Evolutionary Optimization of Kernel Weights Improves Protein Complex Comembership Prediction

In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging. Recently, it has been recognized that kernel-based cla...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ACM transactions on computational biology and bioinformatics Ročník 6; číslo 3; s. 427 - 437
Hlavní autori: Hulsman, M., Reinders, M.J.T., de Ridder, D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-5963, 1557-9964, 1557-9964
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging. Recently, it has been recognized that kernel-based classifiers are well suited for this task. However, the different kernels (data sources) are often combined using equal weights. Although several methods have been developed to optimize kernel weights, no large-scale example of an improvement in classifier performance has been shown yet. In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve. We show that setting the right kernel weights can indeed improve performance. We compare this to the existing kernel weight optimization methods (i.e., (regularized) optimization of the SVM criterion or aligning the kernel with an ideal kernel) and find that these do not result in a significant performance improvement and can even cause a decrease in performance. Results also show that an expert approach of assigning high weights to features with high individual performance is not necessarily the best strategy.
AbstractList In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging. Recently, it has been recognized that kernel-based classifiers are well suited for this task. However, the different kernels (data sources) are often combined using equal weights. Although several methods have been developed to optimize kernel weights, no large-scale example of an improvement in classifier performance has been shown yet. In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve. We show that setting the right kernel weights can indeed improve performance. We compare this to the existing kernel weight optimization methods (i.e., (regularized) optimization of the SVM criterion or aligning the kernel with an ideal kernel) and find that these do not result in a significant performance improvement and can even cause a decrease in performance. Results also show that an expert approach of assigning high weights to features with high individual performance is not necessarily the best strategy.In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging. Recently, it has been recognized that kernel-based classifiers are well suited for this task. However, the different kernels (data sources) are often combined using equal weights. Although several methods have been developed to optimize kernel weights, no large-scale example of an improvement in classifier performance has been shown yet. In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve. We show that setting the right kernel weights can indeed improve performance. We compare this to the existing kernel weight optimization methods (i.e., (regularized) optimization of the SVM criterion or aligning the kernel with an ideal kernel) and find that these do not result in a significant performance improvement and can even cause a decrease in performance. Results also show that an expert approach of assigning high weights to features with high individual performance is not necessarily the best strategy.
In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging. Recently, it has been recognized that kernel-based classifiers are well suited for this task. However, the different kernels (data sources) are often combined using equal weights. Although several methods have been developed to optimize kernel weights, no large-scale example of an improvement in classifier performance has been shown yet. In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve. We show that setting the right kernel weights can indeed improve performance. We compare this to the existing kernel weight optimization methods (i.e., (regularized) optimization of the SVM criterion or aligning the kernel with an ideal kernel) and find that these do not result in a significant performance improvement and can even cause a decrease in performance. Results also show that an expert approach of assigning high weights to features with high individual performance is not necessarily the best strategy.
In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve.
Author de Ridder, D.
Hulsman, M.
Reinders, M.J.T.
Author_xml – sequence: 1
  givenname: M.
  surname: Hulsman
  fullname: Hulsman, M.
  organization: Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft, Netherlands
– sequence: 2
  givenname: M.J.T.
  surname: Reinders
  fullname: Reinders, M.J.T.
  organization: Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft, Netherlands
– sequence: 3
  givenname: D.
  surname: de Ridder
  fullname: de Ridder, D.
  organization: Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19644171$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktv1DAQAGALFdEHHDkhoYhDe8ri9-NIV6WtqFQORVyQLCeZUFdJnNpJBf31ON3SQyXYk23NNyPbM_toZwgDIPSW4BUh2Hy8Wh8fryjGekWYeoH2iBCqNEbynWXPRSmMZLtoP6UbjCk3mL9CuyTHOVFkD_04uQvdPPkwuPi7uBwn3_t7t5yL0BZfIA7QFd_B_7yeUnHejzHcQSq-xjCBH4p16McOfi0r9BXEdO3HHITG10uJ1-hl67oEbx7XA_Tt88nV-qy8uDw9X3-6KGsu2VQaLmSrdINbB4Ax8Epz0UgsKl1x4ySTqq5ZzUC0QvC2hboS0uFGEVE53TB2gI42dfP1bmdIk-19qqHr3ABhTlZLI7RWUmd5-F8pleCUK7kVMq4oNYRshZRQTolm2yFWShhsMvzwDN6EOQ75A_NDiBJU8gW9f0Rz1UNjx-j73EH7t7MZsA2oY0gpQmtrPz00dorOd5Zgu8yPXebHLvNj8_zkrPJZ1lPhf_h3G-8B4MlyxQjN0T-hDc59
CODEN ITCBCY
CitedBy_id crossref_primary_10_1093_bib_bbt020
crossref_primary_10_1002_widm_1125
crossref_primary_10_1007_s00500_013_1080_0
Cites_doi 10.1145/1102351.1102399
10.1017/CBO9780511809682
10.1186/1471-2105-5-38
10.1023/A:1012450327387
10.1038/ng569
10.1073/pnas.242624799
10.1093/bioinformatics/bth294
10.1038/415180a
10.1109/CEC.2005.1554902
10.1126/science.1087361
10.1016/S0092-8674(00)00015-5
10.1093/nar/30.1.303
10.1073/pnas.0406614101
10.7551/mitpress/4057.001.0001
10.1089/10665270252935539
10.1145/1068009.1068160
10.1038/nature02800
10.1162/106365603321828970
10.1038/nature750
10.1186/1471-2105-4-2
10.1093/bioinformatics/btm187
10.1002/prot.20865
10.1093/bioinformatics/bti1016
10.1038/nbt1002-991
10.1371/journal.pcbi.1000173
10.7551/mitpress/1120.003.0052
10.1074/jbc.M410573200
10.1186/1471-2105-7-S1-S2
10.1038/415141a
10.1093/nar/28.1.37
10.1101/gr.1774904
10.1093/bioinformatics/bth483
10.1101/gr.3610305
10.1023/A:1022627411411
10.1093/bioinformatics/btl475
10.1016/j.mib.2004.08.012
10.1145/1015330.1015424
10.1162/089976604774201640
10.1142/S0219720007002953
10.1016/S1097-2765(04)00003-6
10.1093/nar/gkg078
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2008.137
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE
Engineering Research Database

Materials Research Database
Engineering Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 437
ExternalDocumentID 2318964241
19644171
10_1109_TCBB_2008_137
4731237
Genre orig-research
Journal Article
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c463t-9456f78d0faee00e4b845d605b8b49a6367cc3c3e5f554ffecb56a0d715ba8d33
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268356300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Tue Oct 07 09:11:41 EDT 2025
Sun Sep 28 01:46:21 EDT 2025
Thu Oct 02 10:53:07 EDT 2025
Tue Oct 07 10:08:52 EDT 2025
Mon Oct 06 18:04:49 EDT 2025
Sun Nov 09 06:45:08 EST 2025
Mon Jul 21 05:54:36 EDT 2025
Tue Nov 18 21:27:19 EST 2025
Sat Nov 29 08:09:14 EST 2025
Tue Aug 26 16:38:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-9456f78d0faee00e4b845d605b8b49a6367cc3c3e5f554ffecb56a0d715ba8d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 19644171
PQID 861752649
PQPubID 23462
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TCBB_2008_137
crossref_primary_10_1109_TCBB_2008_137
proquest_miscellaneous_21242183
pubmed_primary_19644171
proquest_miscellaneous_67542476
proquest_miscellaneous_20775909
proquest_miscellaneous_34722911
proquest_journals_861752649
ieee_primary_4731237
proquest_miscellaneous_869588768
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Bousquet (ref19) 2003; 15
ref11
ref10
ref16
Duin (ref44) 2009
ref18
Chang (ref43) 2008
ref46
ref48
ref47
ref42
ref41
Friedrichs (ref25)
Lanckriet (ref15)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Sonnenburg (ref17) 2006; 7
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Hsu (ref45) 2003
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
Bach (ref30) 2004; 5
References_xml – ident: ref49
  doi: 10.1145/1102351.1102399
– ident: ref2
  doi: 10.1017/CBO9780511809682
– ident: ref12
  doi: 10.1186/1471-2105-5-38
– start-page: 323
  volume-title: Proc. 19th Int’l Conf. Machine Learning (ICML ’02)
  ident: ref15
  article-title: Learning the Kernel Matrix with Semidefinite Programming
– ident: ref18
  doi: 10.1023/A:1012450327387
– ident: ref37
  doi: 10.1038/ng569
– year: 2003
  ident: ref45
  article-title: A Practical Guide to Support Vector Classification
– ident: ref36
  doi: 10.1073/pnas.242624799
– ident: ref16
  doi: 10.1093/bioinformatics/bth294
– ident: ref5
  doi: 10.1038/415180a
– ident: ref28
  doi: 10.1109/CEC.2005.1554902
– ident: ref11
  doi: 10.1126/science.1087361
– ident: ref34
  doi: 10.1016/S0092-8674(00)00015-5
– ident: ref40
  doi: 10.1093/nar/30.1.303
– ident: ref47
  doi: 10.1073/pnas.0406614101
– ident: ref1
  doi: 10.7551/mitpress/4057.001.0001
– volume: 7
  start-page: 1531
  year: 2006
  ident: ref17
  article-title: Large Scale Multiple Kernel Learning
  publication-title: J. Machine Learning Research
– ident: ref21
  doi: 10.1089/10665270252935539
– ident: ref24
  doi: 10.1145/1068009.1068160
– ident: ref38
  doi: 10.1038/nature02800
– ident: ref27
  doi: 10.1162/106365603321828970
– ident: ref8
  doi: 10.1038/nature750
– year: 2008
  ident: ref43
  article-title: LIBSVM: A Library for Support Vector Machine
– ident: ref10
  doi: 10.1186/1471-2105-4-2
– ident: ref26
  doi: 10.1093/bioinformatics/btm187
– ident: ref14
  doi: 10.1002/prot.20865
– ident: ref22
  doi: 10.1093/bioinformatics/bti1016
– ident: ref7
  doi: 10.1038/nbt1002-991
– volume: 15
  start-page: 415
  volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: ref19
  article-title: On the Complexity of Learning the Kernel Matrix
– ident: ref3
  doi: 10.1371/journal.pcbi.1000173
– ident: ref20
  doi: 10.7551/mitpress/1120.003.0052
– ident: ref35
  doi: 10.1074/jbc.M410573200
– ident: ref32
  doi: 10.1186/1471-2105-7-S1-S2
– year: 2009
  ident: ref44
  article-title: PRTools, A Matlab Toolbox for Pattern Recognition
– ident: ref6
  doi: 10.1038/415141a
– ident: ref31
  doi: 10.1093/nar/28.1.37
– ident: ref42
  doi: 10.1101/gr.1774904
– ident: ref23
  doi: 10.1093/bioinformatics/bth483
– ident: ref41
  doi: 10.1101/gr.3610305
– ident: ref4
  doi: 10.1023/A:1022627411411
– ident: ref46
  doi: 10.1093/bioinformatics/btl475
– ident: ref9
  doi: 10.1016/j.mib.2004.08.012
– ident: ref29
  doi: 10.1145/1015330.1015424
– ident: ref48
  doi: 10.1162/089976604774201640
– start-page: 519
  volume-title: Proc. European Symp. Artificial Neural Networks (ESANN)
  ident: ref25
  article-title: Evolutionary Tuning of Multiple SVM Parameters
– ident: ref13
  doi: 10.1142/S0219720007002953
– ident: ref39
  doi: 10.1016/S1097-2765(04)00003-6
– ident: ref33
  doi: 10.1093/nar/gkg078
– volume: 5
  start-page: 1391
  year: 2004
  ident: ref30
  article-title: Computing Regularization Paths for Learning Multiple Kernels
  publication-title: J. Machine Learning Research
SSID ssj0024904
Score 1.8682715
Snippet In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression,...
In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427
SubjectTerms Algorithms
Artificial Intelligence
Bioinformatics
biology and genetics
Biology computing
Classifier design and evaluation
Evolution, Molecular
Evolutionary computation
evolutionary computing and genetic algorithms
Kernel
Large-scale systems
Linear Models
Models, Genetic
Multiprotein Complexes - chemistry
Nonlinear Dynamics
Optimization methods
Protein engineering
Reproducibility of Results
ROC Curve
Sequences
Studies
Support vector machine classification
Support vector machines
Title Evolutionary Optimization of Kernel Weights Improves Protein Complex Comembership Prediction
URI https://ieeexplore.ieee.org/document/4731237
https://www.ncbi.nlm.nih.gov/pubmed/19644171
https://www.proquest.com/docview/861752649
https://www.proquest.com/docview/20775909
https://www.proquest.com/docview/21242183
https://www.proquest.com/docview/34722911
https://www.proquest.com/docview/67542476
https://www.proquest.com/docview/869588768
Volume 6
WOSCitedRecordID wos000268356300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9UWuiLtbUfqdXuQ-mTqUn3-7GKUihYHyy9h0JINhMQzly53In-953ZxDsKjeBTAhmWzXzt7M7s_AA--krpPLg6pVgIaYOiMPWqKtM6a5z1XwJa30SwCXt-7iYTf7EBh6u7MIgYi8_wM7_GXH49C0s-KjtSVpKjtZuwaa3p72qt--r5CBXIEUGqSavW_TSPLk-Oj_uqyVxG0D3PQYDN_1mKIrbKeJgZl5uz54-b6A5sD2Gl-NrrwQvYwPYlPO2BJu924ffpzaBi5fxO_CA3cT3cvxSzRnzHeYtT8SueknaiP2fATlxwD4erVrDPmOItP5HxQ7jAiz5yioeHeAU_z04vT76lA65CGpSRCxKGNo11JI4SMctQVU7pmvY1lauUL400NgQZJOqGgg0uK6m0KbPa5roqXS3la9hqZy2-BZFJK3VJimCci2DlTai9s2WDkkKZyiRweM_iIgxNxxn7YlrEzUfmCxZOj4VJwkng04r8T99tY4xwl7m-IhoYnsDevfyKwRa7wlGQRlNTPoEPq69kRJwZKVucLTsa1lrts4cocs6dOzlOIbntJi0d4xSG0YaVJaaIEQpnvCavb1wCb3rtW7NhUNp3___zPXjW57m4kPg9bC3mS9yHJ-FmcdXND8hgJu4gGsxf7oYSwA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAoILr_IIBeoD4tS0Sf0-0qpVUcvSwyJ6QIoSZyJVWrJos1vRf8-Mk-4KiUXilEgZWc7M2P7sGc8H8N5XSufB1SlhIaQNisLUq6pM66xx1h8EtL6JZBN2NHKXl_5iA3aXd2EQMSaf4R6_xlh-PQ0LPirbV1bSRGvvwF2t1EHW39ZaVdbzkSyQMUGqya9WFTX3x0eHh33eZC4j7Z5nGGDzPxajyK6yHmjGBefk8f919Qk8GoCl-Nh7wlPYwPYZ3O-pJm-24Pvx9eBk5exGfKGJ4sdwA1NMG3GGsxYn4ls8J-1Ef9KAnbjgKg5XreBZY4K_-InMIMIpXvSRgzzcxHP4enI8PjpNB2aFNCgj52QObRrryCAlYpahqpzSNe1sKlcpXxppbAgySNQNwQ1OLKm0KbPa5roqXS3lC9hspy2-ApFJK3VJrmCci3TlTai9s2WDksBMZRLYvVVxEYay48x-MSni9iPzBRunZ8Mk4yTwYSn-s6-3sU5wi7W-FBoUnsD2rf2KYTR2hSOYRl1TPoGd5VcaRhwbKVucLjpq1lrts39J5Bw9d3K9hOTCm7R4rJcwzDesLClFrJFwxmua941L4GXvfSs1DE77-u9_vgMPTsefz4vzT6OzbXjYR704rfgNbM5nC3wL98L1_KqbvYvD5jfZEhUf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+optimization+of+kernel+weights+improves+protein+complex+comembership+prediction&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Hulsman%2C+Marc&rft.au=Reinders%2C+Marcel+J+T&rft.au=de+Ridder%2C+Dick&rft.date=2009-07-01&rft.issn=1557-9964&rft.eissn=1557-9964&rft.volume=6&rft.issue=3&rft.spage=427&rft_id=info:doi/10.1109%2FTCBB.2008.137&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon