Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-n...
Saved in:
| Published in: | Cell reports (Cambridge) Vol. 23; no. 7; pp. 2130 - 2141 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
15.05.2018
|
| Subjects: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.
[Display omitted]
•IL-18-secreting CAR T cells enhance anti-tumor efficacy via IL-18 autocrine stimulation•IL-18-secreting CAR T cells favorably alter EL4 tumor microenvironment•IL-18-secreting CAR T cells enhance the anti-tumor response of endogenous T cells•IL-18-secreting CAR T cells are efficacious in syngeneic models without preconditioning
Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells. |
|---|---|
| AbstractList | Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. [Display omitted] •IL-18-secreting CAR T cells enhance anti-tumor efficacy via IL-18 autocrine stimulation•IL-18-secreting CAR T cells favorably alter EL4 tumor microenvironment•IL-18-secreting CAR T cells enhance the anti-tumor response of endogenous T cells•IL-18-secreting CAR T cells are efficacious in syngeneic models without preconditioning Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells. Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CART cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. In Brief Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells. Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. |
| Author | Daniyan, Anthony F. Brentjens, Renier J. Purdon, Terence J. Yeku, Oladapo van Leeuwen, Dayenne G. Avanzi, Mauro P. Li, Xinghuo Wijewarnasuriya, Dinali P. Park, Hyebin Cheung, Kenneth Spitzer, Matthew H. |
| AuthorAffiliation | 3 Weill Cornell School of Medicine, New York, NY, USA 1 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA 2 Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA |
| AuthorAffiliation_xml | – name: 1 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – name: 2 Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA – name: 3 Weill Cornell School of Medicine, New York, NY, USA |
| Author_xml | – sequence: 1 givenname: Mauro P. surname: Avanzi fullname: Avanzi, Mauro P. organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 2 givenname: Oladapo surname: Yeku fullname: Yeku, Oladapo email: yekuo@mskcc.org organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 3 givenname: Xinghuo surname: Li fullname: Li, Xinghuo organization: Weill Cornell School of Medicine, New York, NY, USA – sequence: 4 givenname: Dinali P. surname: Wijewarnasuriya fullname: Wijewarnasuriya, Dinali P. organization: Weill Cornell School of Medicine, New York, NY, USA – sequence: 5 givenname: Dayenne G. surname: van Leeuwen fullname: van Leeuwen, Dayenne G. organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 6 givenname: Kenneth surname: Cheung fullname: Cheung, Kenneth organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 7 givenname: Hyebin surname: Park fullname: Park, Hyebin organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 8 givenname: Terence J. surname: Purdon fullname: Purdon, Terence J. organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 9 givenname: Anthony F. surname: Daniyan fullname: Daniyan, Anthony F. organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 10 givenname: Matthew H. surname: Spitzer fullname: Spitzer, Matthew H. organization: Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA – sequence: 11 givenname: Renier J. surname: Brentjens fullname: Brentjens, Renier J. email: brentjer@mskcc.org organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29768210$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcGO0zAQhi20iF2WfQOEfOSSYHsTJ-GAVEqBlRZxoJwt154krhK72E6lPgMvjdN20cIBfLFn5p9_5PmeowvrLCD0kpKcEsrfbHMFg4ddzgitc1LkpKRP0BVjlGaUFdXFo_cluglhS9LhhNKmeIYuWVPxmlFyhX6ubGcsgAeN19PofLaWvoM4h3gJwxDwF9BGRsAr20urUmFho8mOYrxqW6OkOuD3Lvb4g_Gg4nDA0moce--mrscLFc1eRuMsdm3KzkbadWDdFPDdOE4W8LdDiDC-QE9bOQS4Od_X6PvH1Xr5Obv_-uluubjPVMFvY8ZlLTdKq7qkDVDVtA2tN1wXFYdGSU3LlGDAJZNtKeu2gQ0lKUcqTloADrfX6N3JdzdtRtAKbPRyEDtvRukPwkkj_qxY04vO7UXZ1JzVPBm8Pht492OCEMVoQgIySAvpV4KRglRlWfImSV89nvV7yAOBJHh7EijvQvDQCmXicV1ptBkEJWImLrbiRFzMxAUpRCKemou_mh_8_9N2XgCkLe8NeBGUgZntEaDQzvzb4Bev9MqE |
| CitedBy_id | crossref_primary_10_3390_biom11020238 crossref_primary_10_1136_jitc_2020_001053 crossref_primary_10_3390_cancers12082030 crossref_primary_10_1038_s41587_023_02060_8 crossref_primary_10_1080_1354750X_2021_2016973 crossref_primary_10_1038_s41375_020_0874_1 crossref_primary_10_1016_j_semcancer_2022_05_002 crossref_primary_10_3324_haematol_2023_283817 crossref_primary_10_1097_PPO_0000000000000510 crossref_primary_10_1016_j_cytogfr_2020_07_007 crossref_primary_10_3390_cancers13236000 crossref_primary_10_3390_cancers13133236 crossref_primary_10_3390_cancers13225592 crossref_primary_10_3389_fimmu_2023_1063454 crossref_primary_10_1016_j_canlet_2022_215949 crossref_primary_10_1016_j_prp_2025_156036 crossref_primary_10_3389_fimmu_2023_1062365 crossref_primary_10_2147_BTT_S291768 crossref_primary_10_1186_s12943_022_01712_8 crossref_primary_10_1016_j_copbio_2023_103020 crossref_primary_10_3389_fonc_2019_00069 crossref_primary_10_3390_cancers12051075 crossref_primary_10_3389_fimmu_2022_927153 crossref_primary_10_1158_2326_6066_CIR_21_0253 crossref_primary_10_1002_cpt_1280 crossref_primary_10_1126_sciimmunol_abd4344 crossref_primary_10_1136_jitc_2022_006292 crossref_primary_10_1182_blood_2023022293 crossref_primary_10_1002_mog2_40 crossref_primary_10_1186_s13045_023_01492_8 crossref_primary_10_1038_nbt_4195 crossref_primary_10_1158_1078_0432_CCR_21_2681 crossref_primary_10_1016_j_copbio_2020_01_009 crossref_primary_10_1016_j_ccell_2020_07_005 crossref_primary_10_1136_jitc_2021_003737 crossref_primary_10_1038_s41586_022_04801_2 crossref_primary_10_1007_s12026_021_09236_x crossref_primary_10_1080_14712598_2019_1614164 crossref_primary_10_1172_JCI129206 crossref_primary_10_1016_j_lungcan_2021_05_004 crossref_primary_10_1002_EXP_20210058 crossref_primary_10_1038_s41590_020_0676_7 crossref_primary_10_1097_CCO_0000000000000671 crossref_primary_10_3389_fimmu_2021_717850 crossref_primary_10_3389_fimmu_2023_1114770 crossref_primary_10_1038_s41467_019_13088_3 crossref_primary_10_1111_imr_13252 crossref_primary_10_1186_s40364_022_00434_9 crossref_primary_10_1016_j_ymthe_2023_09_021 crossref_primary_10_1080_08820139_2022_2096463 crossref_primary_10_1038_s41589_021_00932_1 crossref_primary_10_3389_fphar_2025_1493346 crossref_primary_10_1016_j_bbmt_2019_02_008 crossref_primary_10_3389_fimmu_2020_589381 crossref_primary_10_1016_j_it_2018_10_003 crossref_primary_10_3390_jpm13111595 crossref_primary_10_1097_CCO_0000000000000562 crossref_primary_10_1186_s40425_019_0741_7 crossref_primary_10_1038_s41587_024_02446_2 crossref_primary_10_1016_j_jconrel_2019_12_047 crossref_primary_10_1186_s12943_024_02047_2 crossref_primary_10_1038_s41573_023_00807_1 crossref_primary_10_1111_nyas_14526 crossref_primary_10_1038_s41392_023_01680_5 crossref_primary_10_1158_2326_6066_CIR_24_0975 crossref_primary_10_1007_s11912_023_01443_z crossref_primary_10_1016_j_omto_2022_03_009 crossref_primary_10_3389_fimmu_2022_887471 crossref_primary_10_1097_CCO_0000000000000653 crossref_primary_10_1016_j_nantod_2022_101621 crossref_primary_10_1016_j_trecan_2025_06_008 crossref_primary_10_3390_cancers14092177 crossref_primary_10_1002_ctm2_1141 crossref_primary_10_1038_s41587_019_0398_2 crossref_primary_10_1016_j_hoc_2023_05_009 crossref_primary_10_1038_s41375_020_0951_5 crossref_primary_10_1111_ejh_14074 crossref_primary_10_1080_15592294_2023_2265625 crossref_primary_10_3389_fped_2021_784024 crossref_primary_10_3390_ijms21228655 crossref_primary_10_3389_fimmu_2022_830292 crossref_primary_10_1080_1744666X_2024_2380894 crossref_primary_10_3390_ijms252212201 crossref_primary_10_3390_ijms242115688 crossref_primary_10_1016_j_pan_2020_02_006 crossref_primary_10_1186_s12920_019_0489_4 crossref_primary_10_3389_fimmu_2024_1489827 crossref_primary_10_1182_blood_2024024063 crossref_primary_10_1007_s40265_022_01702_6 crossref_primary_10_1186_s13045_024_01625_7 crossref_primary_10_3389_fimmu_2022_1090959 crossref_primary_10_1177_2399369319863433 crossref_primary_10_1002_pbc_28313 crossref_primary_10_1016_j_cell_2020_03_001 crossref_primary_10_1016_j_xcrm_2025_102353 crossref_primary_10_3389_fimmu_2024_1465191 crossref_primary_10_1136_jitc_2024_010545 crossref_primary_10_3389_fimmu_2024_1509956 crossref_primary_10_1007_s11684_020_0746_0 crossref_primary_10_1038_s41573_019_0051_2 crossref_primary_10_3389_fimmu_2022_984864 crossref_primary_10_3390_ijms22020640 crossref_primary_10_1016_j_jcyt_2025_05_010 crossref_primary_10_1002_ptr_6784 crossref_primary_10_3390_cancers16122270 crossref_primary_10_1007_s13760_024_02519_8 crossref_primary_10_3390_ijms231911526 crossref_primary_10_3390_cancers16183186 crossref_primary_10_1080_17474086_2020_1753501 crossref_primary_10_3390_mps8050108 crossref_primary_10_1097_MOH_0000000000000614 crossref_primary_10_3390_cancers12020375 crossref_primary_10_1084_jem_20192203 crossref_primary_10_1016_j_canlet_2025_217771 crossref_primary_10_1126_scitranslmed_adh1150 crossref_primary_10_1002_adhm_202002214 crossref_primary_10_3389_fimmu_2022_907022 crossref_primary_10_3390_ijms252312992 crossref_primary_10_1038_s41571_019_0184_6 crossref_primary_10_3390_cancers15061650 crossref_primary_10_1186_s13045_021_01209_9 crossref_primary_10_3892_ijo_2024_5628 crossref_primary_10_1016_j_biomaterials_2019_119265 crossref_primary_10_3389_fimmu_2021_782775 crossref_primary_10_1007_s11596_021_2391_5 crossref_primary_10_1182_blood_2020009515 crossref_primary_10_1002_cyto_a_24158 crossref_primary_10_1038_s41551_022_00875_5 crossref_primary_10_1038_s41586_023_05707_3 crossref_primary_10_3390_ijms232314563 crossref_primary_10_1002_acg2_72 crossref_primary_10_1016_j_cmet_2024_12_007 crossref_primary_10_1038_s41423_020_00555_x crossref_primary_10_1080_1750743X_2025_2536458 crossref_primary_10_1126_scitranslmed_ado9371 crossref_primary_10_1002_hon_2591 crossref_primary_10_1007_s00262_025_04001_7 crossref_primary_10_1002_cpt_1674 crossref_primary_10_1155_2021_6644685 crossref_primary_10_1016_j_coi_2021_02_010 crossref_primary_10_1038_s41571_023_00729_2 crossref_primary_10_1080_1061186X_2022_2032095 crossref_primary_10_3389_fphar_2021_720692 crossref_primary_10_3389_fonc_2023_1275076 crossref_primary_10_3389_fimmu_2022_867154 crossref_primary_10_1007_s11427_019_9665_8 crossref_primary_10_1007_s10555_019_09821_5 crossref_primary_10_1016_j_addr_2021_114032 crossref_primary_10_1186_s40364_022_00391_3 crossref_primary_10_1038_s41467_022_28243_6 crossref_primary_10_3389_fimmu_2025_1643941 crossref_primary_10_1016_j_ymthe_2020_09_015 crossref_primary_10_1080_14737140_2024_2421194 crossref_primary_10_1016_j_beha_2021_101304 crossref_primary_10_1016_j_blre_2024_101241 crossref_primary_10_1080_13543784_2023_2230137 crossref_primary_10_1186_s13045_020_00947_6 crossref_primary_10_1002_ajh_25416 crossref_primary_10_1158_2326_6066_CIR_21_0536 crossref_primary_10_3389_fimmu_2021_684642 crossref_primary_10_1136_jitc_2025_011761 crossref_primary_10_1038_s41417_023_00642_x crossref_primary_10_3389_fimmu_2023_1303935 crossref_primary_10_1186_s12967_023_04117_3 crossref_primary_10_1172_JCI166028 crossref_primary_10_1084_jem_20190589 crossref_primary_10_1136_jitc_2020_001544 crossref_primary_10_1016_j_jconrel_2024_02_033 crossref_primary_10_1158_2326_6066_CIR_19_0908 crossref_primary_10_3389_fimmu_2022_850358 crossref_primary_10_3389_fimmu_2021_652160 crossref_primary_10_3390_ijms24119115 crossref_primary_10_1002_acg2_84 crossref_primary_10_1038_s41573_021_00189_2 crossref_primary_10_1080_1750743X_2024_2408048 crossref_primary_10_1158_2326_6066_CIR_19_0910 crossref_primary_10_3389_fimmu_2023_1165870 crossref_primary_10_1038_nbt_4215 crossref_primary_10_1016_j_tmrv_2019_08_003 crossref_primary_10_1158_1078_0432_CCR_23_3157 crossref_primary_10_1038_s41568_020_00323_z crossref_primary_10_1080_14712598_2021_1857361 crossref_primary_10_1016_j_addr_2020_07_015 crossref_primary_10_1002_INMD_20230047 crossref_primary_10_3389_fimmu_2021_738456 crossref_primary_10_1016_j_molmed_2023_01_006 crossref_primary_10_1016_j_ymthe_2024_06_022 crossref_primary_10_1038_s41571_019_0297_y crossref_primary_10_1136_jitc_2021_003679 crossref_primary_10_1158_2159_8290_CD_20_1661 crossref_primary_10_1016_j_coph_2021_05_005 crossref_primary_10_1016_S0007_4551_19_30048_7 crossref_primary_10_1056_NEJMoa2408771 crossref_primary_10_3390_cells10112940 crossref_primary_10_1016_j_medj_2022_05_001 crossref_primary_10_3390_ph17121629 crossref_primary_10_1002_smll_202506429 crossref_primary_10_1016_j_prp_2025_155947 crossref_primary_10_1007_s11912_021_01161_4 crossref_primary_10_1186_s13045_021_01083_5 crossref_primary_10_3390_cancers14051241 crossref_primary_10_1016_j_biotechadv_2019_06_010 crossref_primary_10_1038_s41586_025_09212_7 crossref_primary_10_3389_fonc_2019_00146 crossref_primary_10_1038_s41591_018_0212_6 crossref_primary_10_1096_fj_201901809R crossref_primary_10_1158_1535_7163_MCT_24_0597 crossref_primary_10_1186_s12967_025_06857_w crossref_primary_10_1016_j_jcis_2022_03_084 crossref_primary_10_1016_j_ymthe_2025_02_029 crossref_primary_10_1186_s12943_025_02334_6 crossref_primary_10_3390_ijms21218000 crossref_primary_10_1016_j_jtct_2024_04_004 crossref_primary_10_1097_BS9_0000000000000025 crossref_primary_10_3389_fimmu_2021_816658 crossref_primary_10_1158_1078_0432_CCR_21_1559 crossref_primary_10_1111_imr_12920 crossref_primary_10_1016_j_apmt_2021_101255 crossref_primary_10_1007_s40265_019_01071_7 crossref_primary_10_1002_jcp_27425 crossref_primary_10_1093_abt_tbac006 crossref_primary_10_1016_j_ymthe_2018_09_008 crossref_primary_10_3390_cancers13040598 crossref_primary_10_1097_COC_0000000000000669 crossref_primary_10_1016_j_omtn_2024_102308 crossref_primary_10_3389_fimmu_2021_681984 crossref_primary_10_3389_fimmu_2022_795164 crossref_primary_10_3389_fmed_2024_1462307 crossref_primary_10_3390_biomedicines10092286 crossref_primary_10_3390_cancers13215367 crossref_primary_10_3390_ijms23063154 crossref_primary_10_1007_s00281_022_00962_4 crossref_primary_10_3389_fimmu_2025_1564998 crossref_primary_10_1007_s13577_024_01066_x crossref_primary_10_1146_annurev_cancerbio_061421_012235 crossref_primary_10_1016_j_ccell_2019_02_006 crossref_primary_10_1016_j_ymthe_2024_05_013 |
| Cites_doi | 10.1182/blood-2011-05-354449 10.1038/nrclinonc.2016.36 10.1158/1078-0432.CCR-13-0458 10.1182/blood-2017-02-769208 10.1038/mt.2014.164 10.1186/s13045-016-0378-7 10.4161/2162402X.2014.994446 10.1038/sj.neo.7900018 10.1126/science.1259425 10.1126/scitranslmed.3008226 10.1016/j.celrep.2017.11.063 10.1016/j.celrep.2017.09.002 10.1158/1078-0432.CCR-07-0674 10.1182/blood-2011-12-400044 10.1182/blood-2005-11-4535 10.1056/NEJMoa1407222 10.1158/1078-0432.CCR-10-0192 10.3389/fimmu.2011.00029 10.1038/leu.2014.215 10.1038/srep14273 10.1182/blood-2013-07-517219 10.1016/S0140-6736(14)61403-3 10.18632/oncotarget.3597 10.1158/2159-8290.CD-15-1020 10.1038/nprot.2015.020 10.1111/j.1600-065X.2006.00442.x 10.1172/JCI83092 10.1016/S1471-4906(02)02302-5 10.1056/NEJMoa1610497 10.1126/scitranslmed.aaa0984 10.1182/blood-2015-08-665547 10.1126/scitranslmed.3002842 10.1126/scitranslmed.3005930 10.1038/nm827 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.celrep.2018.04.051 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 2141 |
| ExternalDocumentID | PMC5986286 29768210 10_1016_j_celrep_2018_04_051 S2211124718306107 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R25 CA020449 – fundername: NCI NIH HHS grantid: P50 CA192937 – fundername: NCI NIH HHS grantid: P01 CA023766 – fundername: NCI NIH HHS grantid: T32 CA009207 – fundername: NIH HHS grantid: DP5 OD023056 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: P01 CA190174 – fundername: NCI NIH HHS grantid: P01 CA059350 – fundername: NCI NIH HHS grantid: K12 CA184746 – fundername: NCI NIH HHS grantid: R01 CA138738 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c463t-6a8abcdc8519e1c9f918b6d476e9cad15f912e6a2af5a8f9eb105f90760fee6e3 |
| ISICitedReferencesCount | 276 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432455600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Tue Sep 30 16:45:39 EDT 2025 Sun Nov 09 11:20:50 EST 2025 Thu Apr 03 07:06:13 EDT 2025 Tue Nov 18 22:07:45 EST 2025 Wed Nov 05 20:54:51 EST 2025 Wed May 17 02:14:14 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | armored CAR B-ALL MUC16 interleukin-18 ovarian cancer IL-18 chimeric antigen receptor adoptive transfer CAR T cell |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c463t-6a8abcdc8519e1c9f918b6d476e9cad15f912e6a2af5a8f9eb105f90760fee6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
| OpenAccessLink | http://dx.doi.org/10.1016/j.celrep.2018.04.051 |
| PMID | 29768210 |
| PQID | 2040755569 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986286 proquest_miscellaneous_2040755569 pubmed_primary_29768210 crossref_citationtrail_10_1016_j_celrep_2018_04_051 crossref_primary_10_1016_j_celrep_2018_04_051 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_04_051 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-15 |
| PublicationDateYYYYMMDD | 2018-05-15 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Brentjens, Latouche, Santos, Marti, Gong, Lyddane, King, Larson, Weiss, Rivière, Sadelain (bib1) 2003; 9 Khan, Kolomeyevskaya, Singel, Grimm, Moysich, Daudi, Grzankowski, Lele, Ylagan, Webster (bib19) 2015; 6 Lee, Kochenderfer, Stetler-Stevenson, Cui, Delbrook, Feldman, Fry, Orentas, Sabatino, Shah (bib22) 2015; 385 Hart, Byrne, Molloy, Usherwood, Berwin (bib14) 2011; 2 Hu, Ren, Luo, Keith, Young, Scholler, Zhao, June (bib15) 2017; 20 Koneru, Purdon, Spriggs, Koneru, Brentjens (bib20) 2015; 4 Mantovani, Sozzani, Locati, Allavena, Sica (bib24) 2002; 23 Yuan, Hsiao, Chen, Chen, Ho, Chen, Liu, Hong, Yu, Chen, Yang (bib33) 2015; 5 Gardner, Wu, Cherian, Fang, Hanafi, Finney, Smithers, Jensen, Riddell, Maloney, Turtle (bib11) 2016; 127 Pegram, Lee, Hayman, Imperato, Tedder, Sadelain, Brentjens (bib27) 2012; 119 Gardner, Finney, Annesley, Brakke, Summers, Leger, Bleakley, Brown, Mgebroff, Kelly-Spratt (bib12) 2017; 129 Chmielewski, Abken (bib7) 2017; 21 Chekmasova, Rao, Nikhamin, Park, Levine, Spriggs, Brentjens (bib5) 2010; 16 Wang, Wang, Lv, Han, Fan, Guo, Wang, Han (bib32) 2015; 23 Brown, Alizadeh, Starr, Weng, Wagner, Naranjo, Ostberg, Blanchard, Kilpatrick, Simpson (bib4) 2016; 375 Kalos, Levine, Porter, Katz, Grupp, Bagg, June (bib18) 2011; 3 Davila, Riviere, Wang, Bartido, Park, Curran, Chung, Stefanski, Borquez-Ojeda, Olszewska (bib8) 2014; 6 Louis, Savoldo, Dotti, Pule, Yvon, Myers, Rossig, Russell, Diouf, Liu (bib23) 2011; 118 Maude, Frey, Shaw, Aplenc, Barrett, Bunin, Chew, Gonzalez, Zheng, Lacey (bib25) 2014; 371 Zunder, Finck, Behbehani, Amir, Krishnaswamy, Gonzalez, Lorang, Bjornson, Spitzer, Bodenmiller (bib34) 2015; 10 Gong, Latouche, Krause, Heston, Bander, Sadelain (bib13) 1999; 1 Feng, Guo, Liu, Dai, Wang, Lv, Huang, Yang, Han (bib9) 2017; 10 Jackson, Rafiq, Brentjens (bib16) 2016; 13 Brentjens, Santos, Nikhamin, Yeh, Matsushita, La Perle, Quintás-Cardama, Larson, Sadelain (bib2) 2007; 13 Gajewski, Meng, Blank, Brown, Kacha, Kline, Harlin (bib10) 2006; 213 O’Rourke, Nasrallah, Desai, Melenhorst, Mansfield, Morrissette, Martinez-Lage, Brem, Maloney, Shen (bib26) 2017; 9 Richards, Chang, Blaser, Caligiuri, Zheng, Liu (bib29) 2006; 108 Cherkassky, Morello, Villena-Vargas, Feng, Dimitrov, Jones, Sadelain, Adusumilli (bib6) 2016; 126 John, Devaud, Duong, Yong, Beavis, Haynes, Chow, Smyth, Kershaw, Darcy (bib17) 2013; 19 Pegram, Purdon, van Leeuwen, Curran, Giralt, Barker, Brentjens (bib28) 2015; 29 Krevvata, Silva, Manavalan, Galan-Diez, Kode, Matthews, Park, Zhang, Galili, Nickolas (bib21) 2014; 124 Brentjens, Davila, Riviere, Park, Wang, Cowell, Bartido, Stefanski, Taylor, Olszewska (bib3) 2013; 5 Spitzer, Gherardini, Fragiadakis, Bhattacharya, Yuan, Hotson, Finck, Carmi, Zunder, Fantl (bib31) 2015; 349 Sotillo, Barrett, Black, Bagashev, Oldridge, Wu, Sussman, Lanauze, Ruella, Gazzara (bib30) 2015; 5 Sotillo (10.1016/j.celrep.2018.04.051_bib30) 2015; 5 Gardner (10.1016/j.celrep.2018.04.051_bib11) 2016; 127 Davila (10.1016/j.celrep.2018.04.051_bib8) 2014; 6 Maude (10.1016/j.celrep.2018.04.051_bib25) 2014; 371 Pegram (10.1016/j.celrep.2018.04.051_bib27) 2012; 119 Richards (10.1016/j.celrep.2018.04.051_bib29) 2006; 108 Spitzer (10.1016/j.celrep.2018.04.051_bib31) 2015; 349 O’Rourke (10.1016/j.celrep.2018.04.051_bib26) 2017; 9 Wang (10.1016/j.celrep.2018.04.051_bib32) 2015; 23 Chmielewski (10.1016/j.celrep.2018.04.051_bib7) 2017; 21 Brentjens (10.1016/j.celrep.2018.04.051_bib2) 2007; 13 Zunder (10.1016/j.celrep.2018.04.051_bib34) 2015; 10 Kalos (10.1016/j.celrep.2018.04.051_bib18) 2011; 3 Pegram (10.1016/j.celrep.2018.04.051_bib28) 2015; 29 Krevvata (10.1016/j.celrep.2018.04.051_bib21) 2014; 124 Brentjens (10.1016/j.celrep.2018.04.051_bib3) 2013; 5 Hart (10.1016/j.celrep.2018.04.051_bib14) 2011; 2 Gong (10.1016/j.celrep.2018.04.051_bib13) 1999; 1 Hu (10.1016/j.celrep.2018.04.051_bib15) 2017; 20 Gardner (10.1016/j.celrep.2018.04.051_bib12) 2017; 129 Jackson (10.1016/j.celrep.2018.04.051_bib16) 2016; 13 Chekmasova (10.1016/j.celrep.2018.04.051_bib5) 2010; 16 Gajewski (10.1016/j.celrep.2018.04.051_bib10) 2006; 213 Lee (10.1016/j.celrep.2018.04.051_bib22) 2015; 385 Cherkassky (10.1016/j.celrep.2018.04.051_bib6) 2016; 126 Feng (10.1016/j.celrep.2018.04.051_bib9) 2017; 10 Yuan (10.1016/j.celrep.2018.04.051_bib33) 2015; 5 Brown (10.1016/j.celrep.2018.04.051_bib4) 2016; 375 Khan (10.1016/j.celrep.2018.04.051_bib19) 2015; 6 Louis (10.1016/j.celrep.2018.04.051_bib23) 2011; 118 John (10.1016/j.celrep.2018.04.051_bib17) 2013; 19 Mantovani (10.1016/j.celrep.2018.04.051_bib24) 2002; 23 Brentjens (10.1016/j.celrep.2018.04.051_bib1) 2003; 9 Koneru (10.1016/j.celrep.2018.04.051_bib20) 2015; 4 |
| References_xml | – volume: 119 start-page: 4133 year: 2012 end-page: 4141 ident: bib27 article-title: Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning publication-title: Blood – volume: 6 start-page: 11310 year: 2015 end-page: 11326 ident: bib19 article-title: Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer publication-title: Oncotarget – volume: 108 start-page: 246 year: 2006 end-page: 252 ident: bib29 article-title: Tumor growth impedes natural-killer-cell maturation in the bone marrow publication-title: Blood – volume: 13 start-page: 370 year: 2016 end-page: 383 ident: bib16 article-title: Driving CAR T-cells forward publication-title: Nat. Rev. Clin. Oncol. – volume: 5 start-page: 14273 year: 2015 ident: bib33 article-title: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression publication-title: Sci. Rep. – volume: 4 start-page: e994446 year: 2015 ident: bib20 article-title: IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors publication-title: OncoImmunology – volume: 349 start-page: 1259425 year: 2015 ident: bib31 article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system publication-title: Science – volume: 126 start-page: 3130 year: 2016 end-page: 3144 ident: bib6 article-title: Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition publication-title: J. Clin. Invest. – volume: 1 start-page: 123 year: 1999 end-page: 127 ident: bib13 article-title: Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen publication-title: Neoplasia – volume: 20 start-page: 3025 year: 2017 end-page: 3033 ident: bib15 article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18 publication-title: Cell Rep. – volume: 29 start-page: 415 year: 2015 end-page: 422 ident: bib28 article-title: IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia publication-title: Leukemia – volume: 23 start-page: 549 year: 2002 end-page: 555 ident: bib24 article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes publication-title: Trends Immunol. – volume: 10 start-page: 316 year: 2015 end-page: 333 ident: bib34 article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm publication-title: Nat. Protoc. – volume: 13 start-page: 5426 year: 2007 end-page: 5435 ident: bib2 article-title: Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts publication-title: Clin. Cancer Res. – volume: 124 start-page: 2834 year: 2014 end-page: 2846 ident: bib21 article-title: Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts publication-title: Blood – volume: 375 start-page: 2561 year: 2016 end-page: 2569 ident: bib4 article-title: Regression of glioblastoma after chimeric antigen receptor T-cell therapy publication-title: N. Engl. J. Med. – volume: 3 start-page: 95ra73 year: 2011 ident: bib18 article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia publication-title: Sci. Transl. Med. – volume: 6 start-page: 224ra25 year: 2014 ident: bib8 article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia publication-title: Sci. Transl. Med. – volume: 118 start-page: 6050 year: 2011 end-page: 6056 ident: bib23 article-title: Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma publication-title: Blood – volume: 9 start-page: 279 year: 2003 end-page: 286 ident: bib1 article-title: Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15 publication-title: Nat. Med. – volume: 5 start-page: 177ra38 year: 2013 ident: bib3 article-title: CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia publication-title: Sci. Transl. Med. – volume: 9 start-page: eaaa0984 year: 2017 ident: bib26 article-title: A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma publication-title: Sci. Transl. Med. – volume: 5 start-page: 1282 year: 2015 end-page: 1295 ident: bib30 article-title: Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy publication-title: Cancer Discov. – volume: 371 start-page: 1507 year: 2014 end-page: 1517 ident: bib25 article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia publication-title: N. Engl. J. Med. – volume: 213 start-page: 131 year: 2006 end-page: 145 ident: bib10 article-title: Immune resistance orchestrated by the tumor microenvironment publication-title: Immunol. Rev. – volume: 16 start-page: 3594 year: 2010 end-page: 3606 ident: bib5 article-title: Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen publication-title: Clin. Cancer Res. – volume: 385 start-page: 517 year: 2015 end-page: 528 ident: bib22 article-title: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial publication-title: Lancet – volume: 127 start-page: 2406 year: 2016 end-page: 2410 ident: bib11 article-title: Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy publication-title: Blood – volume: 2 start-page: 29 year: 2011 ident: bib14 article-title: IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer publication-title: Front. Immunol. – volume: 19 start-page: 5636 year: 2013 end-page: 5646 ident: bib17 article-title: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells publication-title: Clin. Cancer Res. – volume: 10 start-page: 4 year: 2017 ident: bib9 article-title: Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma publication-title: J. Hematol. Oncol. – volume: 21 start-page: 3205 year: 2017 end-page: 3219 ident: bib7 article-title: CAR T cells releasing IL-18 convert to T-Bet publication-title: Cell Rep. – volume: 23 start-page: 184 year: 2015 end-page: 191 ident: bib32 article-title: Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia publication-title: Mol. Ther. – volume: 129 start-page: 3322 year: 2017 end-page: 3331 ident: bib12 article-title: Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults publication-title: Blood – volume: 118 start-page: 6050 year: 2011 ident: 10.1016/j.celrep.2018.04.051_bib23 article-title: Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma publication-title: Blood doi: 10.1182/blood-2011-05-354449 – volume: 13 start-page: 370 year: 2016 ident: 10.1016/j.celrep.2018.04.051_bib16 article-title: Driving CAR T-cells forward publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.36 – volume: 19 start-page: 5636 year: 2013 ident: 10.1016/j.celrep.2018.04.051_bib17 article-title: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-0458 – volume: 129 start-page: 3322 year: 2017 ident: 10.1016/j.celrep.2018.04.051_bib12 article-title: Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults publication-title: Blood doi: 10.1182/blood-2017-02-769208 – volume: 23 start-page: 184 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib32 article-title: Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia publication-title: Mol. Ther. doi: 10.1038/mt.2014.164 – volume: 10 start-page: 4 year: 2017 ident: 10.1016/j.celrep.2018.04.051_bib9 article-title: Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-016-0378-7 – volume: 4 start-page: e994446 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib20 article-title: IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo publication-title: OncoImmunology doi: 10.4161/2162402X.2014.994446 – volume: 1 start-page: 123 year: 1999 ident: 10.1016/j.celrep.2018.04.051_bib13 article-title: Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen publication-title: Neoplasia doi: 10.1038/sj.neo.7900018 – volume: 349 start-page: 1259425 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib31 article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system publication-title: Science doi: 10.1126/science.1259425 – volume: 6 start-page: 224ra25 year: 2014 ident: 10.1016/j.celrep.2018.04.051_bib8 article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3008226 – volume: 21 start-page: 3205 year: 2017 ident: 10.1016/j.celrep.2018.04.051_bib7 article-title: CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.063 – volume: 20 start-page: 3025 year: 2017 ident: 10.1016/j.celrep.2018.04.051_bib15 article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.002 – volume: 13 start-page: 5426 year: 2007 ident: 10.1016/j.celrep.2018.04.051_bib2 article-title: Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-0674 – volume: 119 start-page: 4133 year: 2012 ident: 10.1016/j.celrep.2018.04.051_bib27 article-title: Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning publication-title: Blood doi: 10.1182/blood-2011-12-400044 – volume: 108 start-page: 246 year: 2006 ident: 10.1016/j.celrep.2018.04.051_bib29 article-title: Tumor growth impedes natural-killer-cell maturation in the bone marrow publication-title: Blood doi: 10.1182/blood-2005-11-4535 – volume: 371 start-page: 1507 year: 2014 ident: 10.1016/j.celrep.2018.04.051_bib25 article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1407222 – volume: 16 start-page: 3594 year: 2010 ident: 10.1016/j.celrep.2018.04.051_bib5 article-title: Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-0192 – volume: 2 start-page: 29 year: 2011 ident: 10.1016/j.celrep.2018.04.051_bib14 article-title: IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2011.00029 – volume: 29 start-page: 415 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib28 article-title: IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia publication-title: Leukemia doi: 10.1038/leu.2014.215 – volume: 5 start-page: 14273 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib33 article-title: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression publication-title: Sci. Rep. doi: 10.1038/srep14273 – volume: 124 start-page: 2834 year: 2014 ident: 10.1016/j.celrep.2018.04.051_bib21 article-title: Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts publication-title: Blood doi: 10.1182/blood-2013-07-517219 – volume: 385 start-page: 517 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib22 article-title: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial publication-title: Lancet doi: 10.1016/S0140-6736(14)61403-3 – volume: 6 start-page: 11310 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib19 article-title: Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer publication-title: Oncotarget doi: 10.18632/oncotarget.3597 – volume: 5 start-page: 1282 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib30 article-title: Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1020 – volume: 10 start-page: 316 year: 2015 ident: 10.1016/j.celrep.2018.04.051_bib34 article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.020 – volume: 213 start-page: 131 year: 2006 ident: 10.1016/j.celrep.2018.04.051_bib10 article-title: Immune resistance orchestrated by the tumor microenvironment publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2006.00442.x – volume: 126 start-page: 3130 year: 2016 ident: 10.1016/j.celrep.2018.04.051_bib6 article-title: Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition publication-title: J. Clin. Invest. doi: 10.1172/JCI83092 – volume: 23 start-page: 549 year: 2002 ident: 10.1016/j.celrep.2018.04.051_bib24 article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes publication-title: Trends Immunol. doi: 10.1016/S1471-4906(02)02302-5 – volume: 375 start-page: 2561 year: 2016 ident: 10.1016/j.celrep.2018.04.051_bib4 article-title: Regression of glioblastoma after chimeric antigen receptor T-cell therapy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1610497 – volume: 9 start-page: eaaa0984 year: 2017 ident: 10.1016/j.celrep.2018.04.051_bib26 article-title: A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa0984 – volume: 127 start-page: 2406 year: 2016 ident: 10.1016/j.celrep.2018.04.051_bib11 article-title: Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy publication-title: Blood doi: 10.1182/blood-2015-08-665547 – volume: 3 start-page: 95ra73 year: 2011 ident: 10.1016/j.celrep.2018.04.051_bib18 article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002842 – volume: 5 start-page: 177ra38 year: 2013 ident: 10.1016/j.celrep.2018.04.051_bib3 article-title: CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005930 – volume: 9 start-page: 279 year: 2003 ident: 10.1016/j.celrep.2018.04.051_bib1 article-title: Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15 publication-title: Nat. Med. doi: 10.1038/nm827 |
| SSID | ssj0000601194 |
| Score | 2.6192603 |
| Snippet | Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma.... Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma.... Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma.... Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma.... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2130 |
| SubjectTerms | adoptive transfer Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use armored CAR Autocrine Communication - drug effects B-ALL B-Lymphocytes - drug effects CAR T cell Cell Proliferation - drug effects Cell Survival - drug effects chimeric antigen receptor Disease Models, Animal Humans IL-18 Immune System - drug effects Immune System - metabolism Immunotherapy Immunotherapy, Adoptive interleukin-18 Interleukin-18 - metabolism Mice, Inbred C57BL Mice, SCID MUC16 Neoplasms - drug therapy Neoplasms - immunology Neoplasms - pathology ovarian cancer Signal Transduction - drug effects T-Lymphocytes - drug effects T-Lymphocytes - immunology Tumor Microenvironment - drug effects Xenograft Model Antitumor Assays |
| Title | Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System |
| URI | https://dx.doi.org/10.1016/j.celrep.2018.04.051 https://www.ncbi.nlm.nih.gov/pubmed/29768210 https://www.proquest.com/docview/2040755569 https://pubmed.ncbi.nlm.nih.gov/PMC5986286 |
| Volume | 23 |
| WOSCitedRecordID | wos000432455600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKAhIXxJvyWBmJW5UqdV72sayKQELLHoroLXITR00JSdU2y5a_wC_lXzAT22m7BZY9cIka13ESzxd77Jn5hpDXkmeRnHrCYYGXOn6UTh3OReYgmd0UZhjflQ2J64fo9JRPJuKs0_lpY2HOi6gs-cWFWPxXUUMZCBtDZ68h7rZRKIDfIHQ4gtjh-E-CtwyDoEmO66_V0hk3zt542jtRRbFqjDOgYvZG5Uzb_4flOneayphpGcSWbHpvQIRmQCw2xs9Sp_QZJjYlmnUwGJVpZche32O8iTJE6LuaL966tVCg6dgGi-3uRYBa_z3XIUT1suqd9bdbul9qLP9YyFQuqtaNqKk8gel3VreFn_O5-iaho1b1Mt9oexbm_spte2aTY8DRPq_DPPVYyBh63jFNztlXvykzg7kOXjagjfZGZmP_UeZU820dzCB6M2PeT1QBfYK-f7zhwjW0uHuE3Zcm0ta90XrOzWPdSoytxK4fuxjsf5NFgRA7q3-tNCD5HvpAtK9lAz0bb8TDx_mTInW4ULrs77ujQI3vkbtm5UOHGrH3SUeVD8htnQt185D82OKW7uOWjmmDW2pwSy1u6Ra31OKWIm6pxS0F3FKDW7rFLa0yKMWGLG6pxi3VuH1EPr0djU_eOSZTiJP4obd2QsnlNEkTWD4INUhEJgZ8GqZ-FCqRyHQQQAFToWQyC2B0EqCguFCGVulMqVB5j8lRWZXqKaG-Cr1UZqDXRcoXmSvYIGMiCD2ZBkGSqi7xbLfHiaHRx2wuRfw3qXeJ01610DQyV9SPrERjowprFTcGnF5x5SsLgBhmCjT_yVJBR0IlH9YHQRCKLnmiAdE-C4NVCWcDF-67B5W2ArLQ7_9T5rOGjR4TPDAePrvmGz4nd7Yf-gtytF7W6iW5lZyv89XymNyIJvy4-UR-ATOSA4k |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Tumor-Targeted+T+Cells+Mediate+Enhanced+Anti-Tumor+Efficacy+Both+Directly+and+through+Activation+of+the+Endogenous+Immune+System&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Avanzi%2C+Mauro+P.&rft.au=Yeku%2C+Oladapo&rft.au=Li%2C+Xinghuo&rft.au=Wijewarnasuriya%2C+Dinali+P.&rft.date=2018-05-15&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=7&rft.spage=2130&rft.epage=2141&rft_id=info:doi/10.1016%2Fj.celrep.2018.04.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2018_04_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |