An active contour computer algorithm for the classification of cucumbers
The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification co...
Gespeichert in:
| Veröffentlicht in: | Computers and electronics in agriculture Jg. 92; S. 75 - 81 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.03.2013
Elsevier |
| Schlagworte: | |
| ISSN: | 0168-1699, 1872-7107 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification could not been be achieved with an automatic system due to the difficulty associated with correctly calculating the axis of a cucumber. This article describes a computer algorithm that uses active contours or “snakes” to classify cucumbers by length and curvature. This algorithm demonstrates an advantage in the determination of the central line of each cucumber, based on an iterative process that is quick and carries out the classification process efficiently. The method was validated against human classification for 360cucumbers and was also compared with an ellipsoid approximation method. The active contour method reduced the classification error by 15% points, compared with the ellipsoid approximation method, to 1%, with no serious errors (i.e., misclassification of Class Extra and I into Class II or vice versa). Meanwhile, the ellipsoid approximation method led to a 16% error rate, of which 2% were serious errors (an error of two classes). The developed approach is applicable to fresh cucumber commercial classification lines to meet the requirements of the European regulations for cucumber classification. |
|---|---|
| AbstractList | ► Cucumber is one of the most important crops worldwide, and is consumed raw. ► The European classification demands that both length and curvature are taken into account. ► A method has been developed that classifies according to curvature and length, based on active contours. ► The method gives classification errors of 1% with no serious errors. ► It is applicable to commercial classification lines of fresh cucumbers.
The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification could not been be achieved with an automatic system due to the difficulty associated with correctly calculating the axis of a cucumber. This article describes a computer algorithm that uses active contours or “snakes” to classify cucumbers by length and curvature. This algorithm demonstrates an advantage in the determination of the central line of each cucumber, based on an iterative process that is quick and carries out the classification process efficiently. The method was validated against human classification for 360cucumbers and was also compared with an ellipsoid approximation method. The active contour method reduced the classification error by 15% points, compared with the ellipsoid approximation method, to 1%, with no serious errors (i.e., misclassification of Class Extra and I into Class II or vice versa). Meanwhile, the ellipsoid approximation method led to a 16% error rate, of which 2% were serious errors (an error of two classes). The developed approach is applicable to fresh cucumber commercial classification lines to meet the requirements of the European regulations for cucumber classification. The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification could not been be achieved with an automatic system due to the difficulty associated with correctly calculating the axis of a cucumber. This article describes a computer algorithm that uses active contours or “snakes” to classify cucumbers by length and curvature. This algorithm demonstrates an advantage in the determination of the central line of each cucumber, based on an iterative process that is quick and carries out the classification process efficiently. The method was validated against human classification for 360cucumbers and was also compared with an ellipsoid approximation method. The active contour method reduced the classification error by 15% points, compared with the ellipsoid approximation method, to 1%, with no serious errors (i.e., misclassification of Class Extra and I into Class II or vice versa). Meanwhile, the ellipsoid approximation method led to a 16% error rate, of which 2% were serious errors (an error of two classes). The developed approach is applicable to fresh cucumber commercial classification lines to meet the requirements of the European regulations for cucumber classification. |
| Author | Novas, Nuria Manzano-Agugliaro, Francisco Gazquez, José-Antonio Clement, Javier |
| Author_xml | – sequence: 1 fullname: Clement, Javier – sequence: 2 fullname: Novas, Nuria – sequence: 3 fullname: Gazquez, José-Antonio – sequence: 4 fullname: Manzano-Agugliaro, Francisco |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27125254$$DView record in Pascal Francis |
| BookMark | eNqFkE1rFTEUhoNU8Lb6DwRnI7iZMd-ZuBBKUVsouNCuQyZzcpvLzOSaZAr-e3Oduumirg45PO_LyXOOzpa4AEJvCe4IJvLjoXNxPtp9RzFhHSYdxvIF2pFe0VYRrM7QrmJ9S6TWr9B5zgdc37pXO3R9uTTWlfAAjYtLiWtqTl1rgdTYaR9TKPdz42Nqyn1FJptz8MHZEuLSRN-41a3zACm_Ri-9nTK8eZwX6O7rl59X1-3t9283V5e3reOSlVZjqV0_Sm17ORI5DN4NDDPgSgg9UA1EjIMeh54rz-XAgPaVUUwJLn1dsQv0Yes9pvhrhVzMHLKDabILxDUbIgjnmAguKvr-EbXZ2cknu7iQzTGF2abfhipCBRWnyk8b51LMOYE3LpS_PyzJhskQbE6azcFsms1Js8HEVM01zJ-E__X_J_Zui3kbjd2netfdjwpwjDEnQj5PUMaoqsTnjYDq-yFAMtkFWByMIYErZozh-SP-AG3PrU0 |
| CODEN | CEAGE6 |
| CitedBy_id | crossref_primary_10_1080_15538362_2018_1552230 crossref_primary_10_2478_johr_2018_0006 crossref_primary_10_1016_j_compag_2014_11_018 crossref_primary_10_1016_j_postharvbio_2018_01_013 crossref_primary_10_1016_j_engappai_2024_109611 crossref_primary_10_1007_s11947_018_2163_9 crossref_primary_10_1016_j_biosystemseng_2019_03_009 crossref_primary_10_1016_j_postharvbio_2020_111184 crossref_primary_10_1007_s00217_022_04016_9 crossref_primary_10_1109_ACCESS_2018_2851376 crossref_primary_10_34133_plantphenomics_0193 crossref_primary_10_1016_j_tele_2017_10_010 crossref_primary_10_1016_j_daach_2024_e00341 crossref_primary_10_1038_s41598_023_34375_6 crossref_primary_10_1007_s10681_017_1926_0 crossref_primary_10_1016_j_compag_2021_106011 crossref_primary_10_1016_j_jclepro_2015_10_096 crossref_primary_10_1016_j_jclepro_2016_07_036 crossref_primary_10_4028_www_scientific_net_KEM_621_519 crossref_primary_10_3390_su13095319 crossref_primary_10_1016_j_ifacol_2018_08_110 crossref_primary_10_15446_dyna_v81n184_37034 crossref_primary_10_1093_hr_uhae340 crossref_primary_10_3390_agronomy9120885 crossref_primary_10_1007_s11694_018_9970_6 crossref_primary_10_1016_j_compag_2016_08_001 crossref_primary_10_1016_j_fufo_2025_100611 crossref_primary_10_3390_pr11061720 crossref_primary_10_3390_agriengineering7070204 |
| Cites_doi | 10.1016/j.compag.2006.04.001 10.1016/j.compag.2010.07.008 10.1016/j.ygeno.2011.12.008 10.1016/j.agwat.2007.02.001 10.1016/0021-8634(92)80078-7 10.1016/0031-3203(81)90009-1 10.1016/j.patrec.2012.01.018 10.1016/j.agwat.2004.10.013 10.1016/j.rser.2010.11.012 10.1016/j.jfoodeng.2009.09.005 10.1007/978-3-642-32717-9_9 10.1016/0168-1699(95)00038-0 10.1007/978-3-642-03798-6_5 10.1007/s11694-008-9057-x 10.1016/j.postharvbio.2006.09.002 10.1006/jaer.1998.0285 10.5424/sjar/2012102-368-11 10.4028/www.scientific.net/KEM.321-323.1205 10.1007/s11694-011-9108-6 10.1007/s11694-008-9058-9 10.1007/BF00133570 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.compag.2013.01.006 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| EndPage | 81 |
| ExternalDocumentID | 27125254 10_1016_j_compag_2013_01_006 US201400041566 US201400023327 S0168169913000215 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU 9DU AAYWO AAYXX ACIEU ACLOT ACMHX ACVFH ADCNI ADSLC AEUPX AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD AGCQF AGRNS IQODW 7S9 L.6 |
| ID | FETCH-LOGICAL-c463t-9069c8d69a86d16bbfcb303e47559b29e15db9db847f46b3e28bbf737546f7f43 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316592000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1699 |
| IngestDate | Mon Sep 29 05:37:56 EDT 2025 Mon Jul 21 09:16:51 EDT 2025 Sat Nov 29 03:16:14 EST 2025 Tue Nov 18 22:11:16 EST 2025 Thu Apr 03 09:45:06 EDT 2025 Wed Dec 27 19:16:42 EST 2023 Fri Feb 23 02:29:55 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Shape Grading Length Cucumber Curvature Artificial vision Cucurbitaceae Cucumis sativus Algorithm Vegetable crop Dicotyledones Angiospermae Classification Spermatophyta Active contour |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c463t-9069c8d69a86d16bbfcb303e47559b29e15db9db847f46b3e28bbf737546f7f43 |
| Notes | http://dx.doi.org/10.1016/j.compag.2013.01.006 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1016/j.compag.2013.01.006. |
| PQID | 1514401545 |
| PQPubID | 24069 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1514401545 pascalfrancis_primary_27125254 crossref_citationtrail_10_1016_j_compag_2013_01_006 crossref_primary_10_1016_j_compag_2013_01_006 fao_agris_US201400041566 fao_agris_US201400023327 elsevier_sciencedirect_doi_10_1016_j_compag_2013_01_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Ballard (b0035) 1981; 13 Ariana, Lu, Guyer (b0030) 2006; 53 Lu, Ariana, Cen (b0090) 2011; 5 Rocha, L., Velho, L., Carvalho, P.C.P., 2004. Manzano-Agugliaro, Cañero-Leon (b0095) 2010; 5 Schmidt, T., Keuper, M., Pasternak, T., Palme, K., Ronneberger, O. 2012. Modeling of sparsely sampled tubular surfaces using coupled curves. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7476 LNCS, pp. 83-92 Kang, S., Lee, K., Lee, H.Y., 2006. Non destructive cucumber quality evaluation system using machine vision. Key Engineering Materials 321–323 II, 1205–1208. Kovacs, Sziranyi (b0085) 2012; 33 Callejón-Ferre, Velázquez-Martí, López-Martínez, Manzano-Agugliaro (b0040) 2011; 15 Ariana, Lu (b0020) 2010; 74 Wang, Q., Ronneberger, O., Schulze, E., Baumeister, R., Burkhardt, H. 2009. Using lateral coupled snakes for modeling the contours of worms. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5748 LNCS, pp. 542–551 FAO, 2012a. Faostat. Cucumber (accessed 18.05.12). FAO, 2012b. Technical Sheet Cucumber (18.05.12). Kass, Witkin, Terzopoulos (b0075) 1988; 1 Ariana, Lu (b0010) 2008; 2 Clement, Novas, Gaquez, Manzano-Agugliaro (b0045) 2012; 10 UE, 1998. Commission regulation (EEC) Regulation 1677/88 of june 1988 Laying Down Quality Standards for Cucumbers. Official Journal of the European Communities L 150, pp. 21–25. In: Proceeding 17th Brazilian Symposium on Computer Graphics and Image Processing, 354-361. Ariana, Lu (b0015) 2010; 96 Howarth, Brandon, Searcy, Kehtarnavaz (b0065) 1992; 53C Pencue, León-Téllez (b0105) 2003; 35 Opencv, 2012. Libraries Opencv (accessed 18.05.12). Kavdir, Lu, Ariana, Ngouajio (b0080) 2007; 44 Yang, Q., Marchant, J.A. 1996. Accurate blemish detection with active contour models. Computers and Electronics in Agriculture 14 (1) 77–89 Agugliaro (b0005) 2007; 32 . Van Eck, Van Der Heijden, Polder (b0140) 1998; 70 Ariana, Lu (b0025) 2008; 2 Qi, Xu, Lin, Zhang, Chen (b0110) 2012; 99 QT, 2012. Libreries QT (accessed 18.05.12). Fernández, González, Carreño, Pérez, Bonachela (b0060) 2007; 89 Simsek, Tonkaz, Kacira, Comlekcioglu, Dogan (b0130) 2005; 73 Qi (10.1016/j.compag.2013.01.006_b0110) 2012; 99 Van Eck (10.1016/j.compag.2013.01.006_b0140) 1998; 70 Pencue (10.1016/j.compag.2013.01.006_b0105) 2003; 35 Lu (10.1016/j.compag.2013.01.006_b0090) 2011; 5 Fernández (10.1016/j.compag.2013.01.006_b0060) 2007; 89 Kass (10.1016/j.compag.2013.01.006_b0075) 1988; 1 Simsek (10.1016/j.compag.2013.01.006_b0130) 2005; 73 Ballard (10.1016/j.compag.2013.01.006_b0035) 1981; 13 10.1016/j.compag.2013.01.006_b0135 10.1016/j.compag.2013.01.006_b0055 10.1016/j.compag.2013.01.006_b0115 Ariana (10.1016/j.compag.2013.01.006_b0025) 2008; 2 Agugliaro (10.1016/j.compag.2013.01.006_b0005) 2007; 32 Clement (10.1016/j.compag.2013.01.006_b0045) 2012; 10 10.1016/j.compag.2013.01.006_b0070 10.1016/j.compag.2013.01.006_b0150 Ariana (10.1016/j.compag.2013.01.006_b0020) 2010; 74 10.1016/j.compag.2013.01.006_b0050 Ariana (10.1016/j.compag.2013.01.006_b0010) 2008; 2 Ariana (10.1016/j.compag.2013.01.006_b0030) 2006; 53 Kovacs (10.1016/j.compag.2013.01.006_b0085) 2012; 33 Howarth (10.1016/j.compag.2013.01.006_b0065) 1992; 53C Callejón-Ferre (10.1016/j.compag.2013.01.006_b0040) 2011; 15 10.1016/j.compag.2013.01.006_b0125 Ariana (10.1016/j.compag.2013.01.006_b0015) 2010; 96 10.1016/j.compag.2013.01.006_b0120 10.1016/j.compag.2013.01.006_b0100 Kavdir (10.1016/j.compag.2013.01.006_b0080) 2007; 44 Manzano-Agugliaro (10.1016/j.compag.2013.01.006_b0095) 2010; 5 10.1016/j.compag.2013.01.006_b0145 |
| References_xml | – volume: 74 start-page: 137 year: 2010 end-page: 144 ident: b0020 article-title: Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles publication-title: Comput. Electron. Agric. – reference: FAO, 2012b. Technical Sheet Cucumber (18.05.12). < – volume: 73 start-page: 173 year: 2005 end-page: 191 ident: b0130 article-title: The effects of different irrigation regimes on cucumber ( publication-title: Agric. Water Manage. – volume: 44 start-page: 165 year: 2007 end-page: 174 ident: b0080 article-title: Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers publication-title: Postharvest Biol. Technol. – reference: Wang, Q., Ronneberger, O., Schulze, E., Baumeister, R., Burkhardt, H. 2009. Using lateral coupled snakes for modeling the contours of worms. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5748 LNCS, pp. 542–551, – volume: 89 start-page: 251 year: 2007 end-page: 260 ident: b0060 article-title: Analysis of on-farm irrigation performance in Mediterranean greenhouses publication-title: Agric. Water Manage. – reference: QT, 2012. Libreries QT (accessed 18.05.12). < – reference: . In: Proceeding 17th Brazilian Symposium on Computer Graphics and Image Processing, 354-361. < – volume: 13 start-page: 111 year: 1981 end-page: 122 ident: b0035 article-title: Generalizing the Hough transform to detect arbitrary shapes publication-title: Pattern Recogn. – volume: 99 start-page: 160 year: 2012 end-page: 168 ident: b0110 article-title: Identification of differentially expressed genes in cucumber ( publication-title: Genomics – volume: 35 start-page: 148 year: 2003 end-page: 151 ident: b0105 article-title: Detección y clasificación de defectos en frutas mediante el procesamiento digital de imágenes publication-title: Revista Colombiana de Física – volume: 32 start-page: 131 year: 2007 end-page: 136 ident: b0005 article-title: The gasification of vegetable residues of greenhouses for making electrical energy in the south of Spain: his ubication study by GIS publication-title: Interciencia – reference: Rocha, L., Velho, L., Carvalho, P.C.P., 2004. – reference: UE, 1998. Commission regulation (EEC) Regulation 1677/88 of june 1988 Laying Down Quality Standards for Cucumbers. Official Journal of the European Communities L 150, pp. 21–25. – volume: 5 start-page: 3009 year: 2010 end-page: 3016 ident: b0095 article-title: Economics and environmental analysis of Mediterranean greenhouse crops publication-title: African J. Agric. Res. – volume: 33 start-page: 1180 year: 2012 end-page: 1187 ident: b0085 article-title: Harris function based active contour external force for image segmentation publication-title: Pattern Recogn. Lett. – reference: Opencv, 2012. Libraries Opencv (accessed 18.05.12). < – reference: >. – reference: . – volume: 53 start-page: 60 year: 2006 end-page: 70 ident: b0030 article-title: Near-infrared hyperspectral. Reflectance imaging for detection of bruises on pickling cucumbers publication-title: Comput. Electron. Agric. – volume: 96 start-page: 583 year: 2010 end-page: 590 ident: b0015 article-title: Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging publication-title: J. Food Eng. – volume: 70 start-page: 335 year: 1998 end-page: 343 ident: b0140 article-title: Accurate measurement of size and shape of cucumber fruits with image analysis publication-title: J. Agric. Eng. Res. – volume: 2 start-page: 152 year: 2008 end-page: 160 ident: b0025 article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging – Part II. Performance of a prototype publication-title: Sens. Instrum. Food Quality Safety – volume: 2 start-page: 144 year: 2008 end-page: 151 ident: b0010 article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part I. Development of a prototype publication-title: Sens. Instrum. Food Quality Safety – volume: 1 start-page: 321 year: 1988 end-page: 331 ident: b0075 article-title: Snakes: active contour models publication-title: Int. J. Comput. Vision – reference: Schmidt, T., Keuper, M., Pasternak, T., Palme, K., Ronneberger, O. 2012. Modeling of sparsely sampled tubular surfaces using coupled curves. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7476 LNCS, pp. 83-92, – reference: Yang, Q., Marchant, J.A. 1996. Accurate blemish detection with active contour models. Computers and Electronics in Agriculture 14 (1) 77–89, < – volume: 53C start-page: 123 year: 1992 end-page: 139 ident: b0065 article-title: Estimation of tip shape for carrot classification by machine vision publication-title: J. Agric. Eng. Res. – reference: Kang, S., Lee, K., Lee, H.Y., 2006. Non destructive cucumber quality evaluation system using machine vision. Key Engineering Materials 321–323 II, 1205–1208. < – volume: 5 start-page: 51 year: 2011 end-page: 56 ident: b0090 article-title: Optical absorption and scattering properties of normal and defective pickling cucumbers for 700–1000 publication-title: Sens. Instrum. Food Quality Safety – volume: 10 start-page: 314 year: 2012 end-page: 325 ident: b0045 article-title: High speed intelligent classifier of tomatoes by colour, size and weight publication-title: Spanish Journal of Agricultural Research – volume: 15 start-page: 948 year: 2011 end-page: 955 ident: b0040 article-title: Greenhouse crop residues: energy potential and models for the prediction of their higher heating value publication-title: Renew. Sust. Energy Rev. – reference: FAO, 2012a. Faostat. Cucumber (accessed 18.05.12). < – volume: 53 start-page: 60 issue: 1 year: 2006 ident: 10.1016/j.compag.2013.01.006_b0030 article-title: Near-infrared hyperspectral. Reflectance imaging for detection of bruises on pickling cucumbers publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2006.04.001 – volume: 74 start-page: 137 issue: 1 year: 2010 ident: 10.1016/j.compag.2013.01.006_b0020 article-title: Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.07.008 – ident: 10.1016/j.compag.2013.01.006_b0100 – volume: 99 start-page: 160 issue: 3 year: 2012 ident: 10.1016/j.compag.2013.01.006_b0110 article-title: Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile publication-title: Genomics doi: 10.1016/j.ygeno.2011.12.008 – volume: 89 start-page: 251 issue: 3 year: 2007 ident: 10.1016/j.compag.2013.01.006_b0060 article-title: Analysis of on-farm irrigation performance in Mediterranean greenhouses publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2007.02.001 – ident: 10.1016/j.compag.2013.01.006_b0135 – volume: 53C start-page: 123 year: 1992 ident: 10.1016/j.compag.2013.01.006_b0065 article-title: Estimation of tip shape for carrot classification by machine vision publication-title: J. Agric. Eng. Res. doi: 10.1016/0021-8634(92)80078-7 – volume: 13 start-page: 111 issue: 2 year: 1981 ident: 10.1016/j.compag.2013.01.006_b0035 article-title: Generalizing the Hough transform to detect arbitrary shapes publication-title: Pattern Recogn. doi: 10.1016/0031-3203(81)90009-1 – volume: 33 start-page: 1180 issue: 9 year: 2012 ident: 10.1016/j.compag.2013.01.006_b0085 article-title: Harris function based active contour external force for image segmentation publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2012.01.018 – volume: 5 start-page: 3009 issue: 22 year: 2010 ident: 10.1016/j.compag.2013.01.006_b0095 article-title: Economics and environmental analysis of Mediterranean greenhouse crops publication-title: African J. Agric. Res. – volume: 73 start-page: 173 issue: 3 year: 2005 ident: 10.1016/j.compag.2013.01.006_b0130 article-title: The effects of different irrigation regimes on cucumber (Cucumis sativus L.) yield and yield characteristics under open field conditions publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2004.10.013 – volume: 15 start-page: 948 issue: 2 year: 2011 ident: 10.1016/j.compag.2013.01.006_b0040 article-title: Greenhouse crop residues: energy potential and models for the prediction of their higher heating value publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2010.11.012 – volume: 96 start-page: 583 issue: 4 year: 2010 ident: 10.1016/j.compag.2013.01.006_b0015 article-title: Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2009.09.005 – ident: 10.1016/j.compag.2013.01.006_b0120 – ident: 10.1016/j.compag.2013.01.006_b0125 doi: 10.1007/978-3-642-32717-9_9 – ident: 10.1016/j.compag.2013.01.006_b0150 doi: 10.1016/0168-1699(95)00038-0 – ident: 10.1016/j.compag.2013.01.006_b0145 doi: 10.1007/978-3-642-03798-6_5 – volume: 2 start-page: 144 issue: 3 year: 2008 ident: 10.1016/j.compag.2013.01.006_b0010 article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part I. Development of a prototype publication-title: Sens. Instrum. Food Quality Safety doi: 10.1007/s11694-008-9057-x – volume: 44 start-page: 165 issue: 2 year: 2007 ident: 10.1016/j.compag.2013.01.006_b0080 article-title: Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2006.09.002 – ident: 10.1016/j.compag.2013.01.006_b0055 – volume: 35 start-page: 148 issue: 1 year: 2003 ident: 10.1016/j.compag.2013.01.006_b0105 article-title: Detección y clasificación de defectos en frutas mediante el procesamiento digital de imágenes publication-title: Revista Colombiana de Física – ident: 10.1016/j.compag.2013.01.006_b0050 – volume: 32 start-page: 131 issue: 2 year: 2007 ident: 10.1016/j.compag.2013.01.006_b0005 article-title: The gasification of vegetable residues of greenhouses for making electrical energy in the south of Spain: his ubication study by GIS publication-title: Interciencia – volume: 70 start-page: 335 issue: 4 year: 1998 ident: 10.1016/j.compag.2013.01.006_b0140 article-title: Accurate measurement of size and shape of cucumber fruits with image analysis publication-title: J. Agric. Eng. Res. doi: 10.1006/jaer.1998.0285 – volume: 10 start-page: 314 issue: 2 year: 2012 ident: 10.1016/j.compag.2013.01.006_b0045 article-title: High speed intelligent classifier of tomatoes by colour, size and weight publication-title: Spanish Journal of Agricultural Research doi: 10.5424/sjar/2012102-368-11 – ident: 10.1016/j.compag.2013.01.006_b0070 doi: 10.4028/www.scientific.net/KEM.321-323.1205 – volume: 5 start-page: 51 issue: 2 year: 2011 ident: 10.1016/j.compag.2013.01.006_b0090 article-title: Optical absorption and scattering properties of normal and defective pickling cucumbers for 700–1000nm publication-title: Sens. Instrum. Food Quality Safety doi: 10.1007/s11694-011-9108-6 – volume: 2 start-page: 152 issue: 3 year: 2008 ident: 10.1016/j.compag.2013.01.006_b0025 article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging – Part II. Performance of a prototype publication-title: Sens. Instrum. Food Quality Safety doi: 10.1007/s11694-008-9058-9 – ident: 10.1016/j.compag.2013.01.006_b0115 – volume: 1 start-page: 321 issue: 4 year: 1988 ident: 10.1016/j.compag.2013.01.006_b0075 article-title: Snakes: active contour models publication-title: Int. J. Comput. Vision doi: 10.1007/BF00133570 |
| SSID | ssj0016987 |
| Score | 2.2278254 |
| Snippet | ► Cucumber is one of the most important crops worldwide, and is consumed raw. ► The European classification demands that both length and curvature are taken... The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 75 |
| SubjectTerms | Agronomy. Soil science and plant productions algorithms Artificial vision Biological and medical sciences crops Cucumber cucumbers Curvature Fundamental and applied biological sciences. Psychology Grading humans Length Shape |
| Title | An active contour computer algorithm for the classification of cucumbers |
| URI | https://dx.doi.org/10.1016/j.compag.2013.01.006 https://www.proquest.com/docview/1514401545 |
| Volume | 92 |
| WOSCitedRecordID | wos000316592000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpuoftYexKs0vxYOyluPiiSNajKSndCN1gCeRNyIqcpWR2lhslv2I_eUc3p6UZ7R724gRFdozOJ-no6NP5EPqIFRkXpdIZLqE3YZiAQlEmJGQwVcSKlVIqk8S1Ty8vs9GIfWu1fvuzMJsZrars-prN_6upoQyMrY_O_oO5m4dCAXwHo8MVzA7XBxk-r0yCjI2locMdhjaulRtOxGxSL6arHz8bcqHUzrNmCzWeo1xLIxKyvOm2eu0Hm9B5J51jyLRisnAJPBqQnFlSuqXh6pm3iTlr6qtB4Nrymy35R2xhetq6HQm7dx_mWt3YssRsyLzaiqoO8wl4_FNhj-c4WRBZ3wxeaCEJz97y8UwCi1hiNZL8gMySk_kp7YZWy8WNrFZfxc_R8d7R3wYirk4NfX-ieXupycka7Um2ffmVnw_7fT7ojQaf5r9CrUOm9-udKMsBOkxol2VtdJh_7o2-NDtThGX2CL57cX8c03AG7_7x39ydg1LUmocrltAVS9tYd9wB4-MMnqGnbnES5BZUz1FLVS_Qk3xn35foIq8CC6_AwSvw8AoaeAUArwDgFdyGV1CXQQOvV2h43hucXYROjSOUmKSrkEWEyWxMmMjIOCZFUcoC_B-FKSxKi4SpuDsu2LgAd6fEpEhVkkEdqiWWSQlF6WvUrupKHaEAR6zImIhiESksFXzgbhlRImC5R2madVDqG41Ll6peK6bMuOckXnHb1Fw3NY9iDk3dQWFz19ymarmnPvX24M7dtG4kBzzdc-cRmI_r7rXkw--JjlJo5zdN6P6fTJSkg45vmbt5yYTCKiPp4g764O3PYZDXO3eiUvV6ycEtx9isdt48oM5b9HjX196h9mqxVu_RI7lZTZeLYwfoP6-HyLg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+contour+computer+algorithm+for+the+classification+of+cucumbers&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Clement%2C+Javier&rft.au=Novas%2C+Nuria&rft.au=Gazquez%2C+Jos%C3%A9-Antonio&rft.au=Manzano-Agugliaro%2C+Francisco&rft.date=2013-03-01&rft.issn=0168-1699&rft.volume=92+p.75-81&rft.spage=75&rft.epage=81&rft_id=info:doi/10.1016%2Fj.compag.2013.01.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |