An active contour computer algorithm for the classification of cucumbers

The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture Jg. 92; S. 75 - 81
Hauptverfasser: Clement, Javier, Novas, Nuria, Gazquez, José-Antonio, Manzano-Agugliaro, Francisco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.03.2013
Elsevier
Schlagworte:
ISSN:0168-1699, 1872-7107
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification could not been be achieved with an automatic system due to the difficulty associated with correctly calculating the axis of a cucumber. This article describes a computer algorithm that uses active contours or “snakes” to classify cucumbers by length and curvature. This algorithm demonstrates an advantage in the determination of the central line of each cucumber, based on an iterative process that is quick and carries out the classification process efficiently. The method was validated against human classification for 360cucumbers and was also compared with an ellipsoid approximation method. The active contour method reduced the classification error by 15% points, compared with the ellipsoid approximation method, to 1%, with no serious errors (i.e., misclassification of Class Extra and I into Class II or vice versa). Meanwhile, the ellipsoid approximation method led to a 16% error rate, of which 2% were serious errors (an error of two classes). The developed approach is applicable to fresh cucumber commercial classification lines to meet the requirements of the European regulations for cucumber classification.
AbstractList ► Cucumber is one of the most important crops worldwide, and is consumed raw. ► The European classification demands that both length and curvature are taken into account. ► A method has been developed that classifies according to curvature and length, based on active contours. ► The method gives classification errors of 1% with no serious errors. ► It is applicable to commercial classification lines of fresh cucumbers. The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification could not been be achieved with an automatic system due to the difficulty associated with correctly calculating the axis of a cucumber. This article describes a computer algorithm that uses active contours or “snakes” to classify cucumbers by length and curvature. This algorithm demonstrates an advantage in the determination of the central line of each cucumber, based on an iterative process that is quick and carries out the classification process efficiently. The method was validated against human classification for 360cucumbers and was also compared with an ellipsoid approximation method. The active contour method reduced the classification error by 15% points, compared with the ellipsoid approximation method, to 1%, with no serious errors (i.e., misclassification of Class Extra and I into Class II or vice versa). Meanwhile, the ellipsoid approximation method led to a 16% error rate, of which 2% were serious errors (an error of two classes). The developed approach is applicable to fresh cucumber commercial classification lines to meet the requirements of the European regulations for cucumber classification.
The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The European classification system includes a parameter that relates the degree of curvature relative to the length. Until now, this classification could not been be achieved with an automatic system due to the difficulty associated with correctly calculating the axis of a cucumber. This article describes a computer algorithm that uses active contours or “snakes” to classify cucumbers by length and curvature. This algorithm demonstrates an advantage in the determination of the central line of each cucumber, based on an iterative process that is quick and carries out the classification process efficiently. The method was validated against human classification for 360cucumbers and was also compared with an ellipsoid approximation method. The active contour method reduced the classification error by 15% points, compared with the ellipsoid approximation method, to 1%, with no serious errors (i.e., misclassification of Class Extra and I into Class II or vice versa). Meanwhile, the ellipsoid approximation method led to a 16% error rate, of which 2% were serious errors (an error of two classes). The developed approach is applicable to fresh cucumber commercial classification lines to meet the requirements of the European regulations for cucumber classification.
Author Novas, Nuria
Manzano-Agugliaro, Francisco
Gazquez, José-Antonio
Clement, Javier
Author_xml – sequence: 1
  fullname: Clement, Javier
– sequence: 2
  fullname: Novas, Nuria
– sequence: 3
  fullname: Gazquez, José-Antonio
– sequence: 4
  fullname: Manzano-Agugliaro, Francisco
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27125254$$DView record in Pascal Francis
BookMark eNqFkE1rFTEUhoNU8Lb6DwRnI7iZMd-ZuBBKUVsouNCuQyZzcpvLzOSaZAr-e3Oduumirg45PO_LyXOOzpa4AEJvCe4IJvLjoXNxPtp9RzFhHSYdxvIF2pFe0VYRrM7QrmJ9S6TWr9B5zgdc37pXO3R9uTTWlfAAjYtLiWtqTl1rgdTYaR9TKPdz42Nqyn1FJptz8MHZEuLSRN-41a3zACm_Ri-9nTK8eZwX6O7rl59X1-3t9283V5e3reOSlVZjqV0_Sm17ORI5DN4NDDPgSgg9UA1EjIMeh54rz-XAgPaVUUwJLn1dsQv0Yes9pvhrhVzMHLKDabILxDUbIgjnmAguKvr-EbXZ2cknu7iQzTGF2abfhipCBRWnyk8b51LMOYE3LpS_PyzJhskQbE6azcFsms1Js8HEVM01zJ-E__X_J_Zui3kbjd2netfdjwpwjDEnQj5PUMaoqsTnjYDq-yFAMtkFWByMIYErZozh-SP-AG3PrU0
CODEN CEAGE6
CitedBy_id crossref_primary_10_1080_15538362_2018_1552230
crossref_primary_10_2478_johr_2018_0006
crossref_primary_10_1016_j_compag_2014_11_018
crossref_primary_10_1016_j_postharvbio_2018_01_013
crossref_primary_10_1016_j_engappai_2024_109611
crossref_primary_10_1007_s11947_018_2163_9
crossref_primary_10_1016_j_biosystemseng_2019_03_009
crossref_primary_10_1016_j_postharvbio_2020_111184
crossref_primary_10_1007_s00217_022_04016_9
crossref_primary_10_1109_ACCESS_2018_2851376
crossref_primary_10_34133_plantphenomics_0193
crossref_primary_10_1016_j_tele_2017_10_010
crossref_primary_10_1016_j_daach_2024_e00341
crossref_primary_10_1038_s41598_023_34375_6
crossref_primary_10_1007_s10681_017_1926_0
crossref_primary_10_1016_j_compag_2021_106011
crossref_primary_10_1016_j_jclepro_2015_10_096
crossref_primary_10_1016_j_jclepro_2016_07_036
crossref_primary_10_4028_www_scientific_net_KEM_621_519
crossref_primary_10_3390_su13095319
crossref_primary_10_1016_j_ifacol_2018_08_110
crossref_primary_10_15446_dyna_v81n184_37034
crossref_primary_10_1093_hr_uhae340
crossref_primary_10_3390_agronomy9120885
crossref_primary_10_1007_s11694_018_9970_6
crossref_primary_10_1016_j_compag_2016_08_001
crossref_primary_10_1016_j_fufo_2025_100611
crossref_primary_10_3390_pr11061720
crossref_primary_10_3390_agriengineering7070204
Cites_doi 10.1016/j.compag.2006.04.001
10.1016/j.compag.2010.07.008
10.1016/j.ygeno.2011.12.008
10.1016/j.agwat.2007.02.001
10.1016/0021-8634(92)80078-7
10.1016/0031-3203(81)90009-1
10.1016/j.patrec.2012.01.018
10.1016/j.agwat.2004.10.013
10.1016/j.rser.2010.11.012
10.1016/j.jfoodeng.2009.09.005
10.1007/978-3-642-32717-9_9
10.1016/0168-1699(95)00038-0
10.1007/978-3-642-03798-6_5
10.1007/s11694-008-9057-x
10.1016/j.postharvbio.2006.09.002
10.1006/jaer.1998.0285
10.5424/sjar/2012102-368-11
10.4028/www.scientific.net/KEM.321-323.1205
10.1007/s11694-011-9108-6
10.1007/s11694-008-9058-9
10.1007/BF00133570
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.compag.2013.01.006
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 81
ExternalDocumentID 27125254
10_1016_j_compag_2013_01_006
US201400041566
US201400023327
S0168169913000215
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
9DU
AAYWO
AAYXX
ACIEU
ACLOT
ACMHX
ACVFH
ADCNI
ADSLC
AEUPX
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
IQODW
7S9
L.6
ID FETCH-LOGICAL-c463t-9069c8d69a86d16bbfcb303e47559b29e15db9db847f46b3e28bbf737546f7f43
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316592000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Mon Sep 29 05:37:56 EDT 2025
Mon Jul 21 09:16:51 EDT 2025
Sat Nov 29 03:16:14 EST 2025
Tue Nov 18 22:11:16 EST 2025
Thu Apr 03 09:45:06 EDT 2025
Wed Dec 27 19:16:42 EST 2023
Fri Feb 23 02:29:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Shape
Grading
Length
Cucumber
Curvature
Artificial vision
Cucurbitaceae
Cucumis sativus
Algorithm
Vegetable crop
Dicotyledones
Angiospermae
Classification
Spermatophyta
Active contour
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-9069c8d69a86d16bbfcb303e47559b29e15db9db847f46b3e28bbf737546f7f43
Notes http://dx.doi.org/10.1016/j.compag.2013.01.006
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.compag.2013.01.006.
PQID 1514401545
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_1514401545
pascalfrancis_primary_27125254
crossref_citationtrail_10_1016_j_compag_2013_01_006
crossref_primary_10_1016_j_compag_2013_01_006
fao_agris_US201400041566
fao_agris_US201400023327
elsevier_sciencedirect_doi_10_1016_j_compag_2013_01_006
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ballard (b0035) 1981; 13
Ariana, Lu, Guyer (b0030) 2006; 53
Lu, Ariana, Cen (b0090) 2011; 5
Rocha, L., Velho, L., Carvalho, P.C.P., 2004.
Manzano-Agugliaro, Cañero-Leon (b0095) 2010; 5
Schmidt, T., Keuper, M., Pasternak, T., Palme, K., Ronneberger, O. 2012. Modeling of sparsely sampled tubular surfaces using coupled curves. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7476 LNCS, pp. 83-92
Kang, S., Lee, K., Lee, H.Y., 2006. Non destructive cucumber quality evaluation system using machine vision. Key Engineering Materials 321–323 II, 1205–1208.
Kovacs, Sziranyi (b0085) 2012; 33
Callejón-Ferre, Velázquez-Martí, López-Martínez, Manzano-Agugliaro (b0040) 2011; 15
Ariana, Lu (b0020) 2010; 74
Wang, Q., Ronneberger, O., Schulze, E., Baumeister, R., Burkhardt, H. 2009. Using lateral coupled snakes for modeling the contours of worms. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5748 LNCS, pp. 542–551
FAO, 2012a. Faostat. Cucumber (accessed 18.05.12).
FAO, 2012b. Technical Sheet Cucumber (18.05.12).
Kass, Witkin, Terzopoulos (b0075) 1988; 1
Ariana, Lu (b0010) 2008; 2
Clement, Novas, Gaquez, Manzano-Agugliaro (b0045) 2012; 10
UE, 1998. Commission regulation (EEC) Regulation 1677/88 of june 1988 Laying Down Quality Standards for Cucumbers. Official Journal of the European Communities L 150, pp. 21–25.
In: Proceeding 17th Brazilian Symposium on Computer Graphics and Image Processing, 354-361.
Ariana, Lu (b0015) 2010; 96
Howarth, Brandon, Searcy, Kehtarnavaz (b0065) 1992; 53C
Pencue, León-Téllez (b0105) 2003; 35
Opencv, 2012. Libraries Opencv (accessed 18.05.12).
Kavdir, Lu, Ariana, Ngouajio (b0080) 2007; 44
Yang, Q., Marchant, J.A. 1996. Accurate blemish detection with active contour models. Computers and Electronics in Agriculture 14 (1) 77–89
Agugliaro (b0005) 2007; 32
.
Van Eck, Van Der Heijden, Polder (b0140) 1998; 70
Ariana, Lu (b0025) 2008; 2
Qi, Xu, Lin, Zhang, Chen (b0110) 2012; 99
QT, 2012. Libreries QT (accessed 18.05.12).
Fernández, González, Carreño, Pérez, Bonachela (b0060) 2007; 89
Simsek, Tonkaz, Kacira, Comlekcioglu, Dogan (b0130) 2005; 73
Qi (10.1016/j.compag.2013.01.006_b0110) 2012; 99
Van Eck (10.1016/j.compag.2013.01.006_b0140) 1998; 70
Pencue (10.1016/j.compag.2013.01.006_b0105) 2003; 35
Lu (10.1016/j.compag.2013.01.006_b0090) 2011; 5
Fernández (10.1016/j.compag.2013.01.006_b0060) 2007; 89
Kass (10.1016/j.compag.2013.01.006_b0075) 1988; 1
Simsek (10.1016/j.compag.2013.01.006_b0130) 2005; 73
Ballard (10.1016/j.compag.2013.01.006_b0035) 1981; 13
10.1016/j.compag.2013.01.006_b0135
10.1016/j.compag.2013.01.006_b0055
10.1016/j.compag.2013.01.006_b0115
Ariana (10.1016/j.compag.2013.01.006_b0025) 2008; 2
Agugliaro (10.1016/j.compag.2013.01.006_b0005) 2007; 32
Clement (10.1016/j.compag.2013.01.006_b0045) 2012; 10
10.1016/j.compag.2013.01.006_b0070
10.1016/j.compag.2013.01.006_b0150
Ariana (10.1016/j.compag.2013.01.006_b0020) 2010; 74
10.1016/j.compag.2013.01.006_b0050
Ariana (10.1016/j.compag.2013.01.006_b0010) 2008; 2
Ariana (10.1016/j.compag.2013.01.006_b0030) 2006; 53
Kovacs (10.1016/j.compag.2013.01.006_b0085) 2012; 33
Howarth (10.1016/j.compag.2013.01.006_b0065) 1992; 53C
Callejón-Ferre (10.1016/j.compag.2013.01.006_b0040) 2011; 15
10.1016/j.compag.2013.01.006_b0125
Ariana (10.1016/j.compag.2013.01.006_b0015) 2010; 96
10.1016/j.compag.2013.01.006_b0120
10.1016/j.compag.2013.01.006_b0100
Kavdir (10.1016/j.compag.2013.01.006_b0080) 2007; 44
Manzano-Agugliaro (10.1016/j.compag.2013.01.006_b0095) 2010; 5
10.1016/j.compag.2013.01.006_b0145
References_xml – volume: 74
  start-page: 137
  year: 2010
  end-page: 144
  ident: b0020
  article-title: Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles
  publication-title: Comput. Electron. Agric.
– reference: FAO, 2012b. Technical Sheet Cucumber (18.05.12). <
– volume: 73
  start-page: 173
  year: 2005
  end-page: 191
  ident: b0130
  article-title: The effects of different irrigation regimes on cucumber (
  publication-title: Agric. Water Manage.
– volume: 44
  start-page: 165
  year: 2007
  end-page: 174
  ident: b0080
  article-title: Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers
  publication-title: Postharvest Biol. Technol.
– reference: Wang, Q., Ronneberger, O., Schulze, E., Baumeister, R., Burkhardt, H. 2009. Using lateral coupled snakes for modeling the contours of worms. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5748 LNCS, pp. 542–551,
– volume: 89
  start-page: 251
  year: 2007
  end-page: 260
  ident: b0060
  article-title: Analysis of on-farm irrigation performance in Mediterranean greenhouses
  publication-title: Agric. Water Manage.
– reference: QT, 2012. Libreries QT (accessed 18.05.12). <
– reference: . In: Proceeding 17th Brazilian Symposium on Computer Graphics and Image Processing, 354-361. <
– volume: 13
  start-page: 111
  year: 1981
  end-page: 122
  ident: b0035
  article-title: Generalizing the Hough transform to detect arbitrary shapes
  publication-title: Pattern Recogn.
– volume: 99
  start-page: 160
  year: 2012
  end-page: 168
  ident: b0110
  article-title: Identification of differentially expressed genes in cucumber (
  publication-title: Genomics
– volume: 35
  start-page: 148
  year: 2003
  end-page: 151
  ident: b0105
  article-title: Detección y clasificación de defectos en frutas mediante el procesamiento digital de imágenes
  publication-title: Revista Colombiana de Física
– volume: 32
  start-page: 131
  year: 2007
  end-page: 136
  ident: b0005
  article-title: The gasification of vegetable residues of greenhouses for making electrical energy in the south of Spain: his ubication study by GIS
  publication-title: Interciencia
– reference: Rocha, L., Velho, L., Carvalho, P.C.P., 2004.
– reference: UE, 1998. Commission regulation (EEC) Regulation 1677/88 of june 1988 Laying Down Quality Standards for Cucumbers. Official Journal of the European Communities L 150, pp. 21–25.
– volume: 5
  start-page: 3009
  year: 2010
  end-page: 3016
  ident: b0095
  article-title: Economics and environmental analysis of Mediterranean greenhouse crops
  publication-title: African J. Agric. Res.
– volume: 33
  start-page: 1180
  year: 2012
  end-page: 1187
  ident: b0085
  article-title: Harris function based active contour external force for image segmentation
  publication-title: Pattern Recogn. Lett.
– reference: Opencv, 2012. Libraries Opencv (accessed 18.05.12). <
– reference: >.
– reference: .
– volume: 53
  start-page: 60
  year: 2006
  end-page: 70
  ident: b0030
  article-title: Near-infrared hyperspectral. Reflectance imaging for detection of bruises on pickling cucumbers
  publication-title: Comput. Electron. Agric.
– volume: 96
  start-page: 583
  year: 2010
  end-page: 590
  ident: b0015
  article-title: Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging
  publication-title: J. Food Eng.
– volume: 70
  start-page: 335
  year: 1998
  end-page: 343
  ident: b0140
  article-title: Accurate measurement of size and shape of cucumber fruits with image analysis
  publication-title: J. Agric. Eng. Res.
– volume: 2
  start-page: 152
  year: 2008
  end-page: 160
  ident: b0025
  article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging – Part II. Performance of a prototype
  publication-title: Sens. Instrum. Food Quality Safety
– volume: 2
  start-page: 144
  year: 2008
  end-page: 151
  ident: b0010
  article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part I. Development of a prototype
  publication-title: Sens. Instrum. Food Quality Safety
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  ident: b0075
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vision
– reference: Schmidt, T., Keuper, M., Pasternak, T., Palme, K., Ronneberger, O. 2012. Modeling of sparsely sampled tubular surfaces using coupled curves. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7476 LNCS, pp. 83-92,
– reference: Yang, Q., Marchant, J.A. 1996. Accurate blemish detection with active contour models. Computers and Electronics in Agriculture 14 (1) 77–89, <
– volume: 53C
  start-page: 123
  year: 1992
  end-page: 139
  ident: b0065
  article-title: Estimation of tip shape for carrot classification by machine vision
  publication-title: J. Agric. Eng. Res.
– reference: Kang, S., Lee, K., Lee, H.Y., 2006. Non destructive cucumber quality evaluation system using machine vision. Key Engineering Materials 321–323 II, 1205–1208. <
– volume: 5
  start-page: 51
  year: 2011
  end-page: 56
  ident: b0090
  article-title: Optical absorption and scattering properties of normal and defective pickling cucumbers for 700–1000
  publication-title: Sens. Instrum. Food Quality Safety
– volume: 10
  start-page: 314
  year: 2012
  end-page: 325
  ident: b0045
  article-title: High speed intelligent classifier of tomatoes by colour, size and weight
  publication-title: Spanish Journal of Agricultural Research
– volume: 15
  start-page: 948
  year: 2011
  end-page: 955
  ident: b0040
  article-title: Greenhouse crop residues: energy potential and models for the prediction of their higher heating value
  publication-title: Renew. Sust. Energy Rev.
– reference: FAO, 2012a. Faostat. Cucumber (accessed 18.05.12). <
– volume: 53
  start-page: 60
  issue: 1
  year: 2006
  ident: 10.1016/j.compag.2013.01.006_b0030
  article-title: Near-infrared hyperspectral. Reflectance imaging for detection of bruises on pickling cucumbers
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2006.04.001
– volume: 74
  start-page: 137
  issue: 1
  year: 2010
  ident: 10.1016/j.compag.2013.01.006_b0020
  article-title: Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.07.008
– ident: 10.1016/j.compag.2013.01.006_b0100
– volume: 99
  start-page: 160
  issue: 3
  year: 2012
  ident: 10.1016/j.compag.2013.01.006_b0110
  article-title: Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.12.008
– volume: 89
  start-page: 251
  issue: 3
  year: 2007
  ident: 10.1016/j.compag.2013.01.006_b0060
  article-title: Analysis of on-farm irrigation performance in Mediterranean greenhouses
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2007.02.001
– ident: 10.1016/j.compag.2013.01.006_b0135
– volume: 53C
  start-page: 123
  year: 1992
  ident: 10.1016/j.compag.2013.01.006_b0065
  article-title: Estimation of tip shape for carrot classification by machine vision
  publication-title: J. Agric. Eng. Res.
  doi: 10.1016/0021-8634(92)80078-7
– volume: 13
  start-page: 111
  issue: 2
  year: 1981
  ident: 10.1016/j.compag.2013.01.006_b0035
  article-title: Generalizing the Hough transform to detect arbitrary shapes
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(81)90009-1
– volume: 33
  start-page: 1180
  issue: 9
  year: 2012
  ident: 10.1016/j.compag.2013.01.006_b0085
  article-title: Harris function based active contour external force for image segmentation
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2012.01.018
– volume: 5
  start-page: 3009
  issue: 22
  year: 2010
  ident: 10.1016/j.compag.2013.01.006_b0095
  article-title: Economics and environmental analysis of Mediterranean greenhouse crops
  publication-title: African J. Agric. Res.
– volume: 73
  start-page: 173
  issue: 3
  year: 2005
  ident: 10.1016/j.compag.2013.01.006_b0130
  article-title: The effects of different irrigation regimes on cucumber (Cucumis sativus L.) yield and yield characteristics under open field conditions
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2004.10.013
– volume: 15
  start-page: 948
  issue: 2
  year: 2011
  ident: 10.1016/j.compag.2013.01.006_b0040
  article-title: Greenhouse crop residues: energy potential and models for the prediction of their higher heating value
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2010.11.012
– volume: 96
  start-page: 583
  issue: 4
  year: 2010
  ident: 10.1016/j.compag.2013.01.006_b0015
  article-title: Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2009.09.005
– ident: 10.1016/j.compag.2013.01.006_b0120
– ident: 10.1016/j.compag.2013.01.006_b0125
  doi: 10.1007/978-3-642-32717-9_9
– ident: 10.1016/j.compag.2013.01.006_b0150
  doi: 10.1016/0168-1699(95)00038-0
– ident: 10.1016/j.compag.2013.01.006_b0145
  doi: 10.1007/978-3-642-03798-6_5
– volume: 2
  start-page: 144
  issue: 3
  year: 2008
  ident: 10.1016/j.compag.2013.01.006_b0010
  article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part I. Development of a prototype
  publication-title: Sens. Instrum. Food Quality Safety
  doi: 10.1007/s11694-008-9057-x
– volume: 44
  start-page: 165
  issue: 2
  year: 2007
  ident: 10.1016/j.compag.2013.01.006_b0080
  article-title: Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2006.09.002
– ident: 10.1016/j.compag.2013.01.006_b0055
– volume: 35
  start-page: 148
  issue: 1
  year: 2003
  ident: 10.1016/j.compag.2013.01.006_b0105
  article-title: Detección y clasificación de defectos en frutas mediante el procesamiento digital de imágenes
  publication-title: Revista Colombiana de Física
– ident: 10.1016/j.compag.2013.01.006_b0050
– volume: 32
  start-page: 131
  issue: 2
  year: 2007
  ident: 10.1016/j.compag.2013.01.006_b0005
  article-title: The gasification of vegetable residues of greenhouses for making electrical energy in the south of Spain: his ubication study by GIS
  publication-title: Interciencia
– volume: 70
  start-page: 335
  issue: 4
  year: 1998
  ident: 10.1016/j.compag.2013.01.006_b0140
  article-title: Accurate measurement of size and shape of cucumber fruits with image analysis
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.1998.0285
– volume: 10
  start-page: 314
  issue: 2
  year: 2012
  ident: 10.1016/j.compag.2013.01.006_b0045
  article-title: High speed intelligent classifier of tomatoes by colour, size and weight
  publication-title: Spanish Journal of Agricultural Research
  doi: 10.5424/sjar/2012102-368-11
– ident: 10.1016/j.compag.2013.01.006_b0070
  doi: 10.4028/www.scientific.net/KEM.321-323.1205
– volume: 5
  start-page: 51
  issue: 2
  year: 2011
  ident: 10.1016/j.compag.2013.01.006_b0090
  article-title: Optical absorption and scattering properties of normal and defective pickling cucumbers for 700–1000nm
  publication-title: Sens. Instrum. Food Quality Safety
  doi: 10.1007/s11694-011-9108-6
– volume: 2
  start-page: 152
  issue: 3
  year: 2008
  ident: 10.1016/j.compag.2013.01.006_b0025
  article-title: Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging – Part II. Performance of a prototype
  publication-title: Sens. Instrum. Food Quality Safety
  doi: 10.1007/s11694-008-9058-9
– ident: 10.1016/j.compag.2013.01.006_b0115
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  ident: 10.1016/j.compag.2013.01.006_b0075
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/BF00133570
SSID ssj0016987
Score 2.2278254
Snippet ► Cucumber is one of the most important crops worldwide, and is consumed raw. ► The European classification demands that both length and curvature are taken...
The cucumber is one of the most important crops worldwide and, because it is generally consumed fresh, it must be classified into quality categories. The...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 75
SubjectTerms Agronomy. Soil science and plant productions
algorithms
Artificial vision
Biological and medical sciences
crops
Cucumber
cucumbers
Curvature
Fundamental and applied biological sciences. Psychology
Grading
humans
Length
Shape
Title An active contour computer algorithm for the classification of cucumbers
URI https://dx.doi.org/10.1016/j.compag.2013.01.006
https://www.proquest.com/docview/1514401545
Volume 92
WOSCitedRecordID wos000316592000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpuoftYexKs0vxYOyluPiiSNajKSndCN1gCeRNyIqcpWR2lhslv2I_eUc3p6UZ7R724gRFdozOJ-no6NP5EPqIFRkXpdIZLqE3YZiAQlEmJGQwVcSKlVIqk8S1Ty8vs9GIfWu1fvuzMJsZrars-prN_6upoQyMrY_O_oO5m4dCAXwHo8MVzA7XBxk-r0yCjI2locMdhjaulRtOxGxSL6arHz8bcqHUzrNmCzWeo1xLIxKyvOm2eu0Hm9B5J51jyLRisnAJPBqQnFlSuqXh6pm3iTlr6qtB4Nrymy35R2xhetq6HQm7dx_mWt3YssRsyLzaiqoO8wl4_FNhj-c4WRBZ3wxeaCEJz97y8UwCi1hiNZL8gMySk_kp7YZWy8WNrFZfxc_R8d7R3wYirk4NfX-ieXupycka7Um2ffmVnw_7fT7ojQaf5r9CrUOm9-udKMsBOkxol2VtdJh_7o2-NDtThGX2CL57cX8c03AG7_7x39ydg1LUmocrltAVS9tYd9wB4-MMnqGnbnES5BZUz1FLVS_Qk3xn35foIq8CC6_AwSvw8AoaeAUArwDgFdyGV1CXQQOvV2h43hucXYROjSOUmKSrkEWEyWxMmMjIOCZFUcoC_B-FKSxKi4SpuDsu2LgAd6fEpEhVkkEdqiWWSQlF6WvUrupKHaEAR6zImIhiESksFXzgbhlRImC5R2madVDqG41Ll6peK6bMuOckXnHb1Fw3NY9iDk3dQWFz19ymarmnPvX24M7dtG4kBzzdc-cRmI_r7rXkw--JjlJo5zdN6P6fTJSkg45vmbt5yYTCKiPp4g764O3PYZDXO3eiUvV6ycEtx9isdt48oM5b9HjX196h9mqxVu_RI7lZTZeLYwfoP6-HyLg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+contour+computer+algorithm+for+the+classification+of+cucumbers&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Clement%2C+Javier&rft.au=Novas%2C+Nuria&rft.au=Gazquez%2C+Jos%C3%A9-Antonio&rft.au=Manzano-Agugliaro%2C+Francisco&rft.date=2013-03-01&rft.issn=0168-1699&rft.volume=92+p.75-81&rft.spage=75&rft.epage=81&rft_id=info:doi/10.1016%2Fj.compag.2013.01.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon