Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis
Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil ext...
Gespeichert in:
| Veröffentlicht in: | Circulation (New York, N.Y.) Jg. 125; H. 13; S. 1673 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
03.04.2012
|
| Schlagworte: | |
| ISSN: | 1524-4539, 1524-4539 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive.
Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis.
Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets. |
|---|---|
| AbstractList | Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive.
Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis.
Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets. Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive.BACKGROUNDInflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive.Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis.METHODS AND RESULTSHere we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis.Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.CONCLUSIONSSelf-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets. |
| Author | Koenen, Rory R Busch, Martin Drechsler, Maik Megens, Remco T A Zenke, Martin Binder, Christoph J Weber, Christian Soehnlein, Oliver Lievens, Dirk Pelisek, Jaroslav Lutgens, Esther Döring, Yvonne Zernecke, Alma Manthey, Helga D Manca, Marco Daemen, Mat J |
| Author_xml | – sequence: 1 givenname: Yvonne surname: Döring fullname: Döring, Yvonne organization: Rudolf Virchow Center, DFG Research Center for Experimental Medicine, University of Würzburg, Josef-Schneider Strasse 2, Würzburg, Germany – sequence: 2 givenname: Helga D surname: Manthey fullname: Manthey, Helga D – sequence: 3 givenname: Maik surname: Drechsler fullname: Drechsler, Maik – sequence: 4 givenname: Dirk surname: Lievens fullname: Lievens, Dirk – sequence: 5 givenname: Remco T A surname: Megens fullname: Megens, Remco T A – sequence: 6 givenname: Oliver surname: Soehnlein fullname: Soehnlein, Oliver – sequence: 7 givenname: Martin surname: Busch fullname: Busch, Martin – sequence: 8 givenname: Marco surname: Manca fullname: Manca, Marco – sequence: 9 givenname: Rory R surname: Koenen fullname: Koenen, Rory R – sequence: 10 givenname: Jaroslav surname: Pelisek fullname: Pelisek, Jaroslav – sequence: 11 givenname: Mat J surname: Daemen fullname: Daemen, Mat J – sequence: 12 givenname: Esther surname: Lutgens fullname: Lutgens, Esther – sequence: 13 givenname: Martin surname: Zenke fullname: Zenke, Martin – sequence: 14 givenname: Christoph J surname: Binder fullname: Binder, Christoph J – sequence: 15 givenname: Christian surname: Weber fullname: Weber, Christian – sequence: 16 givenname: Alma surname: Zernecke fullname: Zernecke, Alma |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22388324$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkFtLw0AQhRep2Iv-BYlPPqXuNdk8hlhtobQg7XPYbCa6kmRjdgP235tiBV9mhuF8hzMzR5PWtoDQA8FLQiLylG3esuM2PWz2u3SdjjuyxDyKhbhCMyIoD7lgyeTfPEVz5z4xxhGLxQ2aUsqkZJTPUJUO3oaq9eYdWqODrrceTBs-79JA26ar4Rtc4Lxphlp5CLpauUbpk7emDEpoy974EdNQ1y7w9sw3o0Og_Af01un6XI27RdeVqh3cXfoCHV9Wh2wdbvevmyzdhppHzIdSS8KU4FUiIOGcsqKEApTWMhkPryijmooiBoYpcK00UVHFaCxGWMsq0XSBHn99xxxfAzifN8adw6kW7ODyJJIEJ0TSUXl_UQ5FA2Xe9aZR_Sn_ew39AR-PbMU |
| CitedBy_id | crossref_primary_10_1016_j_smim_2020_101409 crossref_primary_10_1016_j_autrev_2014_10_010 crossref_primary_10_1016_j_clim_2013_04_017 crossref_primary_10_1093_eurheartj_ehad711 crossref_primary_10_1126_scitranslmed_3005580 crossref_primary_10_3389_fcell_2022_795784 crossref_primary_10_1007_s00395_015_0491_8 crossref_primary_10_1161_CIRCRESAHA_120_315895 crossref_primary_10_1016_j_compbiomed_2021_104459 crossref_primary_10_1007_s00281_013_0402_8 crossref_primary_10_1016_j_atherosclerosis_2014_05_915 crossref_primary_10_3390_jcm9092942 crossref_primary_10_3389_fcvm_2022_894879 crossref_primary_10_1016_j_peptides_2021_170666 crossref_primary_10_3389_fimmu_2023_1324021 crossref_primary_10_1016_j_clim_2024_110308 crossref_primary_10_1161_CIRCRESAHA_114_302153 crossref_primary_10_1161_CIRCULATIONAHA_114_012641 crossref_primary_10_3390_ijms20215293 crossref_primary_10_3389_fcvm_2023_951242 crossref_primary_10_3390_ijms26052336 crossref_primary_10_3389_fimmu_2023_1113904 crossref_primary_10_1016_j_atherosclerosis_2024_117519 crossref_primary_10_1007_s10059_012_0128_9 crossref_primary_10_3389_fcvm_2023_1175673 crossref_primary_10_3390_antibiotics4010062 crossref_primary_10_4049_jimmunol_1201719 crossref_primary_10_1016_j_ajhg_2023_03_013 crossref_primary_10_1155_2021_4026604 crossref_primary_10_1002_ctm2_458 crossref_primary_10_1002_eji_201344291 crossref_primary_10_3390_antiox9060491 crossref_primary_10_3390_biom15040579 crossref_primary_10_1016_j_heliyon_2024_e29194 crossref_primary_10_3389_fimmu_2025_1492726 crossref_primary_10_1016_j_redox_2025_103861 crossref_primary_10_1016_j_pharmthera_2012_10_001 crossref_primary_10_1161_CIRCRESAHA_116_309692 crossref_primary_10_1016_j_cmet_2016_04_010 crossref_primary_10_1016_j_biopha_2024_117476 crossref_primary_10_1038_s41573_019_0054_z crossref_primary_10_3389_fimmu_2016_00453 crossref_primary_10_1172_JCI184502 crossref_primary_10_3892_mmr_2018_9551 crossref_primary_10_1038_s41598_024_54581_0 crossref_primary_10_1161_ATVBAHA_123_320274 crossref_primary_10_1002_eji_201646542 crossref_primary_10_1016_j_autrev_2015_03_002 crossref_primary_10_1111_bph_13700 crossref_primary_10_1161_CIRCULATIONAHA_114_011090 crossref_primary_10_1097_BOR_0000000000000383 crossref_primary_10_3389_fimmu_2024_1374350 crossref_primary_10_1371_journal_pone_0111888 crossref_primary_10_1016_j_atherosclerosis_2013_12_043 crossref_primary_10_1089_jir_2014_0184 crossref_primary_10_3389_fimmu_2016_00325 crossref_primary_10_1155_2017_3161968 crossref_primary_10_1093_bib_bbae655 crossref_primary_10_1016_j_jacc_2013_07_031 crossref_primary_10_3389_fphys_2014_00279 crossref_primary_10_1371_journal_pone_0155685 crossref_primary_10_1186_s13148_021_01152_z crossref_primary_10_1016_j_ihj_2019_10_004 crossref_primary_10_1038_s41598_019_52671_y crossref_primary_10_4049_jimmunol_1402807 crossref_primary_10_1038_s41598_023_35548_z crossref_primary_10_1016_j_scib_2018_09_014 crossref_primary_10_1371_journal_pone_0307904 crossref_primary_10_3390_ijms21207721 crossref_primary_10_1155_2013_584715 crossref_primary_10_1007_s11596_023_2818_2 crossref_primary_10_1016_j_atherosclerosis_2021_08_033 crossref_primary_10_3389_fgene_2025_1587274 crossref_primary_10_1186_s12943_024_02186_6 crossref_primary_10_1111_bph_13052 crossref_primary_10_1007_s10555_020_09951_1 crossref_primary_10_1371_journal_pone_0088452 crossref_primary_10_1155_2016_2182358 crossref_primary_10_1007_s00383_014_3607_6 crossref_primary_10_1111_eci_13195 crossref_primary_10_1007_s40883_016_0012_9 crossref_primary_10_3390_cells13020157 crossref_primary_10_3390_jcm10173825 crossref_primary_10_1002_adfm_202425035 crossref_primary_10_3389_fcvm_2023_1142296 crossref_primary_10_1161_CIRCULATIONAHA_120_048378 crossref_primary_10_3390_ijms24021169 crossref_primary_10_3390_cells8121528 crossref_primary_10_1155_2020_1230513 crossref_primary_10_1080_20013078_2020_1729646 crossref_primary_10_3390_biomedicines10051152 crossref_primary_10_1161_ATVBAHA_113_302407 crossref_primary_10_1097_MD_0000000000037363 crossref_primary_10_1016_j_atherosclerosis_2013_03_014 crossref_primary_10_1038_nri_2017_10 crossref_primary_10_1016_j_compbiomed_2022_106388 crossref_primary_10_5551_jat_RV22033 crossref_primary_10_1002_art_38703 crossref_primary_10_1093_cvr_cvv138 crossref_primary_10_1371_journal_ppat_1004651 crossref_primary_10_1038_s41569_024_01045_7 crossref_primary_10_1177_1708538120922700 crossref_primary_10_1038_s44161_023_00413_9 crossref_primary_10_1371_journal_pone_0134176 crossref_primary_10_3389_fimmu_2024_1528475 crossref_primary_10_3233_CH_189012 crossref_primary_10_3390_cells10081985 crossref_primary_10_1038_s41569_019_0326_7 crossref_primary_10_1016_j_yexmp_2015_11_011 crossref_primary_10_1111_prd_12025 crossref_primary_10_1097_MOH_0b013e32835a0025 crossref_primary_10_1186_s12944_023_01864_6 crossref_primary_10_1038_s41598_021_86207_0 crossref_primary_10_1038_srep15414 crossref_primary_10_2217_imt_2021_0009 crossref_primary_10_1038_nri_2016_116 crossref_primary_10_1160_TH12_05_0341 crossref_primary_10_1371_journal_pone_0187432 crossref_primary_10_1160_TH12_05_0327 crossref_primary_10_1016_j_ijcard_2018_08_071 crossref_primary_10_3389_fneur_2023_1267136 crossref_primary_10_1016_j_jaut_2022_102863 crossref_primary_10_1038_s41401_025_01519_5 crossref_primary_10_1093_cvr_cvz084 crossref_primary_10_1155_2022_7657379 crossref_primary_10_3389_fcvm_2024_1471153 crossref_primary_10_1007_s11357_024_01463_y crossref_primary_10_1161_ATVBAHA_116_307786 crossref_primary_10_1016_j_ejphar_2023_175965 crossref_primary_10_1161_CIRCRESAHA_118_311362 crossref_primary_10_3389_fcvm_2022_934314 crossref_primary_10_1160_TH15_08_0623 crossref_primary_10_1161_CIRCRESAHA_114_303479 crossref_primary_10_1161_CIRCULATIONAHA_113_006230 crossref_primary_10_1016_j_imlet_2013_01_014 crossref_primary_10_1186_s12974_025_03340_7 crossref_primary_10_1038_s41598_025_96907_6 crossref_primary_10_1007_s00011_016_0955_9 crossref_primary_10_1160_th15_03_0214 crossref_primary_10_1016_j_ajpath_2023_12_007 crossref_primary_10_1016_j_cyto_2019_154822 crossref_primary_10_1007_s40279_014_0296_1 crossref_primary_10_1093_rheumatology_kead522 crossref_primary_10_3389_fphar_2017_00563 crossref_primary_10_3389_fcvm_2022_833642 crossref_primary_10_1111_jcmm_17018 crossref_primary_10_1016_j_ejphar_2017_08_016 crossref_primary_10_3389_fimmu_2020_01456 crossref_primary_10_3389_fimmu_2023_1219457 crossref_primary_10_3389_fimmu_2023_1098383 crossref_primary_10_1161_CIRCRESAHA_116_302795 crossref_primary_10_1111_bph_14975 crossref_primary_10_1161_ATVBAHA_113_301627 crossref_primary_10_1161_CIRCRESAHA_120_315931 crossref_primary_10_1016_j_phrs_2024_107529 crossref_primary_10_1016_j_jaut_2015_07_001 crossref_primary_10_1155_2022_6306845 crossref_primary_10_1038_s41598_018_37852_5 crossref_primary_10_4049_jimmunol_1302005 crossref_primary_10_1161_CIRCRESAHA_115_307961 crossref_primary_10_1007_s00441_017_2727_4 crossref_primary_10_1093_eurheartj_ehad666 crossref_primary_10_1007_s13167_022_00289_y crossref_primary_10_1089_dna_2020_6106 crossref_primary_10_1038_s41467_019_09607_x crossref_primary_10_3389_fphar_2025_1631076 crossref_primary_10_1016_j_imlet_2015_09_006 crossref_primary_10_3892_mmr_2016_4936 crossref_primary_10_1111_jcmm_13462 crossref_primary_10_1097_MD_0000000000040293 crossref_primary_10_1016_j_immuni_2015_07_013 crossref_primary_10_1007_s11427_025_3006_2 crossref_primary_10_1055_a_2609_3457 crossref_primary_10_1007_s00005_016_0418_6 crossref_primary_10_3389_fcvm_2021_661709 crossref_primary_10_1084_jem_20122220 crossref_primary_10_1097_MD_0000000000039065 crossref_primary_10_1038_s41598_020_74579_8 crossref_primary_10_3389_flupu_2025_1607792 crossref_primary_10_1002_art_39247 crossref_primary_10_1155_2016_6467375 crossref_primary_10_1038_s41419_020_2497_x crossref_primary_10_1016_j_bpj_2023_10_035 crossref_primary_10_1161_ATVBAHA_113_301889 crossref_primary_10_3389_fimmu_2017_00140 crossref_primary_10_1007_s00281_013_0400_x crossref_primary_10_3389_fimmu_2023_1289223 crossref_primary_10_1146_annurev_immunol_090122_041105 crossref_primary_10_1155_2022_5491038 crossref_primary_10_4049_jimmunol_1500971 crossref_primary_10_3389_fimmu_2019_00817 crossref_primary_10_1038_s41598_017_14365_1 crossref_primary_10_1186_s12920_021_00991_2 crossref_primary_10_3389_fmed_2022_849086 crossref_primary_10_3389_fimmu_2024_1285813 crossref_primary_10_1016_j_jacc_2014_10_018 crossref_primary_10_4049_jimmunol_1701391 crossref_primary_10_1161_ATVBAHA_112_251314 crossref_primary_10_1038_s41598_023_50557_8 crossref_primary_10_3390_ijms242417129 crossref_primary_10_1111_nyas_12392 crossref_primary_10_1016_j_lfs_2023_121867 crossref_primary_10_1016_j_intimp_2023_110130 crossref_primary_10_1038_s41392_025_02201_2 crossref_primary_10_1189_jlb_5BT0615_247R crossref_primary_10_1161_CIRCRESAHA_114_303312 crossref_primary_10_1007_s11010_024_05097_8 crossref_primary_10_3389_fimmu_2020_581385 crossref_primary_10_1161_CIRCGENETICS_113_000044 crossref_primary_10_1186_s12864_024_10379_y crossref_primary_10_1371_journal_pntd_0004037 crossref_primary_10_1177_1535370220945989 crossref_primary_10_1097_BOR_0b013e328363eba3 crossref_primary_10_3389_fendo_2023_1032015 crossref_primary_10_1016_j_atherosclerosis_2021_06_912 crossref_primary_10_1016_j_jab_2017_10_002 crossref_primary_10_1016_j_cmet_2015_07_004 crossref_primary_10_3389_fgene_2019_00123 crossref_primary_10_1007_s00018_015_2005_0 crossref_primary_10_1016_j_atherosclerosis_2020_10_001 crossref_primary_10_3892_ijmm_2014_1960 crossref_primary_10_1084_jem_20190459 crossref_primary_10_1172_JCI63108 crossref_primary_10_1007_s10495_023_01923_4 crossref_primary_10_1097_MD_0000000000034918 crossref_primary_10_1016_j_biopha_2023_114586 crossref_primary_10_3390_jcm8091325 crossref_primary_10_3389_fimmu_2017_00928 crossref_primary_10_1007_s00011_013_0617_0 crossref_primary_10_3390_diagnostics12051175 crossref_primary_10_1371_journal_pone_0312383 crossref_primary_10_1093_cvr_cvab329 crossref_primary_10_1097_MOL_0b013e3283555a9c crossref_primary_10_1155_2022_3235524 crossref_primary_10_1100_2012_157534 crossref_primary_10_1186_s13062_025_00600_7 crossref_primary_10_1155_2017_4323496 crossref_primary_10_1097_MD_0000000000034362 crossref_primary_10_1016_j_autrev_2024_103646 crossref_primary_10_23736_S0392_9590_19_04250_0 crossref_primary_10_1152_physrev_00004_2012 crossref_primary_10_1016_j_intimp_2024_113368 crossref_primary_10_1093_sleep_zsx049 crossref_primary_10_3389_fimmu_2019_03130 crossref_primary_10_3390_ijms232012604 crossref_primary_10_1016_j_arcmed_2013_11_007 crossref_primary_10_1016_j_it_2017_07_001 crossref_primary_10_3389_fimmu_2014_00365 crossref_primary_10_1038_cti_2014_1 crossref_primary_10_1038_s41398_018_0264_x crossref_primary_10_1161_ATVBAHA_114_303564 crossref_primary_10_1097_MOL_0000000000000537 crossref_primary_10_1161_ATVBAHA_114_303566 crossref_primary_10_3389_fimmu_2024_1437821 crossref_primary_10_2147_IJGM_S350232 crossref_primary_10_1186_s13075_021_02470_6 crossref_primary_10_1146_annurev_med_060911_090007 crossref_primary_10_3390_jcm8111798 crossref_primary_10_1186_s12920_015_0082_4 crossref_primary_10_3390_ijms150916381 crossref_primary_10_1007_s00018_013_1289_1 crossref_primary_10_1016_j_bbalip_2014_11_010 crossref_primary_10_3389_fcvm_2023_1155512 crossref_primary_10_3389_fimmu_2018_02064 crossref_primary_10_1016_j_atherosclerosis_2019_06_919 crossref_primary_10_1161_CIRCRESAHA_114_302761 crossref_primary_10_1016_j_immuni_2015_10_018 crossref_primary_10_1161_CIRCRESAHA_115_306542 crossref_primary_10_1097_SHK_0000000000000221 crossref_primary_10_1093_ndt_gfad266 crossref_primary_10_1038_s41584_022_00770_y crossref_primary_10_3390_cells11243976 crossref_primary_10_1016_j_genrep_2020_100830 crossref_primary_10_1186_s13040_024_00365_1 crossref_primary_10_3389_fnmol_2024_1477903 crossref_primary_10_3389_fphys_2014_00196 crossref_primary_10_1136_openhrt_2024_002773 crossref_primary_10_1111_imm_12504 crossref_primary_10_1016_j_compbiomed_2022_106450 crossref_primary_10_1038_s41598_024_83925_z crossref_primary_10_1186_s12933_023_01842_3 crossref_primary_10_1038_s41467_024_51751_6 crossref_primary_10_3390_ijms25042450 crossref_primary_10_1161_ATVBAHA_115_305464 crossref_primary_10_1038_s41598_020_65851_y crossref_primary_10_1007_s00005_018_0505_y crossref_primary_10_1016_j_clim_2012_04_006 crossref_primary_10_1161_CIRCULATIONAHA_113_003364 crossref_primary_10_1111_iwj_14748 crossref_primary_10_3109_08916934_2012_719952 crossref_primary_10_3389_fimmu_2020_00134 crossref_primary_10_3389_fmed_2023_1185303 crossref_primary_10_1016_j_biomaterials_2017_09_034 crossref_primary_10_1016_j_ahjo_2025_100588 crossref_primary_10_1038_s41577_021_00584_1 crossref_primary_10_1155_2013_261054 crossref_primary_10_1139_bcb_2019_0249 crossref_primary_10_3390_cells11203198 crossref_primary_10_1152_japplphysiol_00173_2014 crossref_primary_10_20900_immunometab20200028 crossref_primary_10_3390_cells10071689 crossref_primary_10_1155_2014_952625 crossref_primary_10_1016_j_thromres_2020_07_039 crossref_primary_10_1007_s11239_025_03179_y crossref_primary_10_1016_j_pharmthera_2022_108328 crossref_primary_10_1016_j_diabres_2020_108528 crossref_primary_10_1161_ATVBAHA_119_312386 crossref_primary_10_1016_j_tem_2012_10_008 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1161/CIRCULATIONAHA.111.046755 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1524-4539 |
| ExternalDocumentID | 22388324 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAEJM AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AARTV AASOK AAUEB AAWTL AAXQO ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACWDW ACWRI ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFCHL AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJJEV AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIK DIWNM DU5 DUNZO E.X E3Z EBS ECM EIF EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GX1 H0~ H13 HZ~ IKREB IKYAY IN~ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A NPM N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ZZMQN ~H1 7X8 ADKSD |
| ID | FETCH-LOGICAL-c463t-8c813a54f95e94423bdebeacc89116f232c25b7e302e4cac1a6f3275463c8f9c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 368 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302557900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-4539 |
| IngestDate | Mon Sep 08 12:42:16 EDT 2025 Mon Jul 21 05:35:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c463t-8c813a54f95e94423bdebeacc89116f232c25b7e302e4cac1a6f3275463c8f9c2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://cris.maastrichtuniversity.nl/en/publications/9f2c0cc3-51e8-41ae-b553-2dd9829168f3 |
| PMID | 22388324 |
| PQID | 968109182 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_968109182 pubmed_primary_22388324 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-04-03 |
| PublicationDateYYYYMMDD | 2012-04-03 |
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Circulation (New York, N.Y.) |
| PublicationTitleAlternate | Circulation |
| PublicationYear | 2012 |
| SSID | ssj0006375 |
| Score | 2.551431 |
| Snippet | Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1673 |
| SubjectTerms | Animals Atherosclerosis - genetics Atherosclerosis - immunology Atherosclerosis - metabolism Autoantigens - genetics Autoantigens - immunology Carotid Stenosis - genetics Carotid Stenosis - immunology Carotid Stenosis - metabolism Dendritic Cells - immunology Dendritic Cells - metabolism DNA - genetics DNA - immunology Female Humans Mice Mice, Inbred C57BL Mice, Knockout Proteins - genetics Proteins - immunology |
| Title | Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22388324 https://www.proquest.com/docview/968109182 |
| Volume | 125 |
| WOSCitedRecordID | wos000302557900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58vx9EEG_R3ebR5CRlVRR0EVHZ29KmCfSw7Wqr6L93kq16Eg9CmVtgmEy_-ZIM3wAcZSl3GXeC8lw7bzKqhJJU5jbKWScTJuhsP93E_b4aDPRd25tTt22VX5gYgDqvjL8jP9VeOEsjGz4bP1M_NMo_rrYTNKZhliGT8UkdD37EwiULOrtYoTjlgul5OAwYIbunvev73uPNRG_2KvG4cYIHxViI34lmKDiXS_90dRkWW6ZJkklqrMCULVdhLSnxlD36IMck9H6GS_VVmL9tn9jXwCWvTUUx3l6mszAkCDkUJT3vJyT0n9t3WxMEhpEf_GXJGOn3KDUfTVXkBEEsD7MTiH8QqElT-fWYDZYEplnV6Araol6Hx8uLh94VbYcxUMMla6gyqstSwZ0WVnMkYVmO-58aoxAupUNiZiKRxZZ1IstNarqpdCyKvdq-UU6baANmyqq0W0CUzQR-Jpex5NZpTCNmOynTWDmlNdE2kK-4DjHZvcNpaavXevgd2W3YnOzNcDwR5RgizVGITnzn78W7sIC0Jwr9N2wPZh3-6HYf5sxbU9QvByGJ0Pbvbj8BxqrT9w |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-antigenic+protein-DNA+complexes+stimulate+plasmacytoid+dendritic+cells+to+promote+atherosclerosis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=D%C3%B6ring%2C+Yvonne&rft.au=Manthey%2C+Helga+D&rft.au=Drechsler%2C+Maik&rft.au=Lievens%2C+Dirk&rft.date=2012-04-03&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=125&rft.issue=13&rft.spage=1673&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.111.046755&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon |