Getting out what you put in: Copper in mitochondria and its impacts on human disease
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, wh...
Saved in:
| Published in: | Biochimica et biophysica acta. Molecular cell research Vol. 1868; no. 1; p. 118867 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.01.2021
|
| Subjects: | |
| ISSN: | 0167-4889, 1879-2596, 1879-2596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
•The mitochondrial carrier family protein Pic2/SLC25A3 transports copper to the matrix•The matrix copper pool is used for the maturation of cytochrome c oxidase and superoxide dismutase•The mitochondrial copper handling machinery modulates cellular copper homeostasis and facilitates inter-organ communication•The roles of mitochondrial signals are explored in the context of the evolutionary origins of copper homeostasis pathways |
|---|---|
| AbstractList | Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways. Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways. Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways. •The mitochondrial carrier family protein Pic2/SLC25A3 transports copper to the matrix•The matrix copper pool is used for the maturation of cytochrome c oxidase and superoxide dismutase•The mitochondrial copper handling machinery modulates cellular copper homeostasis and facilitates inter-organ communication•The roles of mitochondrial signals are explored in the context of the evolutionary origins of copper homeostasis pathways |
| ArticleNumber | 118867 |
| Author | Leary, Scot C. Cobine, Paul A. Moore, Stanley A. |
| AuthorAffiliation | 2 Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada 1 Department of Biological Sciences, Auburn University, Auburn, AL USA |
| AuthorAffiliation_xml | – name: 1 Department of Biological Sciences, Auburn University, Auburn, AL USA – name: 2 Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada |
| Author_xml | – sequence: 1 givenname: Paul A. surname: Cobine fullname: Cobine, Paul A. email: paul.cobine@auburn.edu organization: Department of Biological Sciences, Auburn University, Auburn, AL, USA – sequence: 2 givenname: Stanley A. surname: Moore fullname: Moore, Stanley A. organization: Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada – sequence: 3 givenname: Scot C. surname: Leary fullname: Leary, Scot C. email: scot.leary@usask.ca organization: Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32979421$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1DAQtVAR3Rb-AUI-cskSO45j94CEVtBWqsSlnK2JM-l6tbGD7RT13-PVbhFwAF_GY78P6b0LcuaDR0LesnrNaiY_7NZ9D5ONa17z8sSUkt0LsmKq0xVvtTwjqwLrKqGUPicXKe3qckTXviLnDdedFpytyP015uz8Aw1Lpj-2kOlTWOhcFuev6CbMM8ZypZPLwW6DH6IDCn6gLifqphlsmcHT7TKBp4NLCAlfk5cj7BO-Oc1L8u3L5_vNTXX39fp28-muskI2uRoHibppbMuh1RrA8r4bOVd9z4VlrIUOoEc2SMmh0TXqUTWWj6i0LViUzSX5eNSdl37CwaLPEfZmjm6C-GQCOPPnj3db8xAeTSdVLbgoAu9PAjF8XzBlM7lkcb8Hj2FJhgshZad43RXou9-9fpk8R1kAV0eAjSGliKOxLkN24WDt9obV5tCb2Zljb-bQmzn2VsjiL_Kz_n9opwCwpPzoMJpkHXqLg4tosxmC-7fAT2mdtVU |
| CitedBy_id | crossref_primary_10_1016_j_envpol_2025_126710 crossref_primary_10_3389_fonc_2022_927028 crossref_primary_10_1016_j_biopha_2025_117814 crossref_primary_10_3389_fcell_2021_720656 crossref_primary_10_3389_fonc_2023_1117164 crossref_primary_10_1039_D1SC03516A crossref_primary_10_1016_j_redox_2025_103872 crossref_primary_10_1016_j_phrs_2024_107258 crossref_primary_10_3389_fphar_2024_1527901 crossref_primary_10_1002_ctm2_1724 crossref_primary_10_3389_fcvm_2025_1611449 crossref_primary_10_3389_fnmol_2024_1408159 crossref_primary_10_1093_hmg_ddaf123 crossref_primary_10_3389_fonc_2022_925411 crossref_primary_10_1007_s13258_023_01406_5 crossref_primary_10_1016_j_ccr_2023_215395 crossref_primary_10_3390_biom14111356 crossref_primary_10_3389_fimmu_2024_1336839 crossref_primary_10_1016_j_bbadis_2024_167623 crossref_primary_10_3389_fonc_2022_1030802 crossref_primary_10_1016_j_cpt_2024_03_004 crossref_primary_10_1016_j_jbc_2025_110368 crossref_primary_10_1016_j_bbcan_2025_189379 crossref_primary_10_1016_j_intimp_2025_114391 crossref_primary_10_1093_mtomcs_mfac086 crossref_primary_10_1093_mtomcs_mfac087 crossref_primary_10_1016_j_bcp_2022_115168 crossref_primary_10_1007_s12672_025_01994_6 crossref_primary_10_1109_JSEN_2024_3510639 crossref_primary_10_1038_s41420_023_01796_1 crossref_primary_10_3390_jcm13226979 crossref_primary_10_7554_eLife_64690 crossref_primary_10_1016_j_heliyon_2024_e35700 crossref_primary_10_3233_CBM_220259 crossref_primary_10_3390_genes13101725 crossref_primary_10_3390_ijms26189173 crossref_primary_10_1007_s00420_025_02124_z crossref_primary_10_1007_s10495_025_02161_6 crossref_primary_10_1038_s41375_024_02442_0 crossref_primary_10_1016_j_biopha_2023_115730 crossref_primary_10_1016_j_isci_2025_112450 crossref_primary_10_3389_fnmol_2024_1504802 crossref_primary_10_1002_advs_202401396 crossref_primary_10_1016_j_jhazmat_2023_131093 crossref_primary_10_1016_j_molcel_2025_08_024 crossref_primary_10_3390_ijms24119367 crossref_primary_10_1186_s13046_025_03486_5 crossref_primary_10_3389_fpubh_2022_973887 crossref_primary_10_1186_s12935_025_03864_1 crossref_primary_10_1089_ars_2023_0487 crossref_primary_10_1172_JCI154684 crossref_primary_10_4103_NRR_NRR_D_24_00110 crossref_primary_10_1007_s10495_025_02150_9 crossref_primary_10_1016_j_nbd_2025_106974 crossref_primary_10_1097_MD_0000000000032808 crossref_primary_10_3389_fonc_2022_1015235 crossref_primary_10_3390_biomedicines9040391 crossref_primary_10_3389_fmolb_2022_1037941 crossref_primary_10_3390_antiox14060723 crossref_primary_10_1016_j_abb_2025_110466 crossref_primary_10_1093_mtomcs_mfae046 crossref_primary_10_1038_s41467_024_50041_5 crossref_primary_10_1016_j_mehy_2023_111067 crossref_primary_10_3390_pharmaceutics15041099 crossref_primary_10_1016_j_heliyon_2024_e35404 crossref_primary_10_1186_s12894_023_01292_9 crossref_primary_10_1038_s41392_025_02192_0 crossref_primary_10_2217_nnm_2021_0374 crossref_primary_10_3390_inorganics13050137 crossref_primary_10_1155_2023_5533444 crossref_primary_10_3389_fonc_2023_999193 crossref_primary_10_1186_s12964_024_01726_3 crossref_primary_10_1016_j_jtemb_2024_127483 crossref_primary_10_3390_antiox12091654 crossref_primary_10_1007_s12011_024_04401_3 crossref_primary_10_3389_fmolb_2021_711227 crossref_primary_10_1007_s10495_025_02149_2 crossref_primary_10_1016_j_bbrc_2025_152330 crossref_primary_10_3389_fonc_2022_1009036 crossref_primary_10_1007_s12672_025_02578_0 crossref_primary_10_15212_AMM_2023_0016 crossref_primary_10_3389_fcell_2022_989882 crossref_primary_10_3390_ijms25179409 crossref_primary_10_3389_fphar_2023_1271613 crossref_primary_10_3390_toxics13030202 crossref_primary_10_1016_j_tjnut_2025_09_026 crossref_primary_10_1097_MD_0000000000031930 crossref_primary_10_3389_fonc_2023_1288504 crossref_primary_10_1007_s10555_025_10266_2 crossref_primary_10_3389_fonc_2023_1108128 crossref_primary_10_1016_j_heliyon_2024_e34011 crossref_primary_10_3389_fcell_2025_1570131 crossref_primary_10_1016_j_biopha_2023_116115 crossref_primary_10_1016_j_cub_2021_03_054 crossref_primary_10_3390_ijms252111462 crossref_primary_10_7554_eLife_85779 crossref_primary_10_1111_jcmm_17985 crossref_primary_10_1007_s11596_024_2841_y crossref_primary_10_1038_s41568_021_00417_2 crossref_primary_10_3389_fcell_2022_892069 crossref_primary_10_1016_j_jbc_2021_100485 crossref_primary_10_1111_ejn_16370 crossref_primary_10_1155_2022_5418376 crossref_primary_10_3389_fonc_2023_1116305 crossref_primary_10_1007_s12011_023_03765_2 crossref_primary_10_3390_ma15030822 crossref_primary_10_3389_fmolb_2022_910928 crossref_primary_10_1007_s13577_023_00914_6 crossref_primary_10_3390_ijms232214012 crossref_primary_10_1016_j_biopha_2024_116585 crossref_primary_10_1016_j_lfs_2023_122223 crossref_primary_10_1111_jcmm_70591 crossref_primary_10_2217_nnm_2023_0202 crossref_primary_10_3389_fmolb_2022_863296 crossref_primary_10_2478_rrlm_2025_0003 crossref_primary_10_3389_fcell_2022_973073 crossref_primary_10_1016_j_bcp_2025_117054 crossref_primary_10_1093_procel_pwae003 crossref_primary_10_1186_s12882_022_02991_5 crossref_primary_10_3389_fphar_2024_1409317 crossref_primary_10_1242_jcs_240523 crossref_primary_10_3389_fgene_2022_982888 crossref_primary_10_1016_j_apsusc_2022_155632 crossref_primary_10_3390_ijms24054840 crossref_primary_10_1002_jcla_24638 crossref_primary_10_1016_j_intimp_2023_110717 crossref_primary_10_1016_j_bbrc_2022_09_022 crossref_primary_10_1002_cmdc_202400216 crossref_primary_10_3390_cancers16030647 crossref_primary_10_1007_s13193_024_02171_x crossref_primary_10_1016_j_phrs_2024_107553 crossref_primary_10_1186_s12935_023_03207_y crossref_primary_10_1016_j_marpolbul_2022_113650 crossref_primary_10_1111_cpr_13752 crossref_primary_10_3389_fimmu_2025_1592474 crossref_primary_10_3390_ph15091145 crossref_primary_10_1016_j_cpt_2024_07_005 crossref_primary_10_1016_j_mito_2023_05_003 crossref_primary_10_34133_bmr_0094 crossref_primary_10_1016_j_biopha_2023_114830 crossref_primary_10_1155_2022_5422698 crossref_primary_10_1016_j_heliyon_2024_e41600 crossref_primary_10_1002_jsp2_70057 crossref_primary_10_1073_pnas_2412816122 crossref_primary_10_3390_ph16071016 crossref_primary_10_1080_17474086_2022_2142113 crossref_primary_10_1042_BST20231183 crossref_primary_10_1186_s12943_023_01732_y crossref_primary_10_3233_CH_242329 crossref_primary_10_3389_fpubh_2022_924103 crossref_primary_10_1016_j_jbc_2023_105435 crossref_primary_10_1016_j_devcel_2024_06_008 crossref_primary_10_1016_j_psep_2025_107905 crossref_primary_10_1016_j_drup_2023_101018 crossref_primary_10_1155_2022_7406636 crossref_primary_10_3389_fcell_2022_892325 crossref_primary_10_3389_fphys_2024_1243629 |
| Cites_doi | 10.1002/iub.50 10.1038/nchembio.2098 10.1074/jbc.M404747200 10.15252/embr.202050071 10.1093/molbev/msz147 10.3389/fnins.2019.00075 10.3389/fpls.2019.01449 10.1038/srep07949 10.1093/hmg/ddv265 10.1146/annurev-biochem-062917-012300 10.1074/jbc.M105296200 10.1002/humu.22385 10.1146/annurev-biochem-013118-111540 10.1016/j.jmb.2008.10.088 10.1038/nchembio.1913 10.1038/s41589-019-0291-9 10.1038/s41598-020-64521-3 10.1016/j.mito.2019.10.008 10.1016/j.mito.2018.12.005 10.1091/mbc.e12-10-0749 10.1089/ars.2010.3212 10.1093/hmg/ddu069 10.1038/nrm2646 10.1007/s00418-013-1123-8 10.1074/jbc.271.34.20531 10.1091/mbc.E14-11-1526 10.1172/JCI45401 10.1016/j.cub.2017.09.015 10.1074/jbc.M115.669440 10.1073/pnas.1505056112 10.1074/jbc.272.52.33191 10.1016/B978-0-444-59565-2.00045-9 10.1126/science.1098322 10.1016/j.celrep.2015.01.019 10.1016/j.bbamem.2009.03.004 10.1039/C7MT00221A 10.1021/bi5015437 10.1042/BJ20140107 10.1038/s41589-018-0062-z 10.1128/MCB.01685-08 10.1016/j.bbamcr.2008.05.002 10.1016/j.cmet.2015.04.012 10.1016/j.cell.2018.11.025 10.1074/jbc.M113.470674 10.1128/MCB.01920-07 10.1091/mbc.e12-09-0705 10.1111/nyas.12347 10.1111/mmi.12661 10.1074/jbc.RA117.000265 10.1172/JCI85226 10.1021/jacs.6b09567 10.1111/febs.12409 10.1016/j.semcdb.2017.08.055 10.1101/2020.05.01.072124 10.1111/nan.12096 10.1016/j.tibs.2019.11.001 10.1093/hmg/ddx344 10.1074/jbc.M117.817478 10.1038/nature04512 10.1128/mBio.01742-17 10.1021/ja2004158 10.1016/j.chembiol.2017.08.005 10.1016/j.bbadis.2009.07.013 10.1038/sj.emboj.7601861 10.1038/sj.emboj.7601862 10.1016/j.freeradbiomed.2012.03.017 10.1515/hsz-2020-0117 10.1093/hmg/ddp158 10.1016/j.cmet.2006.12.001 10.1016/j.jinorgbio.2014.04.004 10.1074/jbc.R117.787101 10.1073/pnas.1409796111 10.1038/s41556-020-0481-4 10.1007/s00424-003-1099-7 10.15252/embr.201948833 10.1038/nature13180 10.1074/jbc.R117.816132 10.1073/pnas.0406547102 10.1016/j.cell.2012.11.046 10.1021/acs.biochem.6b00216 10.1074/jbc.M311772200 10.1073/pnas.1900172116 10.3390/biom10040655 10.1128/AEM.02289-17 10.1016/j.nbd.2016.01.020 10.1042/BJ20130144 10.1016/j.cub.2016.03.053 10.1016/j.bbabio.2011.09.005 10.1016/j.jmb.2020.01.036 10.1128/MCB.05722-11 10.1074/jbc.M117.811752 10.1039/C6MT00083E 10.1016/j.ceb.2019.02.009 10.1038/nature02056 10.1016/j.celrep.2019.11.054 10.1021/bi100558z 10.1146/annurev-biochem-030409-143539 10.1073/pnas.1009932108 10.1128/MCB.00228-10 10.1126/science.aaz8899 10.1110/ps.051689905 10.1042/BJ20111036 10.1091/mbc.e11-04-0296 10.1091/mbc.e11-04-0293 10.1098/rsob.150223 10.1093/hmg/ddv503 10.1038/nmeth.2557 10.1016/j.biochi.2016.12.016 10.1074/jbc.M110.104786 10.1073/pnas.0800019105 10.1074/jbc.M312693200 10.1126/science.aat9528 10.1074/jbc.M606839200 10.1073/pnas.0809580105 10.1073/pnas.1806296115 10.1016/j.cmet.2012.07.013 10.1074/jbc.R117.000176 10.1126/science.1218530 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.bbamcr.2020.118867 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1879-2596 |
| EndPage | 118867 |
| ExternalDocumentID | PMC7680424 32979421 10_1016_j_bbamcr_2020_118867 S0167488920302251 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120211 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE IXB J1W KOM LX3 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ZE2 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c463t-fd6e933c52a599aac2b7f228bb24c115a7aabe1d662a390e9f83c2fe89cac2e63 |
| ISICitedReferencesCount | 192 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591723500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4889 1879-2596 |
| IngestDate | Tue Sep 30 16:55:02 EDT 2025 Thu Oct 02 05:46:26 EDT 2025 Mon Jul 21 06:00:46 EDT 2025 Tue Nov 18 22:12:04 EST 2025 Sat Nov 29 07:23:44 EST 2025 Fri Feb 23 02:41:56 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cytochrome c oxidase Superoxide dismutase Mitochondria Mitochondrial carrier family Copper |
| Language | English |
| License | This article is made available under the Elsevier license. Copyright © 2020 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c463t-fd6e933c52a599aac2b7f228bb24c115a7aabe1d662a390e9f83c2fe89cac2e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Paul Cobine: Conceptualization, Writing- Original draft preparation, Writing- Reviewing and Editing, Visualization. Stanley Moore: Writing- Original draft preparation, Writing- Reviewing and Editing, Visualization. Scot Leary: Conceptualization, Writing- Original draft preparation, Writing- Reviewing and Editing. Author Contributions |
| OpenAccessLink | https://dx.doi.org/10.1016/j.bbamcr.2020.118867 |
| PMID | 32979421 |
| PQID | 2446678207 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680424 proquest_miscellaneous_2446678207 pubmed_primary_32979421 crossref_citationtrail_10_1016_j_bbamcr_2020_118867 crossref_primary_10_1016_j_bbamcr_2020_118867 elsevier_sciencedirect_doi_10_1016_j_bbamcr_2020_118867 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biochimica et biophysica acta. Molecular cell research |
| PublicationTitleAlternate | Biochim Biophys Acta Mol Cell Res |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zischka, Lichtmannegger (bb0110) 2014; 1315 Horn, Zhou, Trevisson, Al-Ali, Harris, Salviati, Barrientos (bb0300) 2010; 285 L.A. Sturtz, K. Diekert, L.T. Jensen, R. Lill, V.C. Culotta, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage, The Journal of Biological Chemistry 276(41) (2001) 38084–9. Soma, Latimer, Chun, Vicary, Timbalia, Boulet, Rahn, Chan, Leary, Kim, Gitlin, Gohil (bb0140) 2018; 115 Nagai, Vo, Shin Ogawa, Chimmanamada, Inoue, Chu, Beaudette-Zlatanova, Lu, Blackman, Barsoum, Koya, Wada (bb0150) 2012; 52 Dodani, Leary, Cobine, Winge, Chang (bb0315) 2011; 133 Kaler (bb0060) 2013; 113 Reddi, Culotta (bb0590) 2013; 152 McCormick, Moore, Lindahl (bb0330) 2015; 54 Lill (bb0530) 2020; 401 Pacheu-Grau, Wasilewski, Oeljeklaus, Gibhardt, Aich, Chudenkova, Dennerlein, Deckers, Bogeski, Warscheid, Chacinska, Rehling (bb0225) 2020; 432 Lill, Freibert (bb0535) 2020; 89 Leary, Winge, Cobine (bb0090) 2009; 1793 Froschauer, Schweyen, Wiesenberger (bb0495) 2009; 1788 Maxfield, Heaton, Winge (bb0450) 2004; 279 Zischka, Lichtmannegger, Schmitt, Jagemann, Schulz, Wartini, Jennen, Rust, Larochette, Galluzzi, Chajes, Bandow, Gilles, DiSpirito, Esposito, Goettlicher, Summer, Kroemer (bb0115) 2011; 121 Reddehase, Grumbt, Neupert, Hell (bb0285) 2009; 385 Hadzhieva, Kirches, Mawrin (bb0540) 2014; 40 Turski, Brady, Kim, Kim, Nose, Counter, Winge, Thiele (bb0030) 2012; 32 Gudekar, Shanbhag, Wang, Ralle, Weisman, Petris (bb0080) 2020; 10 Tsvetkov, Detappe, Cai, Keys, Brune, Ying, Thiru, Reidy, Kugener, Rossen, Kocak, Kory, Tsherniak, Santagata, Whitesell, Ghobrial, Markley, Lindquist, Golub (bb0170) 2019; 15 Pebay-Peyroula, Dahout-Gonzalez, Kahn, Trezeguet, Lauquin, Brandolin (bb0385) 2003; 426 Vest, Leary, Winge, Cobine (bb0100) 2013; 288 Leary, Antonicka, Sasarman, Weraarpachai, Cobine, Pan, Brown, Brown, Majewski, Ha, Rahman, Shoubridge (bb0565) 2013; 34 C.N. Cunningham, J. Rutter, 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport, EMBO Rep (2020) e50071. Krishnamoorthy, Cotruvo, Chan, Kaluarachchi, Muchenditsi, Pendyala, Jia, Aron, Ackerman, Wal, Guan, Smaga, Farhi, New, Lutsenko, Chang (bb0015) 2016; 12 Hartwig, Zlatic, Wallin, Vrailas-Mortimer, Fahrni, Faundez (bb0065) 2019; 59 Herzig, Raemy, Montessuit, Veuthey, Zamboni, Westermann, Kunji, Martinou (bb0405) 2012; 337 Horn, Barrientos (bb0425) 2008; 60 Llorens, Soriano, Calap-Quintana, Gonzalez-Cabo, Molto (bb0545) 2019; 13 Dodani, Firl, Chan, Nam, Aron, Onak, Ramos-Torres, Paek, Webster, Feller, Chang (bb0040) 2014; 111 Baker, Cobine, Leary (bb0085) 2017; 9 Vest, Hashemi, Cobine (bb0200) 2013; 12 Vest, Zhu, Cobine (bb0420) 2019 Vest, Cobine (bb0415) 2011 Halestrap (bb0410) 2012; 16 Timon-Gomez, Nyvltova, Abriata, Vila, Hosler, Barrientos (bb0430) 2018; 76 Jett, Leary (bb0095) 2018; 293 Cobine, Pierrel, Bestwick, Winge (bb0265) 2006; 281 J.J. Ruprecht, M.S. King, T. Zogg, A.A. Aleksandrova, E. Pardon, P.G. Crichton, J. Steyaert, E.R.S. Kunji, The molecular mechanism of transport by the mitochondrial ADP/ATP carrier, Cell 176(3) (2019) 435–447 e15. Kory, Wyant, Prakash, Uit de Bos, Bottanelli, Pacold, Chan, Lewis, Wang, Keys, Guo, Sabatini (bb0395) 2018; 362 Yu, Yang, Bothe, Tonelli, Nokhrin, Dolgova, Braiterman, Lutsenko, Dmitriev (bb0055) 2017; 292 Rees, Johnson, Lewinson (bb0390) 2009; 10 Knight, Yoon, Pandey, Pain, Pain, Dancis (bb0560) 2019; 47 Cobine, Ojeda, Rigby, Winge (bb0305) 2004; 279 Bricker, Taylor, Schell, Orsak, Boutron, Chen, Cox, Cardon, Van Vranken, Dephoure, Redin, Boudina, Gygi, Brivet, Thummel, Rutter (bb0400) 2012; 337 Kloppel, Suzuki, Kojer, Petrungaro, Longen, Fiedler, Keller, Riemer (bb0280) 2011; 22 C.J. Hlynialuk, B. Ling, Z.N. Baker, P.A. Cobine, L.D. Yu, A. Boulet, T. Wai, A. Hossain, A.M. El Zawily, P.J. McFie, S.J. Stone, F. Diaz, C.T. Moraes, D. Viswanathan, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 is required to sustain expression of the high-affinity copper transporter CTR1 and preserve copper homeostasis, Cell Rep (2015) pii: S2211-1247(15)00032-7. Dodani, Domaille, Nam, Miller, Finney, Vogt, Chang (bb0035) 2011; 108 Roger, Munoz-Gomez, Kamikawa (bb0600) 2017; 27 Bode, Woellhaf, Bohnert, van der Laan, Sommer, Jung, Zimmermann, Schroda, Herrmann (bb0210) 2015; 26 Varabyova, Topf, Kwiatkowska, Wrobel, Kaus-Drobek, Chacinska (bb0290) 2013; 280 Bestwick, Jeong, Khalimonchuk, Kim, Winge (bb0455) 2010; 30 Dennerlein, Rehling (bb0195) 2015; 128 J. Lichtmannegger, C. Leitzinger, R. Wimmer, S. Schmitt, S. Schulz, Y. Kabiri, C. Eberhagen, T. Rieder, D. Janik, F. Neff, B.K. Straub, P. Schirmacher, A.A. DiSpirito, N. Bandow, B.S. Baral, A. Flatley, E. Kremmer, G. Denk, F.P. Reiter, S. Hohenester, F. Eckardt-Schupp, N.A. Dencher, J. Adamski, V. Sauer, C. Niemietz, H.H. Schmidt, U. Merle, D.N. Gotthardt, G. Kroemer, K.H. Weiss, H. Zischka, Methanobactin reverses acute liver failure in a rat model of Wilson disease, J Clin Invest 126(7) (2016) 2721–35. Glerum, Shtanko, Tzagoloff (bb0435) 1996; 271 S. Soma, M.N. Morgada, M.T. Naik, A. Boulet, A.A. Roesler, N. Dziuba, A. Ghosh, Q. Yu, P.A. Lindahl, J.B. Ames, S.C. Leary, A.J. Vila, V.M. Gohil, COA6 is structurally tuned to function as a thiol-disulfide oxidoreductase in copper delivery to mitochondrial cytochrome c oxidase, Cell Rep 29(12) (2019) 4114–4126 e5. C. Vallieres, S.L. Holland, S.V. Avery, Mitochondrial ferredoxin determines vulnerability of cells to copper excess, Cell Chem Biol 24(10) (2017) 1228–1237 e3. Ruprecht, Kunji (bb0370) 2020; 45 Williams, Trias, Beilby, Lopez, Labut, Bradford, Roberts, McAllum, Crouch, Rhoads, Pereira, Son, Elliott, Franco, Estevez, Barbeito, Beckman (bb0160) 2016; 89 Braymer, Lill (bb0525) 2017; 292 Brazzolotto, Pierrel, Pelosi (bb0490) 2014; 460 Yoon, Zhang, Pain, Lyver, Lesuisse, Pain, Dancis (bb0550) 2011; 440 Vacek, Novak, Treitli, Taborsky, Cepicka, Kolisko, Keeling, Hampl (bb0615) 2018; 35 Yang, McRae, Henary, Patel, Lai, Vogt, Fahrni (bb0325) 2005; 102 Palmieri (bb0510) 2004; 447 Kim, Graham, DiSpirito, Alterman, Galeva, Larive, Asunskis, Sherwood (bb0345) 2004; 305 Guthrie, Soma, Yuan, Silva, Zulkifli, Snavely, Greene, Nunez, Lynch, De Ville, Shanbhag, Lopez, Acharya, Petris, Kim, Gohil, Sacchettini (bb0155) 2020; 368 Kenney, Rosenzweig (bb0340) 2018; 87 Soto, Fontanesi, Liu, Barrientos (bb0190) 2012; 1817 Horn, Al-Ali, Barrientos (bb0295) 2008; 28 Shaw, Cope, Li, Corson, Hersey, Ackermann, Gwynn, Lambert, Wingert, Traver, Trede, Barut, Zhou, Minet, Donovan, Brownlie, Balzan, Weiss, Peters, Kaplan, Zon, Paw (bb0520) 2006; 440 D. Brancaccio, A. Gallo, M. Piccioli, E. Novellino, S. Ciofi-Baffoni, L. Banci, [4Fe-4S] cluster assembly in mitochondria and its impairment by copper, J Am Chem Soc 139(2) (2017) 719–730. Wang, Wu (bb0605) 2015; 5 Diaz (bb0175) 2010; 1802 Jain, Dashner, Connolly (bb0505) 2019; 10 Morgada, Abriata, Cefaro, Gajda, Banci, Vila (bb0250) 2015; 112 Pacheu-Grau, Bareth, Dudek, Juris, Vogtle, Wissel, Leary, Dennerlein, Rehling, Deckers (bb0220) 2015; 21 McStay, Su, Tzagoloff (bb0185) 2013; 24 Foster, Dainty, Patterson, Pohl, Blackburn, Wilson, Hess, Rutherford, Quaranta, Corran, Robinson (bb0165) 2014; 93 M. Grasso, G.J. Bond, Y.-J. Kim, K.B. Alwan, S. Boyd, M.M. Dzebo, S. Valenzuela, T. Tsang, N.A. Schibrowsky, M.L. Matthews, G.M. Burslem, P. Wittung-Stafshede, D.D. Winkler, N.J. Blackburn, R. Marmorstein, D.C. Brady, Structural and molecular determinants of CCS-mediated copper activation of MEK1/2, bioRxiv (2020) 2020.05.01.072124. Shen, Kolanowski, Tran, Kaur, Akerfeldt, Rahme, Hambley, New (bb0320) 2016; 8 Chang (bb0010) 2015; 11 Boulet, Vest, Maynard, Gammon, Russell, Mathews, Cole, Zhu, Phillips, Kwong, Dodani, Leary, Cobine (bb0105) 2018; 293 Mick, Wagner, van der Laan, Frazier, Perschil, Pawlas, Meyer, Warscheid, Rehling (bb0470) 2007; 26 Vest, Wang, Gammon, Maynard, White, Cobine, Mahone, Cobine (bb0485) 2016; 6 Z.N. Baker, K. Jett, A. Boulet, A. Hossain, P.A. Cobine, B.-E. Kim, A.M.E. Zawily, L. Lee, G.F. Tibbits, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart, Human Molecular Genetics Advance Article: ddx344 (2017). Semrau, DiSpirito, Gu, Yoon (bb0350) 2018; 84 Ghosh, Trivedi, Timbalia, Griffin, Rahn, Chan, Gohil (bb0465) 2014; 23 Hasinoff, Yadav, Patel, Wu (bb0145) 2014; 137 Pierrel, Bestwick, Cobine, Khalimonchuk, Cricco, Winge (bb0460) 2007; 26 Tsang, Posimo, Gudiel, Cicchini, Feldser, Brady (bb0025) 2020; 22 Paradkar, Zumbrennen, Paw, Ward, Kaplan (bb0515) 2009; 29 Crichton, Lee, Kunji (bb0375) 2017; 134 Froschauer, Rietzschel, Hassler, Binder, Schweyen, Lill, Muhlenhoff, Wiesenberger (bb0555) 2013; 455 Christenson, Gallegos, Banerjee (bb0500) 2018; 293 Kawamata, Manfredi (bb0255) 2010; 13 Palmieri, Scarcia, Monne (bb0360) 2020; 10 Ackerman, Chang (bb0050) 2018; 293 Banci, Bertini, Ciofi-Baffoni, Hadjiloi, Martinelli, Palumaa (bb0205) 2008; 105 Brady, Crowe, Turski, Hobbs, Yao, Chaikuad, Knapp, Xiao, Campbell, Thiele, Counter (bb0020) 2014; 509 Polishchuk, Lutsenko (bb0070) 2013; 140 Stroud, Maher, Lindau, Vogtle, Frazier, Surgenor, Mountford, Singh, Bonas, Oeljeklaus, Warscheid, Meisinger, Thorburn, Ryan (bb0235) 2015; 24 Gross, Burgard, Reddehase, Leitch, Culotta, Hell (bb0275) 2011; 22 Monne, Chan, Slotboom, Kunji (bb0480) 2005; 14 Barros, McStay (bb0180) 2020; 50 S. Garcia-Santamarina, M.A. Uzarska, R.A. Festa, R. Lill, D.J. Thiele Neal, Dabir, Tienson, Horn, Glaeser, Ogozalek Loo, Barrientos, Koehler (bb0270) 2015; 290 Karnkowska, Vacek, Zubacova, Treitli, Petrzelkova, Eme, Novak, Zarsky, Barlow, Herman, Soukal, Hroudova, Dolezal, Stairs, Roger, Elias, Dacks, Vlcek, Hampl (bb0610) 2016; 26 iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress, mBio 8(5) (2017). Wang, Richter-Dennerlein, Pacheu-Grau, Liu, Zhu, Dennerlein, Rehling (bb0475) 2020; 21 Xiao, Ackerman, C Neal (10.1016/j.bbamcr.2020.118867_bb0270) 2015; 290 Dennerlein (10.1016/j.bbamcr.2020.118867_bb0195) 2015; 128 Ruprecht (10.1016/j.bbamcr.2020.118867_bb0370) 2020; 45 Vest (10.1016/j.bbamcr.2020.118867_bb0485) 2016; 6 McStay (10.1016/j.bbamcr.2020.118867_bb0185) 2013; 24 Horn (10.1016/j.bbamcr.2020.118867_bb0425) 2008; 60 Froschauer (10.1016/j.bbamcr.2020.118867_bb0495) 2009; 1788 Chang (10.1016/j.bbamcr.2020.118867_bb0010) 2015; 11 Yu (10.1016/j.bbamcr.2020.118867_bb0055) 2017; 292 Knight (10.1016/j.bbamcr.2020.118867_bb0560) 2019; 47 Reddehase (10.1016/j.bbamcr.2020.118867_bb0285) 2009; 385 Lindahl (10.1016/j.bbamcr.2020.118867_bb0335) 2016; 55 Froschauer (10.1016/j.bbamcr.2020.118867_bb0555) 2013; 455 Horng (10.1016/j.bbamcr.2020.118867_bb0445) 2004; 279 Ghosh (10.1016/j.bbamcr.2020.118867_bb0215) 2016; 25 Dodani (10.1016/j.bbamcr.2020.118867_bb0035) 2011; 108 Varabyova (10.1016/j.bbamcr.2020.118867_bb0290) 2013; 280 Jett (10.1016/j.bbamcr.2020.118867_bb0095) 2018; 293 Rees (10.1016/j.bbamcr.2020.118867_bb0390) 2009; 10 Krishnamoorthy (10.1016/j.bbamcr.2020.118867_bb0015) 2016; 12 Zischka (10.1016/j.bbamcr.2020.118867_bb0115) 2011; 121 Yoon (10.1016/j.bbamcr.2020.118867_bb0550) 2011; 440 Wang (10.1016/j.bbamcr.2020.118867_bb0605) 2015; 5 Cobine (10.1016/j.bbamcr.2020.118867_bb0265) 2006; 281 Guthrie (10.1016/j.bbamcr.2020.118867_bb0155) 2020; 368 Shen (10.1016/j.bbamcr.2020.118867_bb0320) 2016; 8 Vest (10.1016/j.bbamcr.2020.118867_bb0200) 2013; 12 Horn (10.1016/j.bbamcr.2020.118867_bb0300) 2010; 285 Garber Morales (10.1016/j.bbamcr.2020.118867_bb0310) 2010; 49 Lill (10.1016/j.bbamcr.2020.118867_bb0535) 2020; 89 Ackerman (10.1016/j.bbamcr.2020.118867_bb0050) 2018; 293 Foster (10.1016/j.bbamcr.2020.118867_bb0165) 2014; 93 Barros (10.1016/j.bbamcr.2020.118867_bb0180) 2020; 50 Kenney (10.1016/j.bbamcr.2020.118867_bb0340) 2018; 87 Hartwig (10.1016/j.bbamcr.2020.118867_bb0065) 2019; 59 Tsvetkov (10.1016/j.bbamcr.2020.118867_bb0170) 2019; 15 Bestwick (10.1016/j.bbamcr.2020.118867_bb0455) 2010; 30 Palmieri (10.1016/j.bbamcr.2020.118867_bb0360) 2020; 10 Shaw (10.1016/j.bbamcr.2020.118867_bb0520) 2006; 440 Beers (10.1016/j.bbamcr.2020.118867_bb0440) 1997; 272 10.1016/j.bbamcr.2020.118867_bb0580 Ghosh (10.1016/j.bbamcr.2020.118867_bb0465) 2014; 23 Kloppel (10.1016/j.bbamcr.2020.118867_bb0280) 2011; 22 Nagai (10.1016/j.bbamcr.2020.118867_bb0150) 2012; 52 10.1016/j.bbamcr.2020.118867_bb0575 Xiao (10.1016/j.bbamcr.2020.118867_bb0045) 2018; 14 Zischka (10.1016/j.bbamcr.2020.118867_bb0110) 2014; 1315 Leary (10.1016/j.bbamcr.2020.118867_bb0240) 2009; 18 Monne (10.1016/j.bbamcr.2020.118867_bb0480) 2005; 14 Banci (10.1016/j.bbamcr.2020.118867_bb0205) 2008; 105 Vest (10.1016/j.bbamcr.2020.118867_bb0415) 2011 Semrau (10.1016/j.bbamcr.2020.118867_bb0350) 2018; 84 10.1016/j.bbamcr.2020.118867_bb0230 Leary (10.1016/j.bbamcr.2020.118867_bb0565) 2013; 34 Karnkowska (10.1016/j.bbamcr.2020.118867_bb0620) 2019; 36 Vest (10.1016/j.bbamcr.2020.118867_bb0100) 2013; 288 Brazzolotto (10.1016/j.bbamcr.2020.118867_bb0490) 2014; 460 Vacek (10.1016/j.bbamcr.2020.118867_bb0615) 2018; 35 Pierrel (10.1016/j.bbamcr.2020.118867_bb0460) 2007; 26 Leary (10.1016/j.bbamcr.2020.118867_bb0585) 2007; 5 10.1016/j.bbamcr.2020.118867_bb0625 Robinson (10.1016/j.bbamcr.2020.118867_bb0005) 2010; 79 Wang (10.1016/j.bbamcr.2020.118867_bb0475) 2020; 21 Maxfield (10.1016/j.bbamcr.2020.118867_bb0450) 2004; 279 Yang (10.1016/j.bbamcr.2020.118867_bb0325) 2005; 102 Reddi (10.1016/j.bbamcr.2020.118867_bb0590) 2013; 152 Braymer (10.1016/j.bbamcr.2020.118867_bb0525) 2017; 292 Pacheu-Grau (10.1016/j.bbamcr.2020.118867_bb0220) 2015; 21 Horng (10.1016/j.bbamcr.2020.118867_bb0245) 2004; 279 Herzig (10.1016/j.bbamcr.2020.118867_bb0405) 2012; 337 Kaler (10.1016/j.bbamcr.2020.118867_bb0060) 2013; 113 10.1016/j.bbamcr.2020.118867_bb0120 Bode (10.1016/j.bbamcr.2020.118867_bb0210) 2015; 26 Pebay-Peyroula (10.1016/j.bbamcr.2020.118867_bb0385) 2003; 426 Boulet (10.1016/j.bbamcr.2020.118867_bb0105) 2018; 293 Gross (10.1016/j.bbamcr.2020.118867_bb0275) 2011; 22 Karnkowska (10.1016/j.bbamcr.2020.118867_bb0610) 2016; 26 Crichton (10.1016/j.bbamcr.2020.118867_bb0375) 2017; 134 Lill (10.1016/j.bbamcr.2020.118867_bb0530) 2020; 401 Palmieri (10.1016/j.bbamcr.2020.118867_bb0510) 2004; 447 Morgada (10.1016/j.bbamcr.2020.118867_bb0250) 2015; 112 Brady (10.1016/j.bbamcr.2020.118867_bb0020) 2014; 509 10.1016/j.bbamcr.2020.118867_bb0355 10.1016/j.bbamcr.2020.118867_bb0595 Soma (10.1016/j.bbamcr.2020.118867_bb0140) 2018; 115 Polishchuk (10.1016/j.bbamcr.2020.118867_bb0070) 2013; 140 Christenson (10.1016/j.bbamcr.2020.118867_bb0500) 2018; 293 Vest (10.1016/j.bbamcr.2020.118867_bb0420) 2019 Soto (10.1016/j.bbamcr.2020.118867_bb0190) 2012; 1817 Turski (10.1016/j.bbamcr.2020.118867_bb0030) 2012; 32 10.1016/j.bbamcr.2020.118867_bb0130 Timon-Gomez (10.1016/j.bbamcr.2020.118867_bb0430) 2018; 76 Baker (10.1016/j.bbamcr.2020.118867_bb0085) 2017; 9 Kim (10.1016/j.bbamcr.2020.118867_bb0345) 2004; 305 Mick (10.1016/j.bbamcr.2020.118867_bb0470) 2007; 26 Leary (10.1016/j.bbamcr.2020.118867_bb0570) 2013; 24 Hadzhieva (10.1016/j.bbamcr.2020.118867_bb0540) 2014; 40 Hasinoff (10.1016/j.bbamcr.2020.118867_bb0145) 2014; 137 Bricker (10.1016/j.bbamcr.2020.118867_bb0400) 2012; 337 Jain (10.1016/j.bbamcr.2020.118867_bb0505) 2019; 10 Horn (10.1016/j.bbamcr.2020.118867_bb0295) 2008; 28 Roger (10.1016/j.bbamcr.2020.118867_bb0600) 2017; 27 Kawamata (10.1016/j.bbamcr.2020.118867_bb0255) 2010; 13 10.1016/j.bbamcr.2020.118867_bb0125 Paradkar (10.1016/j.bbamcr.2020.118867_bb0515) 2009; 29 Pacheu-Grau (10.1016/j.bbamcr.2020.118867_bb0225) 2020; 432 McCormick (10.1016/j.bbamcr.2020.118867_bb0330) 2015; 54 Cobine (10.1016/j.bbamcr.2020.118867_bb0305) 2004; 279 Halestrap (10.1016/j.bbamcr.2020.118867_bb0410) 2012; 16 10.1016/j.bbamcr.2020.118867_bb0380 10.1016/j.bbamcr.2020.118867_bb0260 Llorens (10.1016/j.bbamcr.2020.118867_bb0545) 2019; 13 Kory (10.1016/j.bbamcr.2020.118867_bb0395) 2018; 362 Morgan (10.1016/j.bbamcr.2020.118867_bb0075) 2019; 116 Diaz (10.1016/j.bbamcr.2020.118867_bb0175) 2010; 1802 Robinson (10.1016/j.bbamcr.2020.118867_bb0365) 2008; 105 Tsang (10.1016/j.bbamcr.2020.118867_bb0025) 2020; 22 Stroud (10.1016/j.bbamcr.2020.118867_bb0235) 2015; 24 Leary (10.1016/j.bbamcr.2020.118867_bb0090) 2009; 1793 Gudekar (10.1016/j.bbamcr.2020.118867_bb0080) 2020; 10 Dodani (10.1016/j.bbamcr.2020.118867_bb0040) 2014; 111 10.1016/j.bbamcr.2020.118867_bb0135 Williams (10.1016/j.bbamcr.2020.118867_bb0160) 2016; 89 Dodani (10.1016/j.bbamcr.2020.118867_bb0315) 2011; 133 Glerum (10.1016/j.bbamcr.2020.118867_bb0435) 1996; 271 |
| References_xml | – volume: 10 start-page: 218 year: 2009 end-page: 227 ident: bb0390 article-title: ABC transporters: the power to change publication-title: Nat Rev Mol Cell Biol – reference: Z.N. Baker, K. Jett, A. Boulet, A. Hossain, P.A. Cobine, B.-E. Kim, A.M.E. Zawily, L. Lee, G.F. Tibbits, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart, Human Molecular Genetics Advance Article: ddx344 (2017). – volume: 26 start-page: 4335 year: 2007 end-page: 4346 ident: bb0460 article-title: Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly publication-title: EMBO J. – volume: 385 start-page: 331 year: 2009 end-page: 338 ident: bb0285 article-title: The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1 publication-title: J. Mol. Biol. – volume: 337 start-page: 93 year: 2012 end-page: 96 ident: bb0405 article-title: Identification and functional expression of the mitochondrial pyruvate carrier publication-title: Science – reference: D. Mellacheruvu, Z. Wright, A.L. Couzens, J.P. Lambert, N.A. St-Denis, T. Li, Y.V. Miteva, S. Hauri, M.E. Sardiu, T.Y. Low, V.A. Halim, R.D. Bagshaw, N.C. Hubner, A. Al-Hakim, A. Bouchard, D. Faubert, D. Fermin, W.H. Dunham, M. Goudreault, Z.Y. Lin, B.G. Badillo, T. Pawson, D. Durocher, B. Coulombe, R. Aebersold, G. Superti-Furga, J. Colinge, A.J. Heck, H. Choi, M. Gstaiger, S. Mohammed, I.M. Cristea, K.L. Bennett, M.P. Washburn, B. Raught, R.M. Ewing, A.C. Gingras, A.I. Nesvizhskii, The CRAPome: a contaminant repository for affinity purification-mass spectrometry data, Nat Methods 10(8) (2013) 730–6. – volume: 280 start-page: 4943 year: 2013 end-page: 4959 ident: bb0290 article-title: Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1 publication-title: FEBS J. – reference: J. Lichtmannegger, C. Leitzinger, R. Wimmer, S. Schmitt, S. Schulz, Y. Kabiri, C. Eberhagen, T. Rieder, D. Janik, F. Neff, B.K. Straub, P. Schirmacher, A.A. DiSpirito, N. Bandow, B.S. Baral, A. Flatley, E. Kremmer, G. Denk, F.P. Reiter, S. Hohenester, F. Eckardt-Schupp, N.A. Dencher, J. Adamski, V. Sauer, C. Niemietz, H.H. Schmidt, U. Merle, D.N. Gotthardt, G. Kroemer, K.H. Weiss, H. Zischka, Methanobactin reverses acute liver failure in a rat model of Wilson disease, J Clin Invest 126(7) (2016) 2721–35. – volume: 26 start-page: 1274 year: 2016 end-page: 1284 ident: bb0610 article-title: A eukaryote without a mitochondrial organelle publication-title: Curr. Biol. – reference: S. Soma, M.N. Morgada, M.T. Naik, A. Boulet, A.A. Roesler, N. Dziuba, A. Ghosh, Q. Yu, P.A. Lindahl, J.B. Ames, S.C. Leary, A.J. Vila, V.M. Gohil, COA6 is structurally tuned to function as a thiol-disulfide oxidoreductase in copper delivery to mitochondrial cytochrome c oxidase, Cell Rep 29(12) (2019) 4114–4126 e5. – volume: 11 start-page: 744 year: 2015 end-page: 747 ident: bb0010 article-title: Searching for harmony in transition-metal signaling publication-title: Nat. Chem. Biol. – volume: 14 start-page: 3048 year: 2005 end-page: 3056 ident: bb0480 article-title: Functional expression of eukaryotic membrane proteins in Lactococcus lactis publication-title: Protein Sci. – volume: 34 start-page: 1366 year: 2013 end-page: 1370 ident: bb0565 article-title: Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis publication-title: Hum. Mutat. – volume: 5 start-page: 7949 year: 2015 ident: bb0605 article-title: An integrated phylogenomic approach toward pinpointing the origin of mitochondria publication-title: Sci. Rep. – volume: 293 start-page: 4628 year: 2018 end-page: 4635 ident: bb0050 article-title: Copper signaling in the brain and beyond publication-title: J. Biol. Chem. – volume: 29 start-page: 1007 year: 2009 end-page: 1016 ident: bb0515 article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2 publication-title: Mol. Cell. Biol. – volume: 279 start-page: 35334 year: 2004 end-page: 35340 ident: bb0245 article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase publication-title: J. Biol. Chem. – reference: C.N. Cunningham, J. Rutter, 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport, EMBO Rep (2020) e50071. – volume: 50 start-page: 94 year: 2020 end-page: 114 ident: bb0180 article-title: Modular biogenesis of mitochondrial respiratory complexes publication-title: Mitochondrion – volume: 22 start-page: 3749 year: 2011 end-page: 3757 ident: bb0280 article-title: Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol publication-title: Mol. Biol. Cell – volume: 25 start-page: 660 year: 2016 end-page: 671 ident: bb0215 article-title: Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis publication-title: Hum. Mol. Genet. – reference: J.J. Ruprecht, M.S. King, T. Zogg, A.A. Aleksandrova, E. Pardon, P.G. Crichton, J. Steyaert, E.R.S. Kunji, The molecular mechanism of transport by the mitochondrial ADP/ATP carrier, Cell 176(3) (2019) 435–447 e15. – volume: 26 start-page: 4347 year: 2007 end-page: 4358 ident: bb0470 article-title: Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly publication-title: EMBO J. – volume: 6 start-page: 150223 year: 2016 ident: bb0485 article-title: Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae publication-title: Open Biol. – volume: 292 start-page: 12754 year: 2017 end-page: 12763 ident: bb0525 article-title: Iron-sulfur cluster biogenesis and trafficking in mitochondria publication-title: J. Biol. Chem. – volume: 460 start-page: 79 year: 2014 end-page: 89 ident: bb0490 article-title: Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins publication-title: Biochem. J. – volume: 1817 start-page: 883 year: 2012 end-page: 897 ident: bb0190 article-title: Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core publication-title: Biochim. Biophys. Acta – volume: 133 start-page: 8606 year: 2011 end-page: 8616 ident: bb0315 article-title: A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 2385 year: 2015 end-page: 2401 ident: bb0210 article-title: Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase publication-title: Mol. Biol. Cell – reference: C. Vallieres, S.L. Holland, S.V. Avery, Mitochondrial ferredoxin determines vulnerability of cells to copper excess, Cell Chem Biol 24(10) (2017) 1228–1237 e3. – volume: 52 start-page: 2142 year: 2012 end-page: 2150 ident: bb0150 article-title: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells publication-title: Free Radic. Biol. Med. – volume: 10 start-page: 1449 year: 2019 ident: bb0505 article-title: Mitochondrial iron transporters (MIT1 and MIT2) are essential for Iron homeostasis and embryogenesis in Arabidopsis thaliana publication-title: Front. Plant Sci. – volume: 432 start-page: 2067 year: 2020 end-page: 2079 ident: bb0225 article-title: COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria publication-title: J. Mol. Biol. – volume: 35 start-page: 2712 year: 2018 end-page: 2718 ident: bb0615 article-title: Fe-S cluster assembly in oxymonads and related protists publication-title: Mol. Biol. Evol. – volume: 79 start-page: 537 year: 2010 end-page: 562 ident: bb0005 article-title: Copper metallochaperones publication-title: Annu. Rev. Biochem. – volume: 121 start-page: 1508 year: 2011 end-page: 1518 ident: bb0115 article-title: Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease publication-title: J. Clin. Invest. – volume: 1802 start-page: 100 year: 2010 end-page: 110 ident: bb0175 article-title: Cytochrome c oxidase deficiency: patients and animal models publication-title: Biochim. Biophys. Acta – reference: C.J. Hlynialuk, B. Ling, Z.N. Baker, P.A. Cobine, L.D. Yu, A. Boulet, T. Wai, A. Hossain, A.M. El Zawily, P.J. McFie, S.J. Stone, F. Diaz, C.T. Moraes, D. Viswanathan, M.J. Petris, S.C. Leary, The mitochondrial metallochaperone SCO1 is required to sustain expression of the high-affinity copper transporter CTR1 and preserve copper homeostasis, Cell Rep (2015) pii: S2211-1247(15)00032-7. – volume: 1315 start-page: 6 year: 2014 end-page: 15 ident: bb0110 article-title: Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models publication-title: Ann. N. Y. Acad. Sci. – volume: 22 start-page: 412 year: 2020 end-page: 424 ident: bb0025 article-title: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma publication-title: Nat. Cell Biol. – volume: 134 start-page: 35 year: 2017 end-page: 50 ident: bb0375 article-title: The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism publication-title: Biochimie – volume: 105 start-page: 6803 year: 2008 end-page: 6808 ident: bb0205 article-title: Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 141 year: 2012 end-page: 143 ident: bb0410 article-title: The mitochondrial pyruvate carrier: has it been unearthed at last? publication-title: Cell Metab. – volume: 24 start-page: 683 year: 2013 end-page: 691 ident: bb0570 article-title: COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux publication-title: Mol. Biol. Cell – volume: 84 year: 2018 ident: bb0350 article-title: Metals and methanotrophy publication-title: Appl. Environ. Microbiol. – volume: 27 start-page: R1177 year: 2017 end-page: R1192 ident: bb0600 article-title: The origin and diversification of mitochondria publication-title: Curr. Biol. – reference: L.A. Sturtz, K. Diekert, L.T. Jensen, R. Lill, V.C. Culotta, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage, The Journal of Biological Chemistry 276(41) (2001) 38084–9. – volume: 13 start-page: 1375 year: 2010 end-page: 1384 ident: bb0255 article-title: Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space publication-title: Antioxid. Redox Signal. – volume: 89 start-page: 471 year: 2020 end-page: 499 ident: bb0535 article-title: Mechanisms of mitochondrial iron-sulfur protein biogenesis publication-title: Annu. Rev. Biochem. – volume: 455 start-page: 57 year: 2013 end-page: 65 ident: bb0555 article-title: The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron publication-title: Biochem. J. – volume: 293 start-page: 1887 year: 2018 end-page: 1896 ident: bb0105 article-title: The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis publication-title: J. Biol. Chem. – volume: 111 start-page: 16280 year: 2014 end-page: 16285 ident: bb0040 article-title: Copper is an endogenous modulator of neural circuit spontaneous activity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 426 start-page: 39 year: 2003 end-page: 44 ident: bb0385 article-title: Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside publication-title: Nature – volume: 47 start-page: 256 year: 2019 end-page: 265 ident: bb0560 article-title: Splitting the functions of Rim2, a mitochondrial iron/pyrimidine carrier publication-title: Mitochondrion – volume: 509 start-page: 492 year: 2014 end-page: 496 ident: bb0020 article-title: Copper is required for oncogenic BRAF signalling and tumorigenesis publication-title: Nature – volume: 9 start-page: 1501 year: 2017 end-page: 1512 ident: bb0085 article-title: The mitochondrion: a central architect of copper homeostasis publication-title: Metallomics – volume: 14 start-page: 655 year: 2018 end-page: 663 ident: bb0045 article-title: Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system publication-title: Nat. Chem. Biol. – volume: 102 start-page: 11179 year: 2005 end-page: 11184 ident: bb0325 article-title: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 year: 2020 ident: bb0360 article-title: Diseases caused by mutations in mitochondrial carrier genes SLC25: a review publication-title: Biomolecules – volume: 116 start-page: 12167 year: 2019 end-page: 12172 ident: bb0075 article-title: Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 54 start-page: 3442 year: 2015 end-page: 3453 ident: bb0330 article-title: Detection of labile low-molecular-mass transition metal complexes in mitochondria publication-title: Biochemistry – volume: 290 start-page: 20804 year: 2015 end-page: 20814 ident: bb0270 article-title: Mia40 protein serves as an electron sink in the Mia40-Erv1 import pathway publication-title: J. Biol. Chem. – volume: 40 start-page: 240 year: 2014 end-page: 257 ident: bb0540 article-title: Review: iron metabolism and the role of iron in neurodegenerative disorders publication-title: Neuropathol. Appl. Neurobiol. – volume: 10 start-page: 7856 year: 2020 ident: bb0080 article-title: Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess publication-title: Sci. Rep. – volume: 337 start-page: 96 year: 2012 end-page: 100 ident: bb0400 article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast publication-title: Drosophila, and humans, Science – volume: 105 start-page: 17766 year: 2008 end-page: 17771 ident: bb0365 article-title: The mechanism of transport by mitochondrial carriers based on analysis of symmetry publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 55 start-page: 4140 year: 2016 end-page: 4153 ident: bb0335 article-title: Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field publication-title: Biochemistry – start-page: 115 year: 2019 end-page: 126 ident: bb0420 article-title: Copper disposition in yeast publication-title: Clinical and Translational Perspectives on WILSON DISEASE – volume: 288 start-page: 23884 year: 2013 end-page: 23892 ident: bb0100 article-title: Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein publication-title: J. Biol. Chem. – volume: 15 start-page: 681 year: 2019 end-page: 689 ident: bb0170 article-title: Mitochondrial metabolism promotes adaptation to proteotoxic stress publication-title: Nat. Chem. Biol. – volume: 24 start-page: 440 year: 2013 end-page: 452 ident: bb0185 article-title: Modular assembly of yeast cytochrome oxidase publication-title: Mol. Biol. Cell – volume: 36 start-page: 2292 year: 2019 end-page: 2312 ident: bb0620 article-title: The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion publication-title: Mol. Biol. Evol. – volume: 279 start-page: 14447 year: 2004 end-page: 14455 ident: bb0305 article-title: Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix publication-title: J. Biol. Chem. – volume: 115 start-page: 8161 year: 2018 end-page: 8166 ident: bb0140 article-title: Elesclomol restores mitochondrial function in genetic models of copper deficiency publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 305 start-page: 1612 year: 2004 end-page: 1615 ident: bb0345 article-title: Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria publication-title: Science – reference: S. Garcia-Santamarina, M.A. Uzarska, R.A. Festa, R. Lill, D.J. Thiele, – volume: 93 start-page: 317 year: 2014 end-page: 330 ident: bb0165 article-title: A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae publication-title: Mol. Microbiol. – volume: 13 start-page: 75 year: 2019 ident: bb0545 article-title: The role of iron in Friedreich’s ataxia: insights from studies in human tissues and cellular and animal models publication-title: Front. Neurosci. – volume: 137 start-page: 22 year: 2014 end-page: 30 ident: bb0145 article-title: The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II) publication-title: J. Inorg. Biochem. – volume: 272 start-page: 33191 year: 1997 end-page: 33196 ident: bb0440 article-title: Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle publication-title: J. Biol. Chem. – volume: 22 start-page: 3758 year: 2011 end-page: 3767 ident: bb0275 article-title: Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system publication-title: Mol. Biol. Cell – volume: 279 start-page: 35334 year: 2004 end-page: 35340 ident: bb0445 article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase publication-title: J. Biol. Chem. – volume: 440 start-page: 96 year: 2006 end-page: 100 ident: bb0520 article-title: Mitoferrin is essential for erythroid iron assimilation publication-title: Nature – volume: 113 start-page: 1745 year: 2013 end-page: 1754 ident: bb0060 article-title: Inborn errors of copper metabolism publication-title: Handb. Clin. Neurol. – volume: 76 start-page: 163 year: 2018 end-page: 178 ident: bb0430 article-title: Mitochondrial cytochrome c oxidase biogenesis: recent developments publication-title: Semin. Cell Dev. Biol. – volume: 112 start-page: 11771 year: 2015 end-page: 11776 ident: bb0250 article-title: Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 279 start-page: 5072 year: 2004 end-page: 5080 ident: bb0450 article-title: Cox17 is functional when tethered to the mitochondrial inner membrane publication-title: J. Biol. Chem. – volume: 140 start-page: 285 year: 2013 end-page: 295 ident: bb0070 article-title: Golgi in copper homeostasis: a view from the membrane trafficking field publication-title: Histochem. Cell Biol. – volume: 401 start-page: 855 year: 2020 end-page: 876 ident: bb0530 article-title: From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis publication-title: Biol. Chem. – volume: 18 start-page: 2230 year: 2009 end-page: 2240 ident: bb0240 article-title: Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1 publication-title: Hum. Mol. Genet. – volume: 60 start-page: 421 year: 2008 end-page: 429 ident: bb0425 article-title: Mitochondrial copper metabolism and delivery to cytochrome c oxidase publication-title: IUBMB Life – reference: D. Brancaccio, A. Gallo, M. Piccioli, E. Novellino, S. Ciofi-Baffoni, L. Banci, [4Fe-4S] cluster assembly in mitochondria and its impairment by copper, J Am Chem Soc 139(2) (2017) 719–730. – volume: 59 start-page: 24 year: 2019 end-page: 33 ident: bb0065 article-title: Trafficking mechanisms of P-type ATPase copper transporters publication-title: Curr. Opin. Cell Biol. – volume: 293 start-page: 4644 year: 2018 end-page: 4652 ident: bb0095 article-title: Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins publication-title: J. Biol. Chem. – volume: 23 start-page: 3596 year: 2014 end-page: 3606 ident: bb0465 article-title: Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency publication-title: Hum. Mol. Genet. – volume: 447 start-page: 689 year: 2004 end-page: 709 ident: bb0510 article-title: The mitochondrial transporter family (SLC25): physiological and pathological implications publication-title: Pflugers Arch. – volume: 271 start-page: 20531 year: 1996 end-page: 20535 ident: bb0435 article-title: SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae publication-title: J. Biol. Chem. – volume: 368 start-page: 620 year: 2020 end-page: 625 ident: bb0155 article-title: Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice publication-title: Science – volume: 89 start-page: 1 year: 2016 end-page: 9 ident: bb0160 article-title: Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD publication-title: Neurobiol. Dis. – volume: 108 start-page: 5980 year: 2011 end-page: 5985 ident: bb0035 article-title: Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 4354 year: 2008 end-page: 4364 ident: bb0295 article-title: Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis publication-title: Mol. Cell. Biol. – volume: 32 start-page: 1284 year: 2012 end-page: 1295 ident: bb0030 article-title: A novel role for copper in Ras/mitogen-activated protein kinase signaling publication-title: Mol. Cell. Biol. – volume: 362 year: 2018 ident: bb0395 article-title: SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism publication-title: Science – volume: 292 start-page: 18169 year: 2017 end-page: 18177 ident: bb0055 article-title: The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics publication-title: J. Biol. Chem. – volume: 8 start-page: 915 year: 2016 end-page: 919 ident: bb0320 article-title: A ratiometric fluorescent sensor for the mitochondrial copper pool publication-title: Metallomics – volume: 21 year: 2020 ident: bb0475 article-title: MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome-nascent chain complex publication-title: EMBO Rep. – volume: 1793 start-page: 146 year: 2009 end-page: 153 ident: bb0090 article-title: “Pulling the plug” on cellular copper: the role of mitochondria in copper export publication-title: Biochim. Biophys. Acta – volume: 285 start-page: 15088 year: 2010 end-page: 15099 ident: bb0300 article-title: The conserved mitochondrial twin Cx9C protein Cmc2 is a Cmc1 homologue essential for cytochrome c oxidase biogenesis publication-title: J. Biol. Chem. – volume: 24 start-page: 5404 year: 2015 end-page: 5415 ident: bb0235 article-title: COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2 publication-title: Hum. Mol. Genet. – reference: M. Grasso, G.J. Bond, Y.-J. Kim, K.B. Alwan, S. Boyd, M.M. Dzebo, S. Valenzuela, T. Tsang, N.A. Schibrowsky, M.L. Matthews, G.M. Burslem, P. Wittung-Stafshede, D.D. Winkler, N.J. Blackburn, R. Marmorstein, D.C. Brady, Structural and molecular determinants of CCS-mediated copper activation of MEK1/2, bioRxiv (2020) 2020.05.01.072124. – reference: iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress, mBio 8(5) (2017). – volume: 49 start-page: 5436 year: 2010 end-page: 5444 ident: bb0310 article-title: Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast publication-title: Biochemistry – volume: 152 start-page: 224 year: 2013 end-page: 235 ident: bb0590 article-title: SOD1 integrates signals from oxygen and glucose to repress respiration publication-title: Cell – volume: 5 start-page: 9 year: 2007 end-page: 20 ident: bb0585 article-title: The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis publication-title: Cell Metab. – volume: 12 start-page: 451 year: 2013 end-page: 478 ident: bb0200 article-title: The copper metallome in eukaryotic cells publication-title: Met Ions Life Sci – volume: 293 start-page: 3819 year: 2018 end-page: 3828 ident: bb0500 article-title: In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1 publication-title: J. Biol. Chem. – volume: 87 start-page: 645 year: 2018 end-page: 676 ident: bb0340 article-title: Chalkophores publication-title: Annu. Rev. Biochem. – volume: 281 start-page: 36552 year: 2006 end-page: 36559 ident: bb0265 article-title: Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase publication-title: J. Biol. Chem. – volume: 30 start-page: 4480 year: 2010 end-page: 4491 ident: bb0455 article-title: Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family publication-title: Mol. Cell. Biol. – volume: 12 start-page: 586 year: 2016 end-page: 592 ident: bb0015 article-title: Copper regulates cyclic-AMP-dependent lipolysis publication-title: Nat. Chem. Biol. – volume: 128 start-page: 833 year: 2015 end-page: 837 ident: bb0195 article-title: Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance publication-title: J. Cell Sci. – volume: 21 start-page: 823 year: 2015 end-page: 833 ident: bb0220 article-title: Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies publication-title: Cell Metab. – volume: 440 start-page: 137 year: 2011 end-page: 146 ident: bb0550 article-title: Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria publication-title: Biochem. J. – volume: 1788 start-page: 1044 year: 2009 end-page: 1050 ident: bb0495 article-title: The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane publication-title: Biochim. Biophys. Acta – volume: 45 start-page: 244 year: 2020 end-page: 258 ident: bb0370 article-title: The SLC25 mitochondrial carrier family: structure and mechanism publication-title: Trends Biochem. Sci. – start-page: 1 year: 2011 end-page: 12 ident: bb0415 article-title: Copper in mitochondria publication-title: Encyclopedia of Inorganic and Bioinorganic Chemistry – volume: 60 start-page: 421 issue: 7 year: 2008 ident: 10.1016/j.bbamcr.2020.118867_bb0425 article-title: Mitochondrial copper metabolism and delivery to cytochrome c oxidase publication-title: IUBMB Life doi: 10.1002/iub.50 – volume: 12 start-page: 586 issue: 8 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0015 article-title: Copper regulates cyclic-AMP-dependent lipolysis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2098 – volume: 279 start-page: 35334 issue: 34 year: 2004 ident: 10.1016/j.bbamcr.2020.118867_bb0245 article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404747200 – ident: 10.1016/j.bbamcr.2020.118867_bb0355 doi: 10.15252/embr.202050071 – volume: 36 start-page: 2292 issue: 10 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0620 article-title: The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msz147 – volume: 13 start-page: 75 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0545 article-title: The role of iron in Friedreich’s ataxia: insights from studies in human tissues and cellular and animal models publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00075 – volume: 10 start-page: 1449 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0505 article-title: Mitochondrial iron transporters (MIT1 and MIT2) are essential for Iron homeostasis and embryogenesis in Arabidopsis thaliana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01449 – volume: 5 start-page: 7949 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0605 article-title: An integrated phylogenomic approach toward pinpointing the origin of mitochondria publication-title: Sci. Rep. doi: 10.1038/srep07949 – volume: 24 start-page: 5404 issue: 19 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0235 article-title: COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv265 – volume: 87 start-page: 645 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0340 article-title: Chalkophores publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012300 – ident: 10.1016/j.bbamcr.2020.118867_bb0260 doi: 10.1074/jbc.M105296200 – volume: 34 start-page: 1366 issue: 10 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0565 article-title: Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis publication-title: Hum. Mutat. doi: 10.1002/humu.22385 – volume: 89 start-page: 471 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0535 article-title: Mechanisms of mitochondrial iron-sulfur protein biogenesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-013118-111540 – volume: 385 start-page: 331 issue: 2 year: 2009 ident: 10.1016/j.bbamcr.2020.118867_bb0285 article-title: The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.10.088 – volume: 11 start-page: 744 issue: 10 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0010 article-title: Searching for harmony in transition-metal signaling publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1913 – volume: 15 start-page: 681 issue: 7 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0170 article-title: Mitochondrial metabolism promotes adaptation to proteotoxic stress publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0291-9 – volume: 10 start-page: 7856 issue: 1 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0080 article-title: Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess publication-title: Sci. Rep. doi: 10.1038/s41598-020-64521-3 – volume: 50 start-page: 94 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0180 article-title: Modular biogenesis of mitochondrial respiratory complexes publication-title: Mitochondrion doi: 10.1016/j.mito.2019.10.008 – volume: 47 start-page: 256 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0560 article-title: Splitting the functions of Rim2, a mitochondrial iron/pyrimidine carrier publication-title: Mitochondrion doi: 10.1016/j.mito.2018.12.005 – volume: 24 start-page: 440 issue: 4 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0185 article-title: Modular assembly of yeast cytochrome oxidase publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-10-0749 – volume: 13 start-page: 1375 issue: 9 year: 2010 ident: 10.1016/j.bbamcr.2020.118867_bb0255 article-title: Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3212 – volume: 23 start-page: 3596 issue: 13 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0465 article-title: Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu069 – volume: 10 start-page: 218 issue: 3 year: 2009 ident: 10.1016/j.bbamcr.2020.118867_bb0390 article-title: ABC transporters: the power to change publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2646 – volume: 140 start-page: 285 issue: 3 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0070 article-title: Golgi in copper homeostasis: a view from the membrane trafficking field publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-013-1123-8 – volume: 271 start-page: 20531 issue: 34 year: 1996 ident: 10.1016/j.bbamcr.2020.118867_bb0435 article-title: SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.34.20531 – volume: 26 start-page: 2385 issue: 13 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0210 article-title: Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-11-1526 – volume: 121 start-page: 1508 issue: 4 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0115 article-title: Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease publication-title: J. Clin. Invest. doi: 10.1172/JCI45401 – volume: 27 start-page: R1177 issue: 21 year: 2017 ident: 10.1016/j.bbamcr.2020.118867_bb0600 article-title: The origin and diversification of mitochondria publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.09.015 – volume: 290 start-page: 20804 issue: 34 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0270 article-title: Mia40 protein serves as an electron sink in the Mia40-Erv1 import pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.669440 – volume: 112 start-page: 11771 issue: 38 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0250 article-title: Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1505056112 – volume: 272 start-page: 33191 issue: 52 year: 1997 ident: 10.1016/j.bbamcr.2020.118867_bb0440 article-title: Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.52.33191 – volume: 113 start-page: 1745 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0060 article-title: Inborn errors of copper metabolism publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-444-59565-2.00045-9 – volume: 305 start-page: 1612 issue: 5690 year: 2004 ident: 10.1016/j.bbamcr.2020.118867_bb0345 article-title: Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria publication-title: Science doi: 10.1126/science.1098322 – ident: 10.1016/j.bbamcr.2020.118867_bb0575 doi: 10.1016/j.celrep.2015.01.019 – volume: 1788 start-page: 1044 issue: 5 year: 2009 ident: 10.1016/j.bbamcr.2020.118867_bb0495 article-title: The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2009.03.004 – volume: 9 start-page: 1501 issue: 11 year: 2017 ident: 10.1016/j.bbamcr.2020.118867_bb0085 article-title: The mitochondrion: a central architect of copper homeostasis publication-title: Metallomics doi: 10.1039/C7MT00221A – start-page: 1 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0415 article-title: Copper in mitochondria – volume: 54 start-page: 3442 issue: 22 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0330 article-title: Detection of labile low-molecular-mass transition metal complexes in mitochondria publication-title: Biochemistry doi: 10.1021/bi5015437 – volume: 460 start-page: 79 issue: 1 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0490 article-title: Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins publication-title: Biochem. J. doi: 10.1042/BJ20140107 – volume: 14 start-page: 655 issue: 7 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0045 article-title: Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0062-z – volume: 29 start-page: 1007 issue: 4 year: 2009 ident: 10.1016/j.bbamcr.2020.118867_bb0515 article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01685-08 – volume: 1793 start-page: 146 issue: 1 year: 2009 ident: 10.1016/j.bbamcr.2020.118867_bb0090 article-title: “Pulling the plug” on cellular copper: the role of mitochondria in copper export publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.05.002 – volume: 21 start-page: 823 issue: 6 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0220 article-title: Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.04.012 – ident: 10.1016/j.bbamcr.2020.118867_bb0380 doi: 10.1016/j.cell.2018.11.025 – volume: 288 start-page: 23884 issue: 33 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0100 article-title: Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.470674 – volume: 28 start-page: 4354 issue: 13 year: 2008 ident: 10.1016/j.bbamcr.2020.118867_bb0295 article-title: Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01920-07 – volume: 24 start-page: 683 issue: 6 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0570 article-title: COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-09-0705 – volume: 1315 start-page: 6 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0110 article-title: Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12347 – volume: 93 start-page: 317 issue: 2 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0165 article-title: A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1111/mmi.12661 – volume: 293 start-page: 1887 issue: 6 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0105 article-title: The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000265 – volume: 337 start-page: 96 issue: 6090 year: 2012 ident: 10.1016/j.bbamcr.2020.118867_bb0400 article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast publication-title: Drosophila, and humans, Science – ident: 10.1016/j.bbamcr.2020.118867_bb0120 doi: 10.1172/JCI85226 – ident: 10.1016/j.bbamcr.2020.118867_bb0130 doi: 10.1021/jacs.6b09567 – volume: 280 start-page: 4943 issue: 20 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0290 article-title: Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1 publication-title: FEBS J. doi: 10.1111/febs.12409 – volume: 76 start-page: 163 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0430 article-title: Mitochondrial cytochrome c oxidase biogenesis: recent developments publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.055 – ident: 10.1016/j.bbamcr.2020.118867_bb0595 doi: 10.1101/2020.05.01.072124 – volume: 40 start-page: 240 issue: 3 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0540 article-title: Review: iron metabolism and the role of iron in neurodegenerative disorders publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/nan.12096 – volume: 45 start-page: 244 issue: 3 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0370 article-title: The SLC25 mitochondrial carrier family: structure and mechanism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2019.11.001 – ident: 10.1016/j.bbamcr.2020.118867_bb0580 doi: 10.1093/hmg/ddx344 – volume: 293 start-page: 3819 issue: 10 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0500 article-title: In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.817478 – volume: 440 start-page: 96 issue: 7080 year: 2006 ident: 10.1016/j.bbamcr.2020.118867_bb0520 article-title: Mitoferrin is essential for erythroid iron assimilation publication-title: Nature doi: 10.1038/nature04512 – ident: 10.1016/j.bbamcr.2020.118867_bb0135 doi: 10.1128/mBio.01742-17 – volume: 133 start-page: 8606 issue: 22 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0315 article-title: A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2004158 – ident: 10.1016/j.bbamcr.2020.118867_bb0125 doi: 10.1016/j.chembiol.2017.08.005 – volume: 1802 start-page: 100 issue: 1 year: 2010 ident: 10.1016/j.bbamcr.2020.118867_bb0175 article-title: Cytochrome c oxidase deficiency: patients and animal models publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2009.07.013 – volume: 26 start-page: 4335 issue: 20 year: 2007 ident: 10.1016/j.bbamcr.2020.118867_bb0460 article-title: Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly publication-title: EMBO J. doi: 10.1038/sj.emboj.7601861 – volume: 26 start-page: 4347 issue: 20 year: 2007 ident: 10.1016/j.bbamcr.2020.118867_bb0470 article-title: Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly publication-title: EMBO J. doi: 10.1038/sj.emboj.7601862 – volume: 52 start-page: 2142 issue: 10 year: 2012 ident: 10.1016/j.bbamcr.2020.118867_bb0150 article-title: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.03.017 – volume: 401 start-page: 855 issue: 6–7 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0530 article-title: From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis publication-title: Biol. Chem. doi: 10.1515/hsz-2020-0117 – volume: 18 start-page: 2230 issue: 12 year: 2009 ident: 10.1016/j.bbamcr.2020.118867_bb0240 article-title: Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp158 – volume: 5 start-page: 9 issue: 1 year: 2007 ident: 10.1016/j.bbamcr.2020.118867_bb0585 article-title: The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.12.001 – volume: 137 start-page: 22 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0145 article-title: The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II) publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2014.04.004 – volume: 292 start-page: 12754 issue: 31 year: 2017 ident: 10.1016/j.bbamcr.2020.118867_bb0525 article-title: Iron-sulfur cluster biogenesis and trafficking in mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.R117.787101 – volume: 111 start-page: 16280 issue: 46 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0040 article-title: Copper is an endogenous modulator of neural circuit spontaneous activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1409796111 – volume: 22 start-page: 412 issue: 4 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0025 article-title: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0481-4 – volume: 447 start-page: 689 issue: 5 year: 2004 ident: 10.1016/j.bbamcr.2020.118867_bb0510 article-title: The mitochondrial transporter family (SLC25): physiological and pathological implications publication-title: Pflugers Arch. doi: 10.1007/s00424-003-1099-7 – volume: 21 issue: 1 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0475 article-title: MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome-nascent chain complex publication-title: EMBO Rep. doi: 10.15252/embr.201948833 – volume: 128 start-page: 833 issue: 5 year: 2015 ident: 10.1016/j.bbamcr.2020.118867_bb0195 article-title: Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance publication-title: J. Cell Sci. – volume: 12 start-page: 451 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0200 article-title: The copper metallome in eukaryotic cells publication-title: Met Ions Life Sci – volume: 509 start-page: 492 issue: 7501 year: 2014 ident: 10.1016/j.bbamcr.2020.118867_bb0020 article-title: Copper is required for oncogenic BRAF signalling and tumorigenesis publication-title: Nature doi: 10.1038/nature13180 – volume: 293 start-page: 4644 issue: 13 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0095 article-title: Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.R117.816132 – volume: 102 start-page: 11179 issue: 32 year: 2005 ident: 10.1016/j.bbamcr.2020.118867_bb0325 article-title: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0406547102 – volume: 152 start-page: 224 issue: 1–2 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0590 article-title: SOD1 integrates signals from oxygen and glucose to repress respiration publication-title: Cell doi: 10.1016/j.cell.2012.11.046 – volume: 35 start-page: 2712 issue: 11 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0615 article-title: Fe-S cluster assembly in oxymonads and related protists publication-title: Mol. Biol. Evol. – volume: 55 start-page: 4140 issue: 30 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0335 article-title: Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00216 – volume: 279 start-page: 5072 issue: 7 year: 2004 ident: 10.1016/j.bbamcr.2020.118867_bb0450 article-title: Cox17 is functional when tethered to the mitochondrial inner membrane publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311772200 – volume: 116 start-page: 12167 issue: 25 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0075 article-title: Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1900172116 – volume: 10 issue: 4 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0360 article-title: Diseases caused by mutations in mitochondrial carrier genes SLC25: a review publication-title: Biomolecules doi: 10.3390/biom10040655 – volume: 84 issue: 6 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0350 article-title: Metals and methanotrophy publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02289-17 – volume: 89 start-page: 1 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0160 article-title: Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2016.01.020 – volume: 455 start-page: 57 issue: 1 year: 2013 ident: 10.1016/j.bbamcr.2020.118867_bb0555 article-title: The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron publication-title: Biochem. J. doi: 10.1042/BJ20130144 – volume: 26 start-page: 1274 issue: 10 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0610 article-title: A eukaryote without a mitochondrial organelle publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.03.053 – volume: 1817 start-page: 883 issue: 6 year: 2012 ident: 10.1016/j.bbamcr.2020.118867_bb0190 article-title: Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2011.09.005 – volume: 432 start-page: 2067 issue: 7 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0225 article-title: COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.01.036 – volume: 32 start-page: 1284 issue: 7 year: 2012 ident: 10.1016/j.bbamcr.2020.118867_bb0030 article-title: A novel role for copper in Ras/mitogen-activated protein kinase signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05722-11 – volume: 292 start-page: 18169 issue: 44 year: 2017 ident: 10.1016/j.bbamcr.2020.118867_bb0055 article-title: The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.811752 – start-page: 115 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0420 article-title: Copper disposition in yeast – volume: 8 start-page: 915 issue: 9 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0320 article-title: A ratiometric fluorescent sensor for the mitochondrial copper pool publication-title: Metallomics doi: 10.1039/C6MT00083E – volume: 59 start-page: 24 year: 2019 ident: 10.1016/j.bbamcr.2020.118867_bb0065 article-title: Trafficking mechanisms of P-type ATPase copper transporters publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2019.02.009 – volume: 426 start-page: 39 issue: 6962 year: 2003 ident: 10.1016/j.bbamcr.2020.118867_bb0385 article-title: Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside publication-title: Nature doi: 10.1038/nature02056 – volume: 279 start-page: 35334 issue: 34 year: 2004 ident: 10.1016/j.bbamcr.2020.118867_bb0445 article-title: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404747200 – ident: 10.1016/j.bbamcr.2020.118867_bb0230 doi: 10.1016/j.celrep.2019.11.054 – volume: 49 start-page: 5436 issue: 26 year: 2010 ident: 10.1016/j.bbamcr.2020.118867_bb0310 article-title: Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast publication-title: Biochemistry doi: 10.1021/bi100558z – volume: 79 start-page: 537 year: 2010 ident: 10.1016/j.bbamcr.2020.118867_bb0005 article-title: Copper metallochaperones publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-030409-143539 – volume: 108 start-page: 5980 issue: 15 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0035 article-title: Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1009932108 – volume: 30 start-page: 4480 issue: 18 year: 2010 ident: 10.1016/j.bbamcr.2020.118867_bb0455 article-title: Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00228-10 – volume: 368 start-page: 620 issue: 6491 year: 2020 ident: 10.1016/j.bbamcr.2020.118867_bb0155 article-title: Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice publication-title: Science doi: 10.1126/science.aaz8899 – volume: 14 start-page: 3048 issue: 12 year: 2005 ident: 10.1016/j.bbamcr.2020.118867_bb0480 article-title: Functional expression of eukaryotic membrane proteins in Lactococcus lactis publication-title: Protein Sci. doi: 10.1110/ps.051689905 – volume: 440 start-page: 137 issue: 1 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0550 article-title: Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria publication-title: Biochem. J. doi: 10.1042/BJ20111036 – volume: 22 start-page: 3758 issue: 20 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0275 article-title: Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0296 – volume: 22 start-page: 3749 issue: 20 year: 2011 ident: 10.1016/j.bbamcr.2020.118867_bb0280 article-title: Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0293 – volume: 6 start-page: 150223 issue: 1 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0485 article-title: Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae publication-title: Open Biol. doi: 10.1098/rsob.150223 – volume: 25 start-page: 660 issue: 4 year: 2016 ident: 10.1016/j.bbamcr.2020.118867_bb0215 article-title: Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv503 – ident: 10.1016/j.bbamcr.2020.118867_bb0625 doi: 10.1038/nmeth.2557 – volume: 134 start-page: 35 year: 2017 ident: 10.1016/j.bbamcr.2020.118867_bb0375 article-title: The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism publication-title: Biochimie doi: 10.1016/j.biochi.2016.12.016 – volume: 285 start-page: 15088 issue: 20 year: 2010 ident: 10.1016/j.bbamcr.2020.118867_bb0300 article-title: The conserved mitochondrial twin Cx9C protein Cmc2 is a Cmc1 homologue essential for cytochrome c oxidase biogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.104786 – volume: 105 start-page: 6803 issue: 19 year: 2008 ident: 10.1016/j.bbamcr.2020.118867_bb0205 article-title: Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0800019105 – volume: 279 start-page: 14447 issue: 14 year: 2004 ident: 10.1016/j.bbamcr.2020.118867_bb0305 article-title: Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312693200 – volume: 362 issue: 6416 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0395 article-title: SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism publication-title: Science doi: 10.1126/science.aat9528 – volume: 281 start-page: 36552 issue: 48 year: 2006 ident: 10.1016/j.bbamcr.2020.118867_bb0265 article-title: Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606839200 – volume: 105 start-page: 17766 issue: 46 year: 2008 ident: 10.1016/j.bbamcr.2020.118867_bb0365 article-title: The mechanism of transport by mitochondrial carriers based on analysis of symmetry publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0809580105 – volume: 115 start-page: 8161 issue: 32 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0140 article-title: Elesclomol restores mitochondrial function in genetic models of copper deficiency publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1806296115 – volume: 16 start-page: 141 issue: 2 year: 2012 ident: 10.1016/j.bbamcr.2020.118867_bb0410 article-title: The mitochondrial pyruvate carrier: has it been unearthed at last? publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.07.013 – volume: 293 start-page: 4628 issue: 13 year: 2018 ident: 10.1016/j.bbamcr.2020.118867_bb0050 article-title: Copper signaling in the brain and beyond publication-title: J. Biol. Chem. doi: 10.1074/jbc.R117.000176 – volume: 337 start-page: 93 issue: 6090 year: 2012 ident: 10.1016/j.bbamcr.2020.118867_bb0405 article-title: Identification and functional expression of the mitochondrial pyruvate carrier publication-title: Science doi: 10.1126/science.1218530 |
| SSID | ssj0000475 |
| Score | 2.6633208 |
| SecondaryResourceType | review_article |
| Snippet | Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118867 |
| SubjectTerms | Copper Copper - metabolism Cytochrome c oxidase Electron Transport Complex IV - genetics Electron Transport Complex IV - metabolism Humans Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial carrier family Mitochondrial Proteins - genetics Molecular Chaperones - genetics Phosphate Transport Proteins - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Superoxide dismutase Superoxide Dismutase - genetics Superoxide Dismutase - metabolism |
| Title | Getting out what you put in: Copper in mitochondria and its impacts on human disease |
| URI | https://dx.doi.org/10.1016/j.bbamcr.2020.118867 https://www.ncbi.nlm.nih.gov/pubmed/32979421 https://www.proquest.com/docview/2446678207 https://pubmed.ncbi.nlm.nih.gov/PMC7680424 |
| Volume | 1868 |
| WOSCitedRecordID | wos000591723500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2596 dateEnd: 20210131 omitProxy: false ssIdentifier: ssj0000475 issn: 0167-4889 databaseCode: AIEXJ dateStart: 19950216 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgQvCAaDcZmMxFuUqnUutnmrqnETmngoqG-R4zhapi2punRsP4N_zDmxk7arYOyBlyhKHDfp9_nYPj7-DiHvAp1nWSZCX_M09MM4Ur7IhPKzGAyyZCYyjU_3x1d-fCxmM_mt1_vV7oW5PONlKa6u5Py_Qg3XAGzcOnsHuLtK4QKcA-hwBNjh-E_AfzQulHlZez9PYP5_XS29-RJTAeD0f1LN5wZj0L1zaMxg_MpsYTdmNWsIdtdks4Zg0_etr-C0i78FPFegzoBnai8tKuseUSjMoQZgJlzGXQ9XBTwnJ9S5nSe448y0UYneeNBhXrmYX8xsjLZqdQtVYG1Qmq5qbzJY91Ww0ZqvwrkvUWVd2KRBK_sbiy2mWXMKsx9hs3VsWXrrdDgdpKk61yjsytD8t8U3hbVvdHhdGGIb4Xaa2FoSrCWxteyQXcYjKfpkd_z5aPZl1b2HPOoE4-FT2v2YTdDg9tv8abyzPZ-5GZa7Ns6ZPiaP3ASFji2xnpCeKffIfZuy9HqPPJi0GQKfkqmjGgWqUaQaBapRoBotyvfUEg1O6TrRKBCNAtGoIxqtStoQjTqiPSPfPxxNJ598l6XD12Ec1H4OzVoGgY6YiqRUSrOU54yJNGWhhvmG4kqlZpTFMVOBHBqZi0Cz3AipoayJg33SL6vSvCA05kqGsYEyIg9FqkSQc2WG0VAN01Cb_IAE7X-ZaCdhj5lUzpK_IXlA_O6puZVwuaU8b2FK3DDUDi8T4N4tT75tUU0ACmxkqjTV8iJhGDaB0pRQ5rlFuXuXgEnoFNkIfncD_64AKsBv3imLk0YJnscCQxde3vELX5GHq9b5mvTrxdK8Iff0ZV1cLA7JDp-JQ0f737jr1h8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Getting+out+what+you+put+in%3A+Copper+in+mitochondria+and+its+impacts+on+human+disease&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Cobine%2C+Paul+A.&rft.au=Moore%2C+Stanley+A.&rft.au=Leary%2C+Scot+C.&rft.date=2021-01-01&rft.issn=0167-4889&rft.volume=1868&rft.issue=1&rft.spage=118867&rft_id=info:doi/10.1016%2Fj.bbamcr.2020.118867&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbamcr_2020_118867 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon |