume: 140
  start-page: 285
  issue: 3
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0070
  article-title: Golgi in copper homeostasis: a view from the membrane trafficking field
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-013-1123-8
– volume: 271
  start-page: 20531
  issue: 34
  year: 1996
  ident: 10.1016/j.bbamcr.2020.118867_bb0435
  article-title: SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.34.20531
– volume: 26
  start-page: 2385
  issue: 13
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0210
  article-title: Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-11-1526
– volume: 121
  start-page: 1508
  issue: 4
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0115
  article-title: Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI45401
– volume: 27
  start-page: R1177
  issue: 21
  year: 2017
  ident: 10.1016/j.bbamcr.2020.118867_bb0600
  article-title: The origin and diversification of mitochondria
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.09.015
– volume: 290
  start-page: 20804
  issue: 34
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0270
  article-title: Mia40 protein serves as an electron sink in the Mia40-Erv1 import pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.669440
– volume: 112
  start-page: 11771
  issue: 38
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0250
  article-title: Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1505056112
– volume: 272
  start-page: 33191
  issue: 52
  year: 1997
  ident: 10.1016/j.bbamcr.2020.118867_bb0440
  article-title: Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.52.33191
– volume: 113
  start-page: 1745
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0060
  article-title: Inborn errors of copper metabolism
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/B978-0-444-59565-2.00045-9
– volume: 305
  start-page: 1612
  issue: 5690
  year: 2004
  ident: 10.1016/j.bbamcr.2020.118867_bb0345
  article-title: Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria
  publication-title: Science
  doi: 10.1126/science.1098322
– ident: 10.1016/j.bbamcr.2020.118867_bb0575
  doi: 10.1016/j.celrep.2015.01.019
– volume: 1788
  start-page: 1044
  issue: 5
  year: 2009
  ident: 10.1016/j.bbamcr.2020.118867_bb0495
  article-title: The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.03.004
– volume: 9
  start-page: 1501
  issue: 11
  year: 2017
  ident: 10.1016/j.bbamcr.2020.118867_bb0085
  article-title: The mitochondrion: a central architect of copper homeostasis
  publication-title: Metallomics
  doi: 10.1039/C7MT00221A
– start-page: 1
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0415
  article-title: Copper in mitochondria
– volume: 54
  start-page: 3442
  issue: 22
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0330
  article-title: Detection of labile low-molecular-mass transition metal complexes in mitochondria
  publication-title: Biochemistry
  doi: 10.1021/bi5015437
– volume: 460
  start-page: 79
  issue: 1
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0490
  article-title: Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins
  publication-title: Biochem. J.
  doi: 10.1042/BJ20140107
– volume: 14
  start-page: 655
  issue: 7
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0045
  article-title: Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0062-z
– volume: 29
  start-page: 1007
  issue: 4
  year: 2009
  ident: 10.1016/j.bbamcr.2020.118867_bb0515
  article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01685-08
– volume: 1793
  start-page: 146
  issue: 1
  year: 2009
  ident: 10.1016/j.bbamcr.2020.118867_bb0090
  article-title: “Pulling the plug” on cellular copper: the role of mitochondria in copper export
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.05.002
– volume: 21
  start-page: 823
  issue: 6
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0220
  article-title: Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.012
– ident: 10.1016/j.bbamcr.2020.118867_bb0380
  doi: 10.1016/j.cell.2018.11.025
– volume: 288
  start-page: 23884
  issue: 33
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0100
  article-title: Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.470674
– volume: 28
  start-page: 4354
  issue: 13
  year: 2008
  ident: 10.1016/j.bbamcr.2020.118867_bb0295
  article-title: Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01920-07
– volume: 24
  start-page: 683
  issue: 6
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0570
  article-title: COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-09-0705
– volume: 1315
  start-page: 6
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0110
  article-title: Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12347
– volume: 93
  start-page: 317
  issue: 2
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0165
  article-title: A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12661
– volume: 293
  start-page: 1887
  issue: 6
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0105
  article-title: The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.000265
– volume: 337
  start-page: 96
  issue: 6090
  year: 2012
  ident: 10.1016/j.bbamcr.2020.118867_bb0400
  article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast
  publication-title: Drosophila, and humans, Science
– ident: 10.1016/j.bbamcr.2020.118867_bb0120
  doi: 10.1172/JCI85226
– ident: 10.1016/j.bbamcr.2020.118867_bb0130
  doi: 10.1021/jacs.6b09567
– volume: 280
  start-page: 4943
  issue: 20
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0290
  article-title: Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1
  publication-title: FEBS J.
  doi: 10.1111/febs.12409
– volume: 76
  start-page: 163
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0430
  article-title: Mitochondrial cytochrome c oxidase biogenesis: recent developments
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.055
– ident: 10.1016/j.bbamcr.2020.118867_bb0595
  doi: 10.1101/2020.05.01.072124
– volume: 40
  start-page: 240
  issue: 3
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0540
  article-title: Review: iron metabolism and the role of iron in neurodegenerative disorders
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/nan.12096
– volume: 45
  start-page: 244
  issue: 3
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0370
  article-title: The SLC25 mitochondrial carrier family: structure and mechanism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2019.11.001
– ident: 10.1016/j.bbamcr.2020.118867_bb0580
  doi: 10.1093/hmg/ddx344
– volume: 293
  start-page: 3819
  issue: 10
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0500
  article-title: In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.817478
– volume: 440
  start-page: 96
  issue: 7080
  year: 2006
  ident: 10.1016/j.bbamcr.2020.118867_bb0520
  article-title: Mitoferrin is essential for erythroid iron assimilation
  publication-title: Nature
  doi: 10.1038/nature04512
– ident: 10.1016/j.bbamcr.2020.118867_bb0135
  doi: 10.1128/mBio.01742-17
– volume: 133
  start-page: 8606
  issue: 22
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0315
  article-title: A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2004158
– ident: 10.1016/j.bbamcr.2020.118867_bb0125
  doi: 10.1016/j.chembiol.2017.08.005
– volume: 1802
  start-page: 100
  issue: 1
  year: 2010
  ident: 10.1016/j.bbamcr.2020.118867_bb0175
  article-title: Cytochrome c oxidase deficiency: patients and animal models
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2009.07.013
– volume: 26
  start-page: 4335
  issue: 20
  year: 2007
  ident: 10.1016/j.bbamcr.2020.118867_bb0460
  article-title: Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601861
– volume: 26
  start-page: 4347
  issue: 20
  year: 2007
  ident: 10.1016/j.bbamcr.2020.118867_bb0470
  article-title: Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601862
– volume: 52
  start-page: 2142
  issue: 10
  year: 2012
  ident: 10.1016/j.bbamcr.2020.118867_bb0150
  article-title: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.03.017
– volume: 401
  start-page: 855
  issue: 6–7
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0530
  article-title: From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2020-0117
– volume: 18
  start-page: 2230
  issue: 12
  year: 2009
  ident: 10.1016/j.bbamcr.2020.118867_bb0240
  article-title: Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp158
– volume: 5
  start-page: 9
  issue: 1
  year: 2007
  ident: 10.1016/j.bbamcr.2020.118867_bb0585
  article-title: The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.12.001
– volume: 137
  start-page: 22
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0145
  article-title: The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II)
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2014.04.004
– volume: 292
  start-page: 12754
  issue: 31
  year: 2017
  ident: 10.1016/j.bbamcr.2020.118867_bb0525
  article-title: Iron-sulfur cluster biogenesis and trafficking in mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R117.787101
– volume: 111
  start-page: 16280
  issue: 46
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0040
  article-title: Copper is an endogenous modulator of neural circuit spontaneous activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1409796111
– volume: 22
  start-page: 412
  issue: 4
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0025
  article-title: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0481-4
– volume: 447
  start-page: 689
  issue: 5
  year: 2004
  ident: 10.1016/j.bbamcr.2020.118867_bb0510
  article-title: The mitochondrial transporter family (SLC25): physiological and pathological implications
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-003-1099-7
– volume: 21
  issue: 1
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0475
  article-title: MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome-nascent chain complex
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201948833
– volume: 128
  start-page: 833
  issue: 5
  year: 2015
  ident: 10.1016/j.bbamcr.2020.118867_bb0195
  article-title: Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance
  publication-title: J. Cell Sci.
– volume: 12
  start-page: 451
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0200
  article-title: The copper metallome in eukaryotic cells
  publication-title: Met Ions Life Sci
– volume: 509
  start-page: 492
  issue: 7501
  year: 2014
  ident: 10.1016/j.bbamcr.2020.118867_bb0020
  article-title: Copper is required for oncogenic BRAF signalling and tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature13180
– volume: 293
  start-page: 4644
  issue: 13
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0095
  article-title: Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R117.816132
– volume: 102
  start-page: 11179
  issue: 32
  year: 2005
  ident: 10.1016/j.bbamcr.2020.118867_bb0325
  article-title: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0406547102
– volume: 152
  start-page: 224
  issue: 1–2
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0590
  article-title: SOD1 integrates signals from oxygen and glucose to repress respiration
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.046
– volume: 35
  start-page: 2712
  issue: 11
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0615
  article-title: Fe-S cluster assembly in oxymonads and related protists
  publication-title: Mol. Biol. Evol.
– volume: 55
  start-page: 4140
  issue: 30
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0335
  article-title: Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00216
– volume: 279
  start-page: 5072
  issue: 7
  year: 2004
  ident: 10.1016/j.bbamcr.2020.118867_bb0450
  article-title: Cox17 is functional when tethered to the mitochondrial inner membrane
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311772200
– volume: 116
  start-page: 12167
  issue: 25
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0075
  article-title: Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1900172116
– volume: 10
  issue: 4
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0360
  article-title: Diseases caused by mutations in mitochondrial carrier genes SLC25: a review
  publication-title: Biomolecules
  doi: 10.3390/biom10040655
– volume: 84
  issue: 6
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0350
  article-title: Metals and methanotrophy
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02289-17
– volume: 89
  start-page: 1
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0160
  article-title: Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.01.020
– volume: 455
  start-page: 57
  issue: 1
  year: 2013
  ident: 10.1016/j.bbamcr.2020.118867_bb0555
  article-title: The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron
  publication-title: Biochem. J.
  doi: 10.1042/BJ20130144
– volume: 26
  start-page: 1274
  issue: 10
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0610
  article-title: A eukaryote without a mitochondrial organelle
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.03.053
– volume: 1817
  start-page: 883
  issue: 6
  year: 2012
  ident: 10.1016/j.bbamcr.2020.118867_bb0190
  article-title: Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2011.09.005
– volume: 432
  start-page: 2067
  issue: 7
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0225
  article-title: COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.01.036
– volume: 32
  start-page: 1284
  issue: 7
  year: 2012
  ident: 10.1016/j.bbamcr.2020.118867_bb0030
  article-title: A novel role for copper in Ras/mitogen-activated protein kinase signaling
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.05722-11
– volume: 292
  start-page: 18169
  issue: 44
  year: 2017
  ident: 10.1016/j.bbamcr.2020.118867_bb0055
  article-title: The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.811752
– start-page: 115
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0420
  article-title: Copper disposition in yeast
– volume: 8
  start-page: 915
  issue: 9
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0320
  article-title: A ratiometric fluorescent sensor for the mitochondrial copper pool
  publication-title: Metallomics
  doi: 10.1039/C6MT00083E
– volume: 59
  start-page: 24
  year: 2019
  ident: 10.1016/j.bbamcr.2020.118867_bb0065
  article-title: Trafficking mechanisms of P-type ATPase copper transporters
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2019.02.009
– volume: 426
  start-page: 39
  issue: 6962
  year: 2003
  ident: 10.1016/j.bbamcr.2020.118867_bb0385
  article-title: Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside
  publication-title: Nature
  doi: 10.1038/nature02056
– volume: 279
  start-page: 35334
  issue: 34
  year: 2004
  ident: 10.1016/j.bbamcr.2020.118867_bb0445
  article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M404747200
– ident: 10.1016/j.bbamcr.2020.118867_bb0230
  doi: 10.1016/j.celrep.2019.11.054
– volume: 49
  start-page: 5436
  issue: 26
  year: 2010
  ident: 10.1016/j.bbamcr.2020.118867_bb0310
  article-title: Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast
  publication-title: Biochemistry
  doi: 10.1021/bi100558z
– volume: 79
  start-page: 537
  year: 2010
  ident: 10.1016/j.bbamcr.2020.118867_bb0005
  article-title: Copper metallochaperones
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-030409-143539
– volume: 108
  start-page: 5980
  issue: 15
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0035
  article-title: Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1009932108
– volume: 30
  start-page: 4480
  issue: 18
  year: 2010
  ident: 10.1016/j.bbamcr.2020.118867_bb0455
  article-title: Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00228-10
– volume: 368
  start-page: 620
  issue: 6491
  year: 2020
  ident: 10.1016/j.bbamcr.2020.118867_bb0155
  article-title: Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice
  publication-title: Science
  doi: 10.1126/science.aaz8899
– volume: 14
  start-page: 3048
  issue: 12
  year: 2005
  ident: 10.1016/j.bbamcr.2020.118867_bb0480
  article-title: Functional expression of eukaryotic membrane proteins in Lactococcus lactis
  publication-title: Protein Sci.
  doi: 10.1110/ps.051689905
– volume: 440
  start-page: 137
  issue: 1
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0550
  article-title: Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111036
– volume: 22
  start-page: 3758
  issue: 20
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0275
  article-title: Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-04-0296
– volume: 22
  start-page: 3749
  issue: 20
  year: 2011
  ident: 10.1016/j.bbamcr.2020.118867_bb0280
  article-title: Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-04-0293
– volume: 6
  start-page: 150223
  issue: 1
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0485
  article-title: Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae
  publication-title: Open Biol.
  doi: 10.1098/rsob.150223
– volume: 25
  start-page: 660
  issue: 4
  year: 2016
  ident: 10.1016/j.bbamcr.2020.118867_bb0215
  article-title: Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv503
– ident: 10.1016/j.bbamcr.2020.118867_bb0625
  doi: 10.1038/nmeth.2557
– volume: 134
  start-page: 35
  year: 2017
  ident: 10.1016/j.bbamcr.2020.118867_bb0375
  article-title: The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2016.12.016
– volume: 285
  start-page: 15088
  issue: 20
  year: 2010
  ident: 10.1016/j.bbamcr.2020.118867_bb0300
  article-title: The conserved mitochondrial twin Cx9C protein Cmc2 is a Cmc1 homologue essential for cytochrome c oxidase biogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.104786
– volume: 105
  start-page: 6803
  issue: 19
  year: 2008
  ident: 10.1016/j.bbamcr.2020.118867_bb0205
  article-title: Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0800019105
– volume: 279
  start-page: 14447
  issue: 14
  year: 2004
  ident: 10.1016/j.bbamcr.2020.118867_bb0305
  article-title: Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312693200
– volume: 362
  issue: 6416
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0395
  article-title: SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism
  publication-title: Science
  doi: 10.1126/science.aat9528
– volume: 281
  start-page: 36552
  issue: 48
  year: 2006
  ident: 10.1016/j.bbamcr.2020.118867_bb0265
  article-title: Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606839200
– volume: 105
  start-page: 17766
  issue: 46
  year: 2008
  ident: 10.1016/j.bbamcr.2020.118867_bb0365
  article-title: The mechanism of transport by mitochondrial carriers based on analysis of symmetry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0809580105
– volume: 115
  start-page: 8161
  issue: 32
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0140
  article-title: Elesclomol restores mitochondrial function in genetic models of copper deficiency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1806296115
– volume: 16
  start-page: 141
  issue: 2
  year: 2012
  ident: 10.1016/j.bbamcr.2020.118867_bb0410
  article-title: The mitochondrial pyruvate carrier: has it been unearthed at last?
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.07.013
– volume: 293
  start-page: 4628
  issue: 13
  year: 2018
  ident: 10.1016/j.bbamcr.2020.118867_bb0050
  article-title: Copper signaling in the brain and beyond
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R117.000176
– volume: 337
  start-page: 93
  issue: 6090
  year: 2012
  ident: 10.1016/j.bbamcr.2020.118867_bb0405
  article-title: Identification and functional expression of the mitochondrial pyruvate carrier
  publication-title: Science
  doi: 10.1126/science.1218530
SSID ssj0000475
Score 2.6633208
SecondaryResourceType review_article
Snippet Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118867
SubjectTerms Copper
Copper - metabolism
Cytochrome c oxidase
Electron Transport Complex IV - genetics
Electron Transport Complex IV - metabolism
Humans
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial carrier family
Mitochondrial Proteins - genetics
Molecular Chaperones - genetics
Phosphate Transport Proteins - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Title Getting out what you put in: Copper in mitochondria and its impacts on human disease
URI https://dx.doi.org/10.1016/j.bbamcr.2020.118867
https://www.ncbi.nlm.nih.gov/pubmed/32979421
https://www.proquest.com/docview/2446678207
https://pubmed.ncbi.nlm.nih.gov/PMC7680424
Volume 1868
WOSCitedRecordID wos000591723500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2596
  dateEnd: 20210131
  omitProxy: false
  ssIdentifier: ssj0000475
  issn: 0167-4889
  databaseCode: AIEXJ
  dateStart: 19950216
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgQvCAaDcZmMxFuUqnUutnmrqnETmngoqG-R4zhapi2punRsP4N_zDmxk7arYOyBlyhKHDfp9_nYPj7-DiHvAp1nWSZCX_M09MM4Ur7IhPKzGAyyZCYyjU_3x1d-fCxmM_mt1_vV7oW5PONlKa6u5Py_Qg3XAGzcOnsHuLtK4QKcA-hwBNjh-E_AfzQulHlZez9PYP5_XS29-RJTAeD0f1LN5wZj0L1zaMxg_MpsYTdmNWsIdtdks4Zg0_etr-C0i78FPFegzoBnai8tKuseUSjMoQZgJlzGXQ9XBTwnJ9S5nSe448y0UYneeNBhXrmYX8xsjLZqdQtVYG1Qmq5qbzJY91Ww0ZqvwrkvUWVd2KRBK_sbiy2mWXMKsx9hs3VsWXrrdDgdpKk61yjsytD8t8U3hbVvdHhdGGIb4Xaa2FoSrCWxteyQXcYjKfpkd_z5aPZl1b2HPOoE4-FT2v2YTdDg9tv8abyzPZ-5GZa7Ns6ZPiaP3ASFji2xnpCeKffIfZuy9HqPPJi0GQKfkqmjGgWqUaQaBapRoBotyvfUEg1O6TrRKBCNAtGoIxqtStoQjTqiPSPfPxxNJ598l6XD12Ec1H4OzVoGgY6YiqRUSrOU54yJNGWhhvmG4kqlZpTFMVOBHBqZi0Cz3AipoayJg33SL6vSvCA05kqGsYEyIg9FqkSQc2WG0VAN01Cb_IAE7X-ZaCdhj5lUzpK_IXlA_O6puZVwuaU8b2FK3DDUDi8T4N4tT75tUU0ACmxkqjTV8iJhGDaB0pRQ5rlFuXuXgEnoFNkIfncD_64AKsBv3imLk0YJnscCQxde3vELX5GHq9b5mvTrxdK8Iff0ZV1cLA7JDp-JQ0f737jr1h8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Getting+out+what+you+put+in%3A+Copper+in+mitochondria+and+its+impacts+on+human+disease&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Cobine%2C+Paul+A.&rft.au=Moore%2C+Stanley+A.&rft.au=Leary%2C+Scot+C.&rft.date=2021-01-01&rft.issn=0167-4889&rft.volume=1868&rft.issue=1&rft.spage=118867&rft_id=info:doi/10.1016%2Fj.bbamcr.2020.118867&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbamcr_2020_118867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon