Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis

Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) Jg. 125; H. 13; S. 1673
Hauptverfasser: Döring, Yvonne, Manthey, Helga D, Drechsler, Maik, Lievens, Dirk, Megens, Remco T A, Soehnlein, Oliver, Busch, Martin, Manca, Marco, Koenen, Rory R, Pelisek, Jaroslav, Daemen, Mat J, Lutgens, Esther, Zenke, Martin, Binder, Christoph J, Weber, Christian, Zernecke, Alma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 03.04.2012
Schlagworte:
ISSN:1524-4539, 1524-4539
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive. Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis. Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.
AbstractList Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive. Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis. Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.
Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive.BACKGROUNDInflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive.Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis.METHODS AND RESULTSHere we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis.Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.CONCLUSIONSSelf-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.
Author Koenen, Rory R
Busch, Martin
Drechsler, Maik
Megens, Remco T A
Zenke, Martin
Binder, Christoph J
Weber, Christian
Soehnlein, Oliver
Lievens, Dirk
Pelisek, Jaroslav
Lutgens, Esther
Döring, Yvonne
Zernecke, Alma
Manthey, Helga D
Manca, Marco
Daemen, Mat J
Author_xml – sequence: 1
  givenname: Yvonne
  surname: Döring
  fullname: Döring, Yvonne
  organization: Rudolf Virchow Center, DFG Research Center for Experimental Medicine, University of Würzburg, Josef-Schneider Strasse 2, Würzburg, Germany
– sequence: 2
  givenname: Helga D
  surname: Manthey
  fullname: Manthey, Helga D
– sequence: 3
  givenname: Maik
  surname: Drechsler
  fullname: Drechsler, Maik
– sequence: 4
  givenname: Dirk
  surname: Lievens
  fullname: Lievens, Dirk
– sequence: 5
  givenname: Remco T A
  surname: Megens
  fullname: Megens, Remco T A
– sequence: 6
  givenname: Oliver
  surname: Soehnlein
  fullname: Soehnlein, Oliver
– sequence: 7
  givenname: Martin
  surname: Busch
  fullname: Busch, Martin
– sequence: 8
  givenname: Marco
  surname: Manca
  fullname: Manca, Marco
– sequence: 9
  givenname: Rory R
  surname: Koenen
  fullname: Koenen, Rory R
– sequence: 10
  givenname: Jaroslav
  surname: Pelisek
  fullname: Pelisek, Jaroslav
– sequence: 11
  givenname: Mat J
  surname: Daemen
  fullname: Daemen, Mat J
– sequence: 12
  givenname: Esther
  surname: Lutgens
  fullname: Lutgens, Esther
– sequence: 13
  givenname: Martin
  surname: Zenke
  fullname: Zenke, Martin
– sequence: 14
  givenname: Christoph J
  surname: Binder
  fullname: Binder, Christoph J
– sequence: 15
  givenname: Christian
  surname: Weber
  fullname: Weber, Christian
– sequence: 16
  givenname: Alma
  surname: Zernecke
  fullname: Zernecke, Alma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22388324$$D View this record in MEDLINE/PubMed
BookMark eNpNkFtLw0AQhRep2Iv-BYlPPqXuNdk8hlhtobQg7XPYbCa6kmRjdgP235tiBV9mhuF8hzMzR5PWtoDQA8FLQiLylG3esuM2PWz2u3SdjjuyxDyKhbhCMyIoD7lgyeTfPEVz5z4xxhGLxQ2aUsqkZJTPUJUO3oaq9eYdWqODrrceTBs-79JA26ar4Rtc4Lxphlp5CLpauUbpk7emDEpoy974EdNQ1y7w9sw3o0Og_Af01un6XI27RdeVqh3cXfoCHV9Wh2wdbvevmyzdhppHzIdSS8KU4FUiIOGcsqKEApTWMhkPryijmooiBoYpcK00UVHFaCxGWMsq0XSBHn99xxxfAzifN8adw6kW7ODyJJIEJ0TSUXl_UQ5FA2Xe9aZR_Sn_ew39AR-PbMU
CitedBy_id crossref_primary_10_1016_j_smim_2020_101409
crossref_primary_10_1016_j_autrev_2014_10_010
crossref_primary_10_1016_j_clim_2013_04_017
crossref_primary_10_1093_eurheartj_ehad711
crossref_primary_10_1126_scitranslmed_3005580
crossref_primary_10_3389_fcell_2022_795784
crossref_primary_10_1007_s00395_015_0491_8
crossref_primary_10_1161_CIRCRESAHA_120_315895
crossref_primary_10_1016_j_compbiomed_2021_104459
crossref_primary_10_1007_s00281_013_0402_8
crossref_primary_10_1016_j_atherosclerosis_2014_05_915
crossref_primary_10_3390_jcm9092942
crossref_primary_10_3389_fcvm_2022_894879
crossref_primary_10_1016_j_peptides_2021_170666
crossref_primary_10_3389_fimmu_2023_1324021
crossref_primary_10_1016_j_clim_2024_110308
crossref_primary_10_1161_CIRCRESAHA_114_302153
crossref_primary_10_1161_CIRCULATIONAHA_114_012641
crossref_primary_10_3390_ijms20215293
crossref_primary_10_3389_fcvm_2023_951242
crossref_primary_10_3390_ijms26052336
crossref_primary_10_3389_fimmu_2023_1113904
crossref_primary_10_1016_j_atherosclerosis_2024_117519
crossref_primary_10_1007_s10059_012_0128_9
crossref_primary_10_3389_fcvm_2023_1175673
crossref_primary_10_3390_antibiotics4010062
crossref_primary_10_4049_jimmunol_1201719
crossref_primary_10_1016_j_ajhg_2023_03_013
crossref_primary_10_1155_2021_4026604
crossref_primary_10_1002_ctm2_458
crossref_primary_10_1002_eji_201344291
crossref_primary_10_3390_antiox9060491
crossref_primary_10_3390_biom15040579
crossref_primary_10_1016_j_heliyon_2024_e29194
crossref_primary_10_3389_fimmu_2025_1492726
crossref_primary_10_1016_j_redox_2025_103861
crossref_primary_10_1016_j_pharmthera_2012_10_001
crossref_primary_10_1161_CIRCRESAHA_116_309692
crossref_primary_10_1016_j_cmet_2016_04_010
crossref_primary_10_1016_j_biopha_2024_117476
crossref_primary_10_1038_s41573_019_0054_z
crossref_primary_10_3389_fimmu_2016_00453
crossref_primary_10_1172_JCI184502
crossref_primary_10_3892_mmr_2018_9551
crossref_primary_10_1038_s41598_024_54581_0
crossref_primary_10_1161_ATVBAHA_123_320274
crossref_primary_10_1002_eji_201646542
crossref_primary_10_1016_j_autrev_2015_03_002
crossref_primary_10_1111_bph_13700
crossref_primary_10_1161_CIRCULATIONAHA_114_011090
crossref_primary_10_1097_BOR_0000000000000383
crossref_primary_10_3389_fimmu_2024_1374350
crossref_primary_10_1371_journal_pone_0111888
crossref_primary_10_1016_j_atherosclerosis_2013_12_043
crossref_primary_10_1089_jir_2014_0184
crossref_primary_10_3389_fimmu_2016_00325
crossref_primary_10_1155_2017_3161968
crossref_primary_10_1093_bib_bbae655
crossref_primary_10_1016_j_jacc_2013_07_031
crossref_primary_10_3389_fphys_2014_00279
crossref_primary_10_1371_journal_pone_0155685
crossref_primary_10_1186_s13148_021_01152_z
crossref_primary_10_1016_j_ihj_2019_10_004
crossref_primary_10_1038_s41598_019_52671_y
crossref_primary_10_4049_jimmunol_1402807
crossref_primary_10_1038_s41598_023_35548_z
crossref_primary_10_1016_j_scib_2018_09_014
crossref_primary_10_1371_journal_pone_0307904
crossref_primary_10_3390_ijms21207721
crossref_primary_10_1155_2013_584715
crossref_primary_10_1007_s11596_023_2818_2
crossref_primary_10_1016_j_atherosclerosis_2021_08_033
crossref_primary_10_3389_fgene_2025_1587274
crossref_primary_10_1186_s12943_024_02186_6
crossref_primary_10_1111_bph_13052
crossref_primary_10_1007_s10555_020_09951_1
crossref_primary_10_1371_journal_pone_0088452
crossref_primary_10_1155_2016_2182358
crossref_primary_10_1007_s00383_014_3607_6
crossref_primary_10_1111_eci_13195
crossref_primary_10_1007_s40883_016_0012_9
crossref_primary_10_3390_cells13020157
crossref_primary_10_3390_jcm10173825
crossref_primary_10_1002_adfm_202425035
crossref_primary_10_3389_fcvm_2023_1142296
crossref_primary_10_1161_CIRCULATIONAHA_120_048378
crossref_primary_10_3390_ijms24021169
crossref_primary_10_3390_cells8121528
crossref_primary_10_1155_2020_1230513
crossref_primary_10_1080_20013078_2020_1729646
crossref_primary_10_3390_biomedicines10051152
crossref_primary_10_1161_ATVBAHA_113_302407
crossref_primary_10_1097_MD_0000000000037363
crossref_primary_10_1016_j_atherosclerosis_2013_03_014
crossref_primary_10_1038_nri_2017_10
crossref_primary_10_1016_j_compbiomed_2022_106388
crossref_primary_10_5551_jat_RV22033
crossref_primary_10_1002_art_38703
crossref_primary_10_1093_cvr_cvv138
crossref_primary_10_1371_journal_ppat_1004651
crossref_primary_10_1038_s41569_024_01045_7
crossref_primary_10_1177_1708538120922700
crossref_primary_10_1038_s44161_023_00413_9
crossref_primary_10_1371_journal_pone_0134176
crossref_primary_10_3389_fimmu_2024_1528475
crossref_primary_10_3233_CH_189012
crossref_primary_10_3390_cells10081985
crossref_primary_10_1038_s41569_019_0326_7
crossref_primary_10_1016_j_yexmp_2015_11_011
crossref_primary_10_1111_prd_12025
crossref_primary_10_1097_MOH_0b013e32835a0025
crossref_primary_10_1186_s12944_023_01864_6
crossref_primary_10_1038_s41598_021_86207_0
crossref_primary_10_1038_srep15414
crossref_primary_10_2217_imt_2021_0009
crossref_primary_10_1038_nri_2016_116
crossref_primary_10_1160_TH12_05_0341
crossref_primary_10_1371_journal_pone_0187432
crossref_primary_10_1160_TH12_05_0327
crossref_primary_10_1016_j_ijcard_2018_08_071
crossref_primary_10_3389_fneur_2023_1267136
crossref_primary_10_1016_j_jaut_2022_102863
crossref_primary_10_1038_s41401_025_01519_5
crossref_primary_10_1093_cvr_cvz084
crossref_primary_10_1155_2022_7657379
crossref_primary_10_3389_fcvm_2024_1471153
crossref_primary_10_1007_s11357_024_01463_y
crossref_primary_10_1161_ATVBAHA_116_307786
crossref_primary_10_1016_j_ejphar_2023_175965
crossref_primary_10_1161_CIRCRESAHA_118_311362
crossref_primary_10_3389_fcvm_2022_934314
crossref_primary_10_1160_TH15_08_0623
crossref_primary_10_1161_CIRCRESAHA_114_303479
crossref_primary_10_1161_CIRCULATIONAHA_113_006230
crossref_primary_10_1016_j_imlet_2013_01_014
crossref_primary_10_1186_s12974_025_03340_7
crossref_primary_10_1038_s41598_025_96907_6
crossref_primary_10_1007_s00011_016_0955_9
crossref_primary_10_1160_th15_03_0214
crossref_primary_10_1016_j_ajpath_2023_12_007
crossref_primary_10_1016_j_cyto_2019_154822
crossref_primary_10_1007_s40279_014_0296_1
crossref_primary_10_1093_rheumatology_kead522
crossref_primary_10_3389_fphar_2017_00563
crossref_primary_10_3389_fcvm_2022_833642
crossref_primary_10_1111_jcmm_17018
crossref_primary_10_1016_j_ejphar_2017_08_016
crossref_primary_10_3389_fimmu_2020_01456
crossref_primary_10_3389_fimmu_2023_1219457
crossref_primary_10_3389_fimmu_2023_1098383
crossref_primary_10_1161_CIRCRESAHA_116_302795
crossref_primary_10_1111_bph_14975
crossref_primary_10_1161_ATVBAHA_113_301627
crossref_primary_10_1161_CIRCRESAHA_120_315931
crossref_primary_10_1016_j_phrs_2024_107529
crossref_primary_10_1016_j_jaut_2015_07_001
crossref_primary_10_1155_2022_6306845
crossref_primary_10_1038_s41598_018_37852_5
crossref_primary_10_4049_jimmunol_1302005
crossref_primary_10_1161_CIRCRESAHA_115_307961
crossref_primary_10_1007_s00441_017_2727_4
crossref_primary_10_1093_eurheartj_ehad666
crossref_primary_10_1007_s13167_022_00289_y
crossref_primary_10_1089_dna_2020_6106
crossref_primary_10_1038_s41467_019_09607_x
crossref_primary_10_3389_fphar_2025_1631076
crossref_primary_10_1016_j_imlet_2015_09_006
crossref_primary_10_3892_mmr_2016_4936
crossref_primary_10_1111_jcmm_13462
crossref_primary_10_1097_MD_0000000000040293
crossref_primary_10_1016_j_immuni_2015_07_013
crossref_primary_10_1007_s11427_025_3006_2
crossref_primary_10_1055_a_2609_3457
crossref_primary_10_1007_s00005_016_0418_6
crossref_primary_10_3389_fcvm_2021_661709
crossref_primary_10_1084_jem_20122220
crossref_primary_10_1097_MD_0000000000039065
crossref_primary_10_1038_s41598_020_74579_8
crossref_primary_10_3389_flupu_2025_1607792
crossref_primary_10_1002_art_39247
crossref_primary_10_1155_2016_6467375
crossref_primary_10_1038_s41419_020_2497_x
crossref_primary_10_1016_j_bpj_2023_10_035
crossref_primary_10_1161_ATVBAHA_113_301889
crossref_primary_10_3389_fimmu_2017_00140
crossref_primary_10_1007_s00281_013_0400_x
crossref_primary_10_3389_fimmu_2023_1289223
crossref_primary_10_1146_annurev_immunol_090122_041105
crossref_primary_10_1155_2022_5491038
crossref_primary_10_4049_jimmunol_1500971
crossref_primary_10_3389_fimmu_2019_00817
crossref_primary_10_1038_s41598_017_14365_1
crossref_primary_10_1186_s12920_021_00991_2
crossref_primary_10_3389_fmed_2022_849086
crossref_primary_10_3389_fimmu_2024_1285813
crossref_primary_10_1016_j_jacc_2014_10_018
crossref_primary_10_4049_jimmunol_1701391
crossref_primary_10_1161_ATVBAHA_112_251314
crossref_primary_10_1038_s41598_023_50557_8
crossref_primary_10_3390_ijms242417129
crossref_primary_10_1111_nyas_12392
crossref_primary_10_1016_j_lfs_2023_121867
crossref_primary_10_1016_j_intimp_2023_110130
crossref_primary_10_1038_s41392_025_02201_2
crossref_primary_10_1189_jlb_5BT0615_247R
crossref_primary_10_1161_CIRCRESAHA_114_303312
crossref_primary_10_1007_s11010_024_05097_8
crossref_primary_10_3389_fimmu_2020_581385
crossref_primary_10_1161_CIRCGENETICS_113_000044
crossref_primary_10_1186_s12864_024_10379_y
crossref_primary_10_1371_journal_pntd_0004037
crossref_primary_10_1177_1535370220945989
crossref_primary_10_1097_BOR_0b013e328363eba3
crossref_primary_10_3389_fendo_2023_1032015
crossref_primary_10_1016_j_atherosclerosis_2021_06_912
crossref_primary_10_1016_j_jab_2017_10_002
crossref_primary_10_1016_j_cmet_2015_07_004
crossref_primary_10_3389_fgene_2019_00123
crossref_primary_10_1007_s00018_015_2005_0
crossref_primary_10_1016_j_atherosclerosis_2020_10_001
crossref_primary_10_3892_ijmm_2014_1960
crossref_primary_10_1084_jem_20190459
crossref_primary_10_1172_JCI63108
crossref_primary_10_1007_s10495_023_01923_4
crossref_primary_10_1097_MD_0000000000034918
crossref_primary_10_1016_j_biopha_2023_114586
crossref_primary_10_3390_jcm8091325
crossref_primary_10_3389_fimmu_2017_00928
crossref_primary_10_1007_s00011_013_0617_0
crossref_primary_10_3390_diagnostics12051175
crossref_primary_10_1371_journal_pone_0312383
crossref_primary_10_1093_cvr_cvab329
crossref_primary_10_1097_MOL_0b013e3283555a9c
crossref_primary_10_1155_2022_3235524
crossref_primary_10_1100_2012_157534
crossref_primary_10_1186_s13062_025_00600_7
crossref_primary_10_1155_2017_4323496
crossref_primary_10_1097_MD_0000000000034362
crossref_primary_10_1016_j_autrev_2024_103646
crossref_primary_10_23736_S0392_9590_19_04250_0
crossref_primary_10_1152_physrev_00004_2012
crossref_primary_10_1016_j_intimp_2024_113368
crossref_primary_10_1093_sleep_zsx049
crossref_primary_10_3389_fimmu_2019_03130
crossref_primary_10_3390_ijms232012604
crossref_primary_10_1016_j_arcmed_2013_11_007
crossref_primary_10_1016_j_it_2017_07_001
crossref_primary_10_3389_fimmu_2014_00365
crossref_primary_10_1038_cti_2014_1
crossref_primary_10_1038_s41398_018_0264_x
crossref_primary_10_1161_ATVBAHA_114_303564
crossref_primary_10_1097_MOL_0000000000000537
crossref_primary_10_1161_ATVBAHA_114_303566
crossref_primary_10_3389_fimmu_2024_1437821
crossref_primary_10_2147_IJGM_S350232
crossref_primary_10_1186_s13075_021_02470_6
crossref_primary_10_1146_annurev_med_060911_090007
crossref_primary_10_3390_jcm8111798
crossref_primary_10_1186_s12920_015_0082_4
crossref_primary_10_3390_ijms150916381
crossref_primary_10_1007_s00018_013_1289_1
crossref_primary_10_1016_j_bbalip_2014_11_010
crossref_primary_10_3389_fcvm_2023_1155512
crossref_primary_10_3389_fimmu_2018_02064
crossref_primary_10_1016_j_atherosclerosis_2019_06_919
crossref_primary_10_1161_CIRCRESAHA_114_302761
crossref_primary_10_1016_j_immuni_2015_10_018
crossref_primary_10_1161_CIRCRESAHA_115_306542
crossref_primary_10_1097_SHK_0000000000000221
crossref_primary_10_1093_ndt_gfad266
crossref_primary_10_1038_s41584_022_00770_y
crossref_primary_10_3390_cells11243976
crossref_primary_10_1016_j_genrep_2020_100830
crossref_primary_10_1186_s13040_024_00365_1
crossref_primary_10_3389_fnmol_2024_1477903
crossref_primary_10_3389_fphys_2014_00196
crossref_primary_10_1136_openhrt_2024_002773
crossref_primary_10_1111_imm_12504
crossref_primary_10_1016_j_compbiomed_2022_106450
crossref_primary_10_1038_s41598_024_83925_z
crossref_primary_10_1186_s12933_023_01842_3
crossref_primary_10_1038_s41467_024_51751_6
crossref_primary_10_3390_ijms25042450
crossref_primary_10_1161_ATVBAHA_115_305464
crossref_primary_10_1038_s41598_020_65851_y
crossref_primary_10_1007_s00005_018_0505_y
crossref_primary_10_1016_j_clim_2012_04_006
crossref_primary_10_1161_CIRCULATIONAHA_113_003364
crossref_primary_10_1111_iwj_14748
crossref_primary_10_3109_08916934_2012_719952
crossref_primary_10_3389_fimmu_2020_00134
crossref_primary_10_3389_fmed_2023_1185303
crossref_primary_10_1016_j_biomaterials_2017_09_034
crossref_primary_10_1016_j_ahjo_2025_100588
crossref_primary_10_1038_s41577_021_00584_1
crossref_primary_10_1155_2013_261054
crossref_primary_10_1139_bcb_2019_0249
crossref_primary_10_3390_cells11203198
crossref_primary_10_1152_japplphysiol_00173_2014
crossref_primary_10_20900_immunometab20200028
crossref_primary_10_3390_cells10071689
crossref_primary_10_1155_2014_952625
crossref_primary_10_1016_j_thromres_2020_07_039
crossref_primary_10_1007_s11239_025_03179_y
crossref_primary_10_1016_j_pharmthera_2022_108328
crossref_primary_10_1016_j_diabres_2020_108528
crossref_primary_10_1161_ATVBAHA_119_312386
crossref_primary_10_1016_j_tem_2012_10_008
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCULATIONAHA.111.046755
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
ExternalDocumentID 22388324
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAEJM
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFCHL
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJJEV
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CGR
CS3
CUY
CVF
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
ECM
EIF
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GX1
H0~
H13
HZ~
IKREB
IKYAY
IN~
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
ZZMQN
~H1
7X8
ADKSD
ID FETCH-LOGICAL-c463t-8c813a54f95e94423bdebeacc89116f232c25b7e302e4cac1a6f3275463c8f9c2
IEDL.DBID 7X8
ISICitedReferencesCount 368
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302557900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-4539
IngestDate Mon Sep 08 12:42:16 EDT 2025
Mon Jul 21 05:35:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-8c813a54f95e94423bdebeacc89116f232c25b7e302e4cac1a6f3275463c8f9c2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://cris.maastrichtuniversity.nl/en/publications/9f2c0cc3-51e8-41ae-b553-2dd9829168f3
PMID 22388324
PQID 968109182
PQPubID 23479
ParticipantIDs proquest_miscellaneous_968109182
pubmed_primary_22388324
PublicationCentury 2000
PublicationDate 2012-04-03
PublicationDateYYYYMMDD 2012-04-03
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2012
SSID ssj0006375
Score 2.551431
Snippet Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1673
SubjectTerms Animals
Atherosclerosis - genetics
Atherosclerosis - immunology
Atherosclerosis - metabolism
Autoantigens - genetics
Autoantigens - immunology
Carotid Stenosis - genetics
Carotid Stenosis - immunology
Carotid Stenosis - metabolism
Dendritic Cells - immunology
Dendritic Cells - metabolism
DNA - genetics
DNA - immunology
Female
Humans
Mice
Mice, Inbred C57BL
Mice, Knockout
Proteins - genetics
Proteins - immunology
Title Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis
URI https://www.ncbi.nlm.nih.gov/pubmed/22388324
https://www.proquest.com/docview/968109182
Volume 125
WOSCitedRecordID wos000302557900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58vx9EEG_R3ebR5CRlVRR0EVHZ29KmCfSw7Wqr6L93kq16Eg9CmVtgmEy_-ZIM3wAcZSl3GXeC8lw7bzKqhJJU5jbKWScTJuhsP93E_b4aDPRd25tTt22VX5gYgDqvjL8jP9VeOEsjGz4bP1M_NMo_rrYTNKZhliGT8UkdD37EwiULOrtYoTjlgul5OAwYIbunvev73uPNRG_2KvG4cYIHxViI34lmKDiXS_90dRkWW6ZJkklqrMCULVdhLSnxlD36IMck9H6GS_VVmL9tn9jXwCWvTUUx3l6mszAkCDkUJT3vJyT0n9t3WxMEhpEf_GXJGOn3KDUfTVXkBEEsD7MTiH8QqElT-fWYDZYEplnV6Araol6Hx8uLh94VbYcxUMMla6gyqstSwZ0WVnMkYVmO-58aoxAupUNiZiKRxZZ1IstNarqpdCyKvdq-UU6baANmyqq0W0CUzQR-Jpex5NZpTCNmOynTWDmlNdE2kK-4DjHZvcNpaavXevgd2W3YnOzNcDwR5RgizVGITnzn78W7sIC0Jwr9N2wPZh3-6HYf5sxbU9QvByGJ0Pbvbj8BxqrT9w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-antigenic+protein-DNA+complexes+stimulate+plasmacytoid+dendritic+cells+to+promote+atherosclerosis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=D%C3%B6ring%2C+Yvonne&rft.au=Manthey%2C+Helga+D&rft.au=Drechsler%2C+Maik&rft.au=Lievens%2C+Dirk&rft.date=2012-04-03&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=125&rft.issue=13&rft.spage=1673&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.111.046755&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon