Learning Graph Matching

As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 31; číslo 6; s. 1048 - 1058
Hlavní autoři: Caetano, T.S., McAuley, J.J., Li Cheng, Le, Q.V., Smola, A.J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.06.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
AbstractList As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding [abstract truncated by publisher].
Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility.
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
Author Caetano, T.S.
McAuley, J.J.
Li Cheng
Smola, A.J.
Le, Q.V.
Author_xml – sequence: 1
  givenname: T.S.
  surname: Caetano
  fullname: Caetano, T.S.
  organization: Stat. Machine Learning Group, NICTA, Canberra, ACT
– sequence: 2
  givenname: J.J.
  surname: McAuley
  fullname: McAuley, J.J.
  organization: Stat. Machine Learning Group, NICTA, Canberra, ACT
– sequence: 3
  surname: Li Cheng
  fullname: Li Cheng
  organization: TTI-Chicago, Chicago, IL
– sequence: 4
  givenname: Q.V.
  surname: Le
  fullname: Le, Q.V.
  organization: Dept. of Comput. Sci., Stanford Univ., Stanford, CA
– sequence: 5
  givenname: A.J.
  surname: Smola
  fullname: Smola, A.J.
  organization: Yahoo! Res., Santa Clara, CA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21501459$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19372609$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LAzEQBuAgFVurR_EgSBHU09Ykk89jEa2Fih7qOWRj1m7Z7tZke_Dfu7VVoaA9DQPPzMC8h6hVVqVH6ITgPiFY30yeB4-jPsVY96naQx2iQSfAQbdQBxNBE6WoaqPDGGcYE8YxHKB2gyQVWHfQ6djbUOblW28Y7GLae7S1mzbtEdrPbBH98aZ20cv93eT2IRk_DUe3g3HimIA6SSGVlAvwNBWOQMqU1lYLYJ5ynUqwimhOIVOYaJVSyijPfMYoTp3MFGTQRdfrvYtQvS99rM08j84XhS19tYxGYxBEakZ2SiW04oJL1sirf6WQBAhVuyEwBlwT3sCLLTirlqFsHmNUc1GwNTrfoGU6969mEfK5DR_m-9kNuNwAG50tsmBLl8cfRwlfBbRyydq5UMUYfPa7CptV6OYrdLMK3VDVeNjyLq9tnVdlHWxe_Dl1tp7Kvfc_F5iUmGAFn8ghsiE
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patcog_2021_108171
crossref_primary_10_1016_j_knosys_2020_106275
crossref_primary_10_3390_s22062260
crossref_primary_10_1007_s10598_021_09509_y
crossref_primary_10_1016_j_patrec_2015_01_009
crossref_primary_10_1109_LGRS_2013_2259612
crossref_primary_10_1145_2435209_2435212
crossref_primary_10_1111_cgf_12548
crossref_primary_10_1016_j_neucom_2012_10_037
crossref_primary_10_1109_ACCESS_2018_2797181
crossref_primary_10_1186_s13321_024_00841_0
crossref_primary_10_1007_s10994_013_5354_7
crossref_primary_10_1109_TGRS_2020_3001004
crossref_primary_10_1007_s10994_022_06255_z
crossref_primary_10_1007_s11424_024_3141_0
crossref_primary_10_1016_j_patcog_2017_12_003
crossref_primary_10_1016_j_patcog_2010_06_011
crossref_primary_10_1109_TKDE_2025_3578989
crossref_primary_10_1016_j_patcog_2014_06_017
crossref_primary_10_1016_j_media_2015_03_001
crossref_primary_10_1049_iet_ipr_2017_0168
crossref_primary_10_1109_TCYB_2017_2655538
crossref_primary_10_1016_j_inffus_2021_02_012
crossref_primary_10_1016_j_rpor_2020_03_015
crossref_primary_10_1109_JBHI_2013_2274798
crossref_primary_10_1109_TIP_2014_2387386
crossref_primary_10_1109_TGRS_2011_2160645
crossref_primary_10_1109_TITS_2024_3374281
crossref_primary_10_1007_s00034_013_9587_2
crossref_primary_10_1016_j_patrec_2019_05_015
crossref_primary_10_1007_s11263_015_0858_1
crossref_primary_10_1016_j_patcog_2021_108167
crossref_primary_10_1007_s00371_021_02335_8
crossref_primary_10_1007_s11390_023_2939_x
crossref_primary_10_1007_s13319_015_0054_7
crossref_primary_10_1016_j_patcog_2020_107418
crossref_primary_10_1109_TMI_2012_2223710
crossref_primary_10_1016_j_patcog_2012_11_020
crossref_primary_10_1177_1729881417738100
crossref_primary_10_1016_j_patrec_2018_03_031
crossref_primary_10_1016_j_patrec_2020_12_012
crossref_primary_10_1007_s00138_016_0786_2
crossref_primary_10_1109_TPAMI_2015_2456892
crossref_primary_10_1016_j_neucom_2013_06_031
crossref_primary_10_1016_j_patrec_2015_07_010
crossref_primary_10_1109_TPAMI_2023_3257830
crossref_primary_10_1007_s00371_022_02478_2
crossref_primary_10_3390_app12147023
crossref_primary_10_1016_j_cviu_2016_01_004
crossref_primary_10_3390_sym10120725
crossref_primary_10_1016_j_jss_2019_110432
crossref_primary_10_1016_j_ymeth_2021_06_008
crossref_primary_10_1186_s13321_025_01030_3
crossref_primary_10_1109_TPAMI_2016_2615921
crossref_primary_10_1109_TIP_2015_2449559
crossref_primary_10_1007_s11263_019_01185_1
crossref_primary_10_1109_LSP_2015_2469297
crossref_primary_10_1109_TNNLS_2021_3102234
crossref_primary_10_1145_2629701
crossref_primary_10_1016_j_patcog_2025_112044
crossref_primary_10_1109_TIP_2015_2456633
crossref_primary_10_3390_jmse9020212
crossref_primary_10_1007_s11263_011_0442_2
crossref_primary_10_1016_j_patcog_2024_110697
crossref_primary_10_1016_j_patrec_2014_04_015
crossref_primary_10_1016_j_patcog_2016_07_021
crossref_primary_10_1016_j_patcog_2013_03_003
crossref_primary_10_1109_TCSVT_2012_2210801
crossref_primary_10_1109_TIP_2015_2469153
crossref_primary_10_1016_j_patcog_2017_07_029
crossref_primary_10_1109_TPAMI_2021_3078053
crossref_primary_10_1109_TPAMI_2015_2501802
crossref_primary_10_1007_s11263_013_0657_5
crossref_primary_10_1007_s11263_020_01359_2
crossref_primary_10_1109_TGRS_2017_2761839
crossref_primary_10_1109_TMI_2013_2296937
crossref_primary_10_1016_j_asoc_2017_08_015
crossref_primary_10_1016_j_knosys_2025_113969
crossref_primary_10_1109_TCDS_2022_3188333
crossref_primary_10_1016_j_patcog_2018_03_004
crossref_primary_10_1111_j_1467_8659_2011_01884_x
crossref_primary_10_1016_j_patcog_2014_10_033
crossref_primary_10_1016_j_physrep_2024_11_006
crossref_primary_10_1007_s11767_012_0855_2
crossref_primary_10_1016_j_cviu_2015_08_008
crossref_primary_10_1109_TIV_2023_3337656
crossref_primary_10_1109_TCSVT_2017_2718225
crossref_primary_10_1007_s11740_010_0260_3
crossref_primary_10_1016_j_patrec_2018_08_026
crossref_primary_10_1016_j_patrec_2018_08_027
crossref_primary_10_1007_s11280_012_0168_2
crossref_primary_10_1016_j_neucom_2015_05_048
crossref_primary_10_1007_s10044_019_00843_x
crossref_primary_10_1016_j_eswa_2025_127901
crossref_primary_10_1016_j_patrec_2013_06_011
crossref_primary_10_1109_TPAMI_2014_2324568
crossref_primary_10_1109_LSP_2015_2389852
crossref_primary_10_1587_transinf_E93_D_1294
crossref_primary_10_1061__ASCE_CP_1943_5487_0000425
crossref_primary_10_1109_TPAMI_2012_99
crossref_primary_10_1016_j_eswa_2025_128275
crossref_primary_10_1016_j_media_2024_103374
crossref_primary_10_1109_TPAMI_2012_51
crossref_primary_10_1007_s00371_016_1311_3
crossref_primary_10_1109_TPAMI_2020_3005590
crossref_primary_10_1016_j_neucom_2016_02_066
crossref_primary_10_1016_j_patrec_2019_05_001
crossref_primary_10_1109_TGRS_2018_2890404
crossref_primary_10_1049_iet_cvi_2015_0354
crossref_primary_10_1016_j_jvcir_2013_04_012
crossref_primary_10_1016_j_trb_2021_08_008
crossref_primary_10_1016_j_imavis_2015_06_005
crossref_primary_10_1016_j_patcog_2022_109242
crossref_primary_10_1109_TGRS_2012_2200045
crossref_primary_10_1109_TPAMI_2015_2477832
crossref_primary_10_1109_TGRS_2021_3068185
crossref_primary_10_1117_1_JEI_32_2_020701
crossref_primary_10_1109_TCSVT_2016_2586860
crossref_primary_10_1109_TPAMI_2019_2919308
crossref_primary_10_1109_TPAMI_2012_264
crossref_primary_10_1016_j_patrec_2021_02_019
crossref_primary_10_1007_s11063_019_10121_w
crossref_primary_10_1609_aimag_v33i3_2430
crossref_primary_10_1016_j_imavis_2014_11_001
crossref_primary_10_1016_j_patcog_2014_07_015
crossref_primary_10_1016_j_patrec_2020_07_010
crossref_primary_10_1007_s00034_015_0030_8
crossref_primary_10_1016_j_patcog_2015_09_029
crossref_primary_10_1109_TMM_2012_2187777
crossref_primary_10_1016_j_eswa_2014_07_051
crossref_primary_10_1109_LGRS_2014_2359518
crossref_primary_10_1109_TPAMI_2022_3170096
crossref_primary_10_1109_TCYB_2017_2697968
crossref_primary_10_1109_TMM_2015_2395078
crossref_primary_10_1016_j_ins_2014_10_029
crossref_primary_10_1016_j_neucom_2016_07_076
crossref_primary_10_1016_j_patcog_2016_06_023
Cites_doi 10.1109/TPAMI.2006.207
10.1214/aoms/1177703591
10.1162/089976699300016034
10.1109/TPAMI.2004.1265866
10.1109/34.310691
10.1007/978-0-387-73301-2
10.1016/j.ins.2006.02.013
10.1016/S0031-3203(02)00054-7
10.1109/ICCV.2005.20
10.1007/978-3-540-27868-9_38
10.1109/34.682179
10.1007/s10107-003-0437-z
10.1145/1390156.1390195
10.1162/089976699300016313
10.1287/opre.49.5.771.10607
10.1142/S021800148900005X
10.7551/mitpress/4175.001.0001
10.1109/TPAMI.2006.125
10.1109/34.400565
10.7551/mitpress/7503.003.0044
10.5244/C.6.15
10.1007/BF02278710
10.1109/34.491619
10.1007/978-3-540-72903-7_31
10.1007/3-540-70659-3_3
10.1016/0262-8856(92)90043-3
10.1145/1281192.1281270
10.1109/CVPR.2004.1315201
10.1145/1150402.1150429
10.1109/ICCV.2007.4408838
10.1109/CVPR.1994.323915
10.1109/TPAMI.2002.1017624
10.1109/34.601251
10.1109/ICIAP.2007.4362754
10.3115/1220835.1220850
10.1109/34.993558
10.1109/ICPR.1996.546020
10.1017/CBO9780511809682
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2009.28
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database
Technology Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
EISSN 1939-3539
EndPage 1058
ExternalDocumentID 2295177991
19372609
21501459
10_1109_TPAMI_2009_28
4770108
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c463t-b3b72563e2b6c13b4899a9634e259b73a819523f80198b22425fef420bc7f83f3
IEDL.DBID RIE
ISICitedReferencesCount 270
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265100000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Sun Sep 28 02:04:53 EDT 2025
Sun Sep 28 00:13:06 EDT 2025
Tue Sep 30 23:12:32 EDT 2025
Wed Oct 01 14:54:54 EDT 2025
Sun Oct 05 00:16:34 EDT 2025
Mon Jul 21 05:16:18 EDT 2025
Mon Jul 21 09:17:45 EDT 2025
Sat Nov 29 08:10:13 EST 2025
Tue Nov 18 21:49:20 EST 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computer vision
Statistical analysis
support vector machines
Graph theory
learning
Quadratic assignment
Pattern recognition
Optimization
structured estimation
Model matching
NP hard problem
Vector support machine
Objective function
Graph method
Compatibility
Pattern analysis
Bioinformatics
Artificial intelligence
Pattern matching
Graph matching
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-b3b72563e2b6c13b4899a9634e259b73a819523f80198b22425fef420bc7f83f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 19372609
PQID 857464915
PQPubID 23500
PageCount 11
ParticipantIDs proquest_journals_857464915
proquest_miscellaneous_869856574
pubmed_primary_19372609
pascalfrancis_primary_21501459
crossref_primary_10_1109_TPAMI_2009_28
proquest_miscellaneous_67131284
proquest_miscellaneous_34435915
ieee_primary_4770108
proquest_miscellaneous_903617941
crossref_citationtrail_10_1109_TPAMI_2009_28
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2009
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref17
ref16
ref19
ref18
(ref42) 2009
Schellewald (ref21) 2004
ref48
ref41
ref44
ref43
Smola (ref35) 2008
Rosenfeld (ref15) 1982
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
(ref46) 2009
ref34
Vishwanathan (ref4) 2008
ref37
ref31
ref30
ref2
ref1
ref39
Bronstein (ref45) 2007
ref38
(ref47) 2009
Papadimitriou (ref32) 1998
Tsochantaridis (ref33) 2005; 6
ref24
Taskar (ref36) 2004
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
Griffin (ref50) 2007
References_xml – ident: ref43
  doi: 10.1109/TPAMI.2006.207
– ident: ref27
  doi: 10.1214/aoms/1177703591
– volume-title: Digital Picture Processing
  year: 1982
  ident: ref15
– ident: ref22
  doi: 10.1162/089976699300016034
– ident: ref13
  doi: 10.1109/TPAMI.2004.1265866
– ident: ref28
  doi: 10.1109/34.310691
– ident: ref44
  doi: 10.1007/978-0-387-73301-2
– ident: ref8
  doi: 10.1016/j.ins.2006.02.013
– ident: ref12
  doi: 10.1016/S0031-3203(02)00054-7
– ident: ref9
  doi: 10.1109/ICCV.2005.20
– year: 2008
  ident: ref4
  article-title: On Graph Kernels
  publication-title: J. Machine Learning Research
– ident: ref10
  doi: 10.1007/978-3-540-27868-9_38
– ident: ref23
  doi: 10.1109/34.682179
– ident: ref31
  doi: 10.1007/s10107-003-0437-z
– ident: ref40
  doi: 10.1145/1390156.1390195
– volume-title: PhD dissertation
  year: 2004
  ident: ref21
  article-title: Convex Mathematical Programs for Relational Matching of Object Views
– ident: ref26
  doi: 10.1162/089976699300016313
– ident: ref34
  doi: 10.1287/opre.49.5.771.10607
– ident: ref19
  doi: 10.1142/S021800148900005X
– ident: ref2
  doi: 10.7551/mitpress/4175.001.0001
– volume-title: Proc. Advances in Neural Information Processing Systems 16
  year: 2004
  ident: ref36
  article-title: Max-Margin Markov Networks
– ident: ref5
  doi: 10.1109/TPAMI.2006.125
– volume: 6
  start-page: 1453
  year: 2005
  ident: ref33
  article-title: Large Margin Methods for Structured and Interdependent Output Variables
  publication-title: J. Machine Learning Research
– ident: ref18
  doi: 10.1109/34.400565
– ident: ref30
  doi: 10.7551/mitpress/7503.003.0044
– ident: ref48
  doi: 10.5244/C.6.15
– ident: ref39
  doi: 10.1007/BF02278710
– ident: ref24
  doi: 10.1109/34.491619
– ident: ref7
  doi: 10.1007/978-3-540-72903-7_31
– volume-title: Mythological Creatures 2D database
  year: 2009
  ident: ref46
– ident: ref17
  doi: 10.1007/3-540-70659-3_3
– volume-title: Technical Report 7694
  year: 2007
  ident: ref50
  article-title: Caltech-256 Object Category Data Set
– ident: ref11
  doi: 10.1016/0262-8856(92)90043-3
– ident: ref38
  doi: 10.1145/1281192.1281270
– ident: ref14
  doi: 10.1109/CVPR.2004.1315201
– volume-title: Combinatorial Optimization: Algorithms and Complexity
  year: 1998
  ident: ref32
– year: 2007
  ident: ref45
  article-title: Analysis of Two-Dimensional Non-Rigid Shapes
  publication-title: Int’l J. Computer Vision
– ident: ref37
  doi: 10.1145/1150402.1150429
– ident: ref1
  doi: 10.1109/ICCV.2007.4408838
– ident: ref20
  doi: 10.1109/CVPR.1994.323915
– volume-title: CMU “house” data set
  year: 2009
  ident: ref42
– ident: ref25
  doi: 10.1109/TPAMI.2002.1017624
– ident: ref16
  doi: 10.1109/34.601251
– ident: ref6
  doi: 10.1109/ICIAP.2007.4362754
– volume-title: SAMPL motion data set
  year: 2009
  ident: ref47
– ident: ref29
  doi: 10.3115/1220835.1220850
– start-page: 1377
  volume-title: Proc. Advances in Neural Information Processing Systems 20
  year: 2008
  ident: ref35
  article-title: Bundle Methods for Machine Learning
– ident: ref41
  doi: 10.1109/34.993558
– ident: ref49
  doi: 10.1109/ICPR.1996.546020
– ident: ref3
  doi: 10.1017/CBO9780511809682
SSID ssj0014503
Score 2.4870222
Snippet As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In...
Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1048
SubjectTerms Algorithms
Application software
Applied sciences
Artificial Intelligence
Biological and medical sciences
Cameras
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Computer vision
Data mining
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Graph matching
Graph theory
Graphs
Image databases
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Information retrieval. Graph
Intelligence
Learning
Machine learning
Mathematical analysis
Mathematical models
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Optimal matching
Optimization
Pattern matching
Pattern recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Reproducibility of Results
Sciences and techniques of general use
Sensitivity and Specificity
Structured Estimation
Studies
Subtraction Technique
Support Vector Machines
Surveillance
Theoretical computing
Title Learning Graph Matching
URI https://ieeexplore.ieee.org/document/4770108
https://www.ncbi.nlm.nih.gov/pubmed/19372609
https://www.proquest.com/docview/857464915
https://www.proquest.com/docview/34435915
https://www.proquest.com/docview/67131284
https://www.proquest.com/docview/869856574
https://www.proquest.com/docview/903617941
Volume 31
WOSCitedRecordID wos000265100000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BYoCB8izhUTIgJgJp7MT2iBAvCRADoG6R49gICbWItvx-7pw0BYkisUXyDcnF5-_OZ38fwGFmBXNpSbShJo24c3GEoMAipk0ZuxITJd_Bf74V9_ey11MPc3Dc3IWx1vrDZ_aEHn0vvxyYMW2VnXIhsHyQ8zAvRFbd1Wo6Bjz1KsiYwWCEYxkx5dM8fXw4u7upqCkTr8-HkIxpvPoBRV5bhU5G6iE6x1WqFrPTTg8_l63_vfgqrNRpZnhWzYs1mLP9dWhNJBzCOqLXYfkbH-EGtGu21Zfwiniswztcp2mHahOeLi8ez6-jWjkhMjxjo6hghcBchtmkyEyXFRyrKo2hxi1WO4VgmrpnCXMIT0oWCZUdzjqexIURTjLHtmChP-jbbQgR2XRsHdNJWXIELy21wRoFgS-ji9c8gOOJE3NT04qTusVb7suLWOXe_SR3qfJEBnDUmL9XfBqzDDfIj41R7cIAOj_-UDOOqQtNAhXA7uSX5XU4DnOZCp5x1U0DOGhGMY6oOaL7djAe5oxj4vinRYb1PKF5AOEMC5kpSW3kP0wUOo7WwG4A7Wo-Td1QT8ud3798F5aqThbtAO3BwuhjbPdh0XyOXocfHQyJnuz4kPgCKbwC9w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEH3ozy7AFxotA1aZscEeIltonDQNyqNE0QEtoQ2_j92GlXQGJI3CrFh9aN89lx8n0AR4lJmY0Log3VccCtDQMEBRYwpYvQFpgouQ7-YzvtdsXTk7yfgZP6Lowxxh0-M6f06Hr5xUCPaavsjKcplg9iFuZIOSsub2vVPQMeOx1kzGEwxrGQ-GLUPOvdn3duS3LKyCn0IShjIi9_gJFTV6GzkWqI7rGlrsX0xNMB0NXK_159FZarRNM_L2fGGsyY_jqsTEQc_Cqm12HpGyPhBjQrvtVn_5qYrP0OrtS0R7UJD1eXvYuboNJOCDRP2CjIWZ5iNsNMlCe6xXKOdZXCYOMG6508ZYr6ZxGzCFBS5BEVHtZYHoW5Tq1glm1Boz_om23wEdtUaCxTUVFwhC8llMYqBaEvoavX3IOTiRMzXRGLk77Fa-YKjFBmzv0keCmzSHhwXJu_lYwa0ww3yI-1UeVCDw5-_KF6HJMXmgTSg93JL8uqgBxmIk55wmUr9uCwHsVIovaI6pvBeJgxjqnjnxYJVvSE5x74UyxEIgU1kv8wkeg4WgVbHjTL-fTlhmpa7vz-5YewcNPrtLP2bfduFxbLvhbtB-1BY_Q-Nvswrz9GL8P3AxcYn7agBVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Graph+Matching&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Caetano%2C+T.S.&rft.au=McAuley%2C+J.J.&rft.au=Li+Cheng&rft.au=Le%2C+Q.V.&rft.date=2009-06-01&rft.issn=0162-8828&rft.volume=31&rft.issue=6&rft.spage=1048&rft.epage=1058&rft_id=info:doi/10.1109%2FTPAMI.2009.28&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2009_28
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon