Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System

Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-n...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) Vol. 23; no. 7; pp. 2130 - 2141
Main Authors: Avanzi, Mauro P., Yeku, Oladapo, Li, Xinghuo, Wijewarnasuriya, Dinali P., van Leeuwen, Dayenne G., Cheung, Kenneth, Park, Hyebin, Purdon, Terence J., Daniyan, Anthony F., Spitzer, Matthew H., Brentjens, Renier J.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15.05.2018
Subjects:
ISSN:2211-1247, 2211-1247
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. [Display omitted] •IL-18-secreting CAR T cells enhance anti-tumor efficacy via IL-18 autocrine stimulation•IL-18-secreting CAR T cells favorably alter EL4 tumor microenvironment•IL-18-secreting CAR T cells enhance the anti-tumor response of endogenous T cells•IL-18-secreting CAR T cells are efficacious in syngeneic models without preconditioning Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells.
AbstractList Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. [Display omitted] •IL-18-secreting CAR T cells enhance anti-tumor efficacy via IL-18 autocrine stimulation•IL-18-secreting CAR T cells favorably alter EL4 tumor microenvironment•IL-18-secreting CAR T cells enhance the anti-tumor response of endogenous T cells•IL-18-secreting CAR T cells are efficacious in syngeneic models without preconditioning Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells.
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CART cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy. In Brief Avanzi et al. generate CAR T cells that secrete IL-18 and show improved activity in syngeneic hematologic and solid tumor models without prior preconditioning. They further show enhanced recruitment and anti-tumor activity of endogenous T cells.
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.
Author Daniyan, Anthony F.
Brentjens, Renier J.
Purdon, Terence J.
Yeku, Oladapo
van Leeuwen, Dayenne G.
Avanzi, Mauro P.
Li, Xinghuo
Wijewarnasuriya, Dinali P.
Park, Hyebin
Cheung, Kenneth
Spitzer, Matthew H.
AuthorAffiliation 3 Weill Cornell School of Medicine, New York, NY, USA
1 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
2 Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
AuthorAffiliation_xml – name: 1 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– name: 2 Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
– name: 3 Weill Cornell School of Medicine, New York, NY, USA
Author_xml – sequence: 1
  givenname: Mauro P.
  surname: Avanzi
  fullname: Avanzi, Mauro P.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 2
  givenname: Oladapo
  surname: Yeku
  fullname: Yeku, Oladapo
  email: yekuo@mskcc.org
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 3
  givenname: Xinghuo
  surname: Li
  fullname: Li, Xinghuo
  organization: Weill Cornell School of Medicine, New York, NY, USA
– sequence: 4
  givenname: Dinali P.
  surname: Wijewarnasuriya
  fullname: Wijewarnasuriya, Dinali P.
  organization: Weill Cornell School of Medicine, New York, NY, USA
– sequence: 5
  givenname: Dayenne G.
  surname: van Leeuwen
  fullname: van Leeuwen, Dayenne G.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 6
  givenname: Kenneth
  surname: Cheung
  fullname: Cheung, Kenneth
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 7
  givenname: Hyebin
  surname: Park
  fullname: Park, Hyebin
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 8
  givenname: Terence J.
  surname: Purdon
  fullname: Purdon, Terence J.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 9
  givenname: Anthony F.
  surname: Daniyan
  fullname: Daniyan, Anthony F.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 10
  givenname: Matthew H.
  surname: Spitzer
  fullname: Spitzer, Matthew H.
  organization: Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
– sequence: 11
  givenname: Renier J.
  surname: Brentjens
  fullname: Brentjens, Renier J.
  email: brentjer@mskcc.org
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29768210$$D View this record in MEDLINE/PubMed
BookMark eNqFkcGO0zAQhi20iF2WfQOEfOSSYHsTJ-GAVEqBlRZxoJwt154krhK72E6lPgMvjdN20cIBfLFn5p9_5PmeowvrLCD0kpKcEsrfbHMFg4ddzgitc1LkpKRP0BVjlGaUFdXFo_cluglhS9LhhNKmeIYuWVPxmlFyhX6ubGcsgAeN19PofLaWvoM4h3gJwxDwF9BGRsAr20urUmFho8mOYrxqW6OkOuD3Lvb4g_Gg4nDA0moce--mrscLFc1eRuMsdm3KzkbadWDdFPDdOE4W8LdDiDC-QE9bOQS4Od_X6PvH1Xr5Obv_-uluubjPVMFvY8ZlLTdKq7qkDVDVtA2tN1wXFYdGSU3LlGDAJZNtKeu2gQ0lKUcqTloADrfX6N3JdzdtRtAKbPRyEDtvRukPwkkj_qxY04vO7UXZ1JzVPBm8Pht492OCEMVoQgIySAvpV4KRglRlWfImSV89nvV7yAOBJHh7EijvQvDQCmXicV1ptBkEJWImLrbiRFzMxAUpRCKemou_mh_8_9N2XgCkLe8NeBGUgZntEaDQzvzb4Bev9MqE
CitedBy_id crossref_primary_10_3390_biom11020238
crossref_primary_10_1136_jitc_2020_001053
crossref_primary_10_3390_cancers12082030
crossref_primary_10_1038_s41587_023_02060_8
crossref_primary_10_1080_1354750X_2021_2016973
crossref_primary_10_1038_s41375_020_0874_1
crossref_primary_10_1016_j_semcancer_2022_05_002
crossref_primary_10_3324_haematol_2023_283817
crossref_primary_10_1097_PPO_0000000000000510
crossref_primary_10_1016_j_cytogfr_2020_07_007
crossref_primary_10_3390_cancers13236000
crossref_primary_10_3390_cancers13133236
crossref_primary_10_3390_cancers13225592
crossref_primary_10_3389_fimmu_2023_1063454
crossref_primary_10_1016_j_canlet_2022_215949
crossref_primary_10_1016_j_prp_2025_156036
crossref_primary_10_3389_fimmu_2023_1062365
crossref_primary_10_2147_BTT_S291768
crossref_primary_10_1186_s12943_022_01712_8
crossref_primary_10_1016_j_copbio_2023_103020
crossref_primary_10_3389_fonc_2019_00069
crossref_primary_10_3390_cancers12051075
crossref_primary_10_3389_fimmu_2022_927153
crossref_primary_10_1158_2326_6066_CIR_21_0253
crossref_primary_10_1002_cpt_1280
crossref_primary_10_1126_sciimmunol_abd4344
crossref_primary_10_1136_jitc_2022_006292
crossref_primary_10_1182_blood_2023022293
crossref_primary_10_1002_mog2_40
crossref_primary_10_1186_s13045_023_01492_8
crossref_primary_10_1038_nbt_4195
crossref_primary_10_1158_1078_0432_CCR_21_2681
crossref_primary_10_1016_j_copbio_2020_01_009
crossref_primary_10_1016_j_ccell_2020_07_005
crossref_primary_10_1136_jitc_2021_003737
crossref_primary_10_1038_s41586_022_04801_2
crossref_primary_10_1007_s12026_021_09236_x
crossref_primary_10_1080_14712598_2019_1614164
crossref_primary_10_1172_JCI129206
crossref_primary_10_1016_j_lungcan_2021_05_004
crossref_primary_10_1002_EXP_20210058
crossref_primary_10_1038_s41590_020_0676_7
crossref_primary_10_1097_CCO_0000000000000671
crossref_primary_10_3389_fimmu_2021_717850
crossref_primary_10_3389_fimmu_2023_1114770
crossref_primary_10_1038_s41467_019_13088_3
crossref_primary_10_1111_imr_13252
crossref_primary_10_1186_s40364_022_00434_9
crossref_primary_10_1016_j_ymthe_2023_09_021
crossref_primary_10_1080_08820139_2022_2096463
crossref_primary_10_1038_s41589_021_00932_1
crossref_primary_10_3389_fphar_2025_1493346
crossref_primary_10_1016_j_bbmt_2019_02_008
crossref_primary_10_3389_fimmu_2020_589381
crossref_primary_10_1016_j_it_2018_10_003
crossref_primary_10_3390_jpm13111595
crossref_primary_10_1097_CCO_0000000000000562
crossref_primary_10_1186_s40425_019_0741_7
crossref_primary_10_1038_s41587_024_02446_2
crossref_primary_10_1016_j_jconrel_2019_12_047
crossref_primary_10_1186_s12943_024_02047_2
crossref_primary_10_1038_s41573_023_00807_1
crossref_primary_10_1111_nyas_14526
crossref_primary_10_1038_s41392_023_01680_5
crossref_primary_10_1158_2326_6066_CIR_24_0975
crossref_primary_10_1007_s11912_023_01443_z
crossref_primary_10_1016_j_omto_2022_03_009
crossref_primary_10_3389_fimmu_2022_887471
crossref_primary_10_1097_CCO_0000000000000653
crossref_primary_10_1016_j_nantod_2022_101621
crossref_primary_10_1016_j_trecan_2025_06_008
crossref_primary_10_3390_cancers14092177
crossref_primary_10_1002_ctm2_1141
crossref_primary_10_1038_s41587_019_0398_2
crossref_primary_10_1016_j_hoc_2023_05_009
crossref_primary_10_1038_s41375_020_0951_5
crossref_primary_10_1111_ejh_14074
crossref_primary_10_1080_15592294_2023_2265625
crossref_primary_10_3389_fped_2021_784024
crossref_primary_10_3390_ijms21228655
crossref_primary_10_3389_fimmu_2022_830292
crossref_primary_10_1080_1744666X_2024_2380894
crossref_primary_10_3390_ijms252212201
crossref_primary_10_3390_ijms242115688
crossref_primary_10_1016_j_pan_2020_02_006
crossref_primary_10_1186_s12920_019_0489_4
crossref_primary_10_3389_fimmu_2024_1489827
crossref_primary_10_1182_blood_2024024063
crossref_primary_10_1007_s40265_022_01702_6
crossref_primary_10_1186_s13045_024_01625_7
crossref_primary_10_3389_fimmu_2022_1090959
crossref_primary_10_1177_2399369319863433
crossref_primary_10_1002_pbc_28313
crossref_primary_10_1016_j_cell_2020_03_001
crossref_primary_10_1016_j_xcrm_2025_102353
crossref_primary_10_3389_fimmu_2024_1465191
crossref_primary_10_1136_jitc_2024_010545
crossref_primary_10_3389_fimmu_2024_1509956
crossref_primary_10_1007_s11684_020_0746_0
crossref_primary_10_1038_s41573_019_0051_2
crossref_primary_10_3389_fimmu_2022_984864
crossref_primary_10_3390_ijms22020640
crossref_primary_10_1016_j_jcyt_2025_05_010
crossref_primary_10_1002_ptr_6784
crossref_primary_10_3390_cancers16122270
crossref_primary_10_1007_s13760_024_02519_8
crossref_primary_10_3390_ijms231911526
crossref_primary_10_3390_cancers16183186
crossref_primary_10_1080_17474086_2020_1753501
crossref_primary_10_3390_mps8050108
crossref_primary_10_1097_MOH_0000000000000614
crossref_primary_10_3390_cancers12020375
crossref_primary_10_1084_jem_20192203
crossref_primary_10_1016_j_canlet_2025_217771
crossref_primary_10_1126_scitranslmed_adh1150
crossref_primary_10_1002_adhm_202002214
crossref_primary_10_3389_fimmu_2022_907022
crossref_primary_10_3390_ijms252312992
crossref_primary_10_1038_s41571_019_0184_6
crossref_primary_10_3390_cancers15061650
crossref_primary_10_1186_s13045_021_01209_9
crossref_primary_10_3892_ijo_2024_5628
crossref_primary_10_1016_j_biomaterials_2019_119265
crossref_primary_10_3389_fimmu_2021_782775
crossref_primary_10_1007_s11596_021_2391_5
crossref_primary_10_1182_blood_2020009515
crossref_primary_10_1002_cyto_a_24158
crossref_primary_10_1038_s41551_022_00875_5
crossref_primary_10_1038_s41586_023_05707_3
crossref_primary_10_3390_ijms232314563
crossref_primary_10_1002_acg2_72
crossref_primary_10_1016_j_cmet_2024_12_007
crossref_primary_10_1038_s41423_020_00555_x
crossref_primary_10_1080_1750743X_2025_2536458
crossref_primary_10_1126_scitranslmed_ado9371
crossref_primary_10_1002_hon_2591
crossref_primary_10_1007_s00262_025_04001_7
crossref_primary_10_1002_cpt_1674
crossref_primary_10_1155_2021_6644685
crossref_primary_10_1016_j_coi_2021_02_010
crossref_primary_10_1038_s41571_023_00729_2
crossref_primary_10_1080_1061186X_2022_2032095
crossref_primary_10_3389_fphar_2021_720692
crossref_primary_10_3389_fonc_2023_1275076
crossref_primary_10_3389_fimmu_2022_867154
crossref_primary_10_1007_s11427_019_9665_8
crossref_primary_10_1007_s10555_019_09821_5
crossref_primary_10_1016_j_addr_2021_114032
crossref_primary_10_1186_s40364_022_00391_3
crossref_primary_10_1038_s41467_022_28243_6
crossref_primary_10_3389_fimmu_2025_1643941
crossref_primary_10_1016_j_ymthe_2020_09_015
crossref_primary_10_1080_14737140_2024_2421194
crossref_primary_10_1016_j_beha_2021_101304
crossref_primary_10_1016_j_blre_2024_101241
crossref_primary_10_1080_13543784_2023_2230137
crossref_primary_10_1186_s13045_020_00947_6
crossref_primary_10_1002_ajh_25416
crossref_primary_10_1158_2326_6066_CIR_21_0536
crossref_primary_10_3389_fimmu_2021_684642
crossref_primary_10_1136_jitc_2025_011761
crossref_primary_10_1038_s41417_023_00642_x
crossref_primary_10_3389_fimmu_2023_1303935
crossref_primary_10_1186_s12967_023_04117_3
crossref_primary_10_1172_JCI166028
crossref_primary_10_1084_jem_20190589
crossref_primary_10_1136_jitc_2020_001544
crossref_primary_10_1016_j_jconrel_2024_02_033
crossref_primary_10_1158_2326_6066_CIR_19_0908
crossref_primary_10_3389_fimmu_2022_850358
crossref_primary_10_3389_fimmu_2021_652160
crossref_primary_10_3390_ijms24119115
crossref_primary_10_1002_acg2_84
crossref_primary_10_1038_s41573_021_00189_2
crossref_primary_10_1080_1750743X_2024_2408048
crossref_primary_10_1158_2326_6066_CIR_19_0910
crossref_primary_10_3389_fimmu_2023_1165870
crossref_primary_10_1038_nbt_4215
crossref_primary_10_1016_j_tmrv_2019_08_003
crossref_primary_10_1158_1078_0432_CCR_23_3157
crossref_primary_10_1038_s41568_020_00323_z
crossref_primary_10_1080_14712598_2021_1857361
crossref_primary_10_1016_j_addr_2020_07_015
crossref_primary_10_1002_INMD_20230047
crossref_primary_10_3389_fimmu_2021_738456
crossref_primary_10_1016_j_molmed_2023_01_006
crossref_primary_10_1016_j_ymthe_2024_06_022
crossref_primary_10_1038_s41571_019_0297_y
crossref_primary_10_1136_jitc_2021_003679
crossref_primary_10_1158_2159_8290_CD_20_1661
crossref_primary_10_1016_j_coph_2021_05_005
crossref_primary_10_1016_S0007_4551_19_30048_7
crossref_primary_10_1056_NEJMoa2408771
crossref_primary_10_3390_cells10112940
crossref_primary_10_1016_j_medj_2022_05_001
crossref_primary_10_3390_ph17121629
crossref_primary_10_1002_smll_202506429
crossref_primary_10_1016_j_prp_2025_155947
crossref_primary_10_1007_s11912_021_01161_4
crossref_primary_10_1186_s13045_021_01083_5
crossref_primary_10_3390_cancers14051241
crossref_primary_10_1016_j_biotechadv_2019_06_010
crossref_primary_10_1038_s41586_025_09212_7
crossref_primary_10_3389_fonc_2019_00146
crossref_primary_10_1038_s41591_018_0212_6
crossref_primary_10_1096_fj_201901809R
crossref_primary_10_1158_1535_7163_MCT_24_0597
crossref_primary_10_1186_s12967_025_06857_w
crossref_primary_10_1016_j_jcis_2022_03_084
crossref_primary_10_1016_j_ymthe_2025_02_029
crossref_primary_10_1186_s12943_025_02334_6
crossref_primary_10_3390_ijms21218000
crossref_primary_10_1016_j_jtct_2024_04_004
crossref_primary_10_1097_BS9_0000000000000025
crossref_primary_10_3389_fimmu_2021_816658
crossref_primary_10_1158_1078_0432_CCR_21_1559
crossref_primary_10_1111_imr_12920
crossref_primary_10_1016_j_apmt_2021_101255
crossref_primary_10_1007_s40265_019_01071_7
crossref_primary_10_1002_jcp_27425
crossref_primary_10_1093_abt_tbac006
crossref_primary_10_1016_j_ymthe_2018_09_008
crossref_primary_10_3390_cancers13040598
crossref_primary_10_1097_COC_0000000000000669
crossref_primary_10_1016_j_omtn_2024_102308
crossref_primary_10_3389_fimmu_2021_681984
crossref_primary_10_3389_fimmu_2022_795164
crossref_primary_10_3389_fmed_2024_1462307
crossref_primary_10_3390_biomedicines10092286
crossref_primary_10_3390_cancers13215367
crossref_primary_10_3390_ijms23063154
crossref_primary_10_1007_s00281_022_00962_4
crossref_primary_10_3389_fimmu_2025_1564998
crossref_primary_10_1007_s13577_024_01066_x
crossref_primary_10_1146_annurev_cancerbio_061421_012235
crossref_primary_10_1016_j_ccell_2019_02_006
crossref_primary_10_1016_j_ymthe_2024_05_013
Cites_doi 10.1182/blood-2011-05-354449
10.1038/nrclinonc.2016.36
10.1158/1078-0432.CCR-13-0458
10.1182/blood-2017-02-769208
10.1038/mt.2014.164
10.1186/s13045-016-0378-7
10.4161/2162402X.2014.994446
10.1038/sj.neo.7900018
10.1126/science.1259425
10.1126/scitranslmed.3008226
10.1016/j.celrep.2017.11.063
10.1016/j.celrep.2017.09.002
10.1158/1078-0432.CCR-07-0674
10.1182/blood-2011-12-400044
10.1182/blood-2005-11-4535
10.1056/NEJMoa1407222
10.1158/1078-0432.CCR-10-0192
10.3389/fimmu.2011.00029
10.1038/leu.2014.215
10.1038/srep14273
10.1182/blood-2013-07-517219
10.1016/S0140-6736(14)61403-3
10.18632/oncotarget.3597
10.1158/2159-8290.CD-15-1020
10.1038/nprot.2015.020
10.1111/j.1600-065X.2006.00442.x
10.1172/JCI83092
10.1016/S1471-4906(02)02302-5
10.1056/NEJMoa1610497
10.1126/scitranslmed.aaa0984
10.1182/blood-2015-08-665547
10.1126/scitranslmed.3002842
10.1126/scitranslmed.3005930
10.1038/nm827
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2018.04.051
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 2141
ExternalDocumentID PMC5986286
29768210
10_1016_j_celrep_2018_04_051
S2211124718306107
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R25 CA020449
– fundername: NCI NIH HHS
  grantid: P50 CA192937
– fundername: NCI NIH HHS
  grantid: P01 CA023766
– fundername: NCI NIH HHS
  grantid: T32 CA009207
– fundername: NIH HHS
  grantid: DP5 OD023056
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: P01 CA190174
– fundername: NCI NIH HHS
  grantid: P01 CA059350
– fundername: NCI NIH HHS
  grantid: K12 CA184746
– fundername: NCI NIH HHS
  grantid: R01 CA138738
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c463t-6a8abcdc8519e1c9f918b6d476e9cad15f912e6a2af5a8f9eb105f90760fee6e3
ISICitedReferencesCount 276
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432455600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Tue Sep 30 16:45:39 EDT 2025
Sun Nov 09 11:20:50 EST 2025
Thu Apr 03 07:06:13 EDT 2025
Tue Nov 18 22:07:45 EST 2025
Wed Nov 05 20:54:51 EST 2025
Wed May 17 02:14:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords armored CAR
B-ALL
MUC16
interleukin-18
ovarian cancer
IL-18
chimeric antigen receptor
adoptive transfer
CAR T cell
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-6a8abcdc8519e1c9f918b6d476e9cad15f912e6a2af5a8f9eb105f90760fee6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink http://dx.doi.org/10.1016/j.celrep.2018.04.051
PMID 29768210
PQID 2040755569
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986286
proquest_miscellaneous_2040755569
pubmed_primary_29768210
crossref_citationtrail_10_1016_j_celrep_2018_04_051
crossref_primary_10_1016_j_celrep_2018_04_051
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_04_051
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Brentjens, Latouche, Santos, Marti, Gong, Lyddane, King, Larson, Weiss, Rivière, Sadelain (bib1) 2003; 9
Khan, Kolomeyevskaya, Singel, Grimm, Moysich, Daudi, Grzankowski, Lele, Ylagan, Webster (bib19) 2015; 6
Lee, Kochenderfer, Stetler-Stevenson, Cui, Delbrook, Feldman, Fry, Orentas, Sabatino, Shah (bib22) 2015; 385
Hart, Byrne, Molloy, Usherwood, Berwin (bib14) 2011; 2
Hu, Ren, Luo, Keith, Young, Scholler, Zhao, June (bib15) 2017; 20
Koneru, Purdon, Spriggs, Koneru, Brentjens (bib20) 2015; 4
Mantovani, Sozzani, Locati, Allavena, Sica (bib24) 2002; 23
Yuan, Hsiao, Chen, Chen, Ho, Chen, Liu, Hong, Yu, Chen, Yang (bib33) 2015; 5
Gardner, Wu, Cherian, Fang, Hanafi, Finney, Smithers, Jensen, Riddell, Maloney, Turtle (bib11) 2016; 127
Pegram, Lee, Hayman, Imperato, Tedder, Sadelain, Brentjens (bib27) 2012; 119
Gardner, Finney, Annesley, Brakke, Summers, Leger, Bleakley, Brown, Mgebroff, Kelly-Spratt (bib12) 2017; 129
Chmielewski, Abken (bib7) 2017; 21
Chekmasova, Rao, Nikhamin, Park, Levine, Spriggs, Brentjens (bib5) 2010; 16
Wang, Wang, Lv, Han, Fan, Guo, Wang, Han (bib32) 2015; 23
Brown, Alizadeh, Starr, Weng, Wagner, Naranjo, Ostberg, Blanchard, Kilpatrick, Simpson (bib4) 2016; 375
Kalos, Levine, Porter, Katz, Grupp, Bagg, June (bib18) 2011; 3
Davila, Riviere, Wang, Bartido, Park, Curran, Chung, Stefanski, Borquez-Ojeda, Olszewska (bib8) 2014; 6
Louis, Savoldo, Dotti, Pule, Yvon, Myers, Rossig, Russell, Diouf, Liu (bib23) 2011; 118
Maude, Frey, Shaw, Aplenc, Barrett, Bunin, Chew, Gonzalez, Zheng, Lacey (bib25) 2014; 371
Zunder, Finck, Behbehani, Amir, Krishnaswamy, Gonzalez, Lorang, Bjornson, Spitzer, Bodenmiller (bib34) 2015; 10
Gong, Latouche, Krause, Heston, Bander, Sadelain (bib13) 1999; 1
Feng, Guo, Liu, Dai, Wang, Lv, Huang, Yang, Han (bib9) 2017; 10
Jackson, Rafiq, Brentjens (bib16) 2016; 13
Brentjens, Santos, Nikhamin, Yeh, Matsushita, La Perle, Quintás-Cardama, Larson, Sadelain (bib2) 2007; 13
Gajewski, Meng, Blank, Brown, Kacha, Kline, Harlin (bib10) 2006; 213
O’Rourke, Nasrallah, Desai, Melenhorst, Mansfield, Morrissette, Martinez-Lage, Brem, Maloney, Shen (bib26) 2017; 9
Richards, Chang, Blaser, Caligiuri, Zheng, Liu (bib29) 2006; 108
Cherkassky, Morello, Villena-Vargas, Feng, Dimitrov, Jones, Sadelain, Adusumilli (bib6) 2016; 126
John, Devaud, Duong, Yong, Beavis, Haynes, Chow, Smyth, Kershaw, Darcy (bib17) 2013; 19
Pegram, Purdon, van Leeuwen, Curran, Giralt, Barker, Brentjens (bib28) 2015; 29
Krevvata, Silva, Manavalan, Galan-Diez, Kode, Matthews, Park, Zhang, Galili, Nickolas (bib21) 2014; 124
Brentjens, Davila, Riviere, Park, Wang, Cowell, Bartido, Stefanski, Taylor, Olszewska (bib3) 2013; 5
Spitzer, Gherardini, Fragiadakis, Bhattacharya, Yuan, Hotson, Finck, Carmi, Zunder, Fantl (bib31) 2015; 349
Sotillo, Barrett, Black, Bagashev, Oldridge, Wu, Sussman, Lanauze, Ruella, Gazzara (bib30) 2015; 5
Sotillo (10.1016/j.celrep.2018.04.051_bib30) 2015; 5
Gardner (10.1016/j.celrep.2018.04.051_bib11) 2016; 127
Davila (10.1016/j.celrep.2018.04.051_bib8) 2014; 6
Maude (10.1016/j.celrep.2018.04.051_bib25) 2014; 371
Pegram (10.1016/j.celrep.2018.04.051_bib27) 2012; 119
Richards (10.1016/j.celrep.2018.04.051_bib29) 2006; 108
Spitzer (10.1016/j.celrep.2018.04.051_bib31) 2015; 349
O’Rourke (10.1016/j.celrep.2018.04.051_bib26) 2017; 9
Wang (10.1016/j.celrep.2018.04.051_bib32) 2015; 23
Chmielewski (10.1016/j.celrep.2018.04.051_bib7) 2017; 21
Brentjens (10.1016/j.celrep.2018.04.051_bib2) 2007; 13
Zunder (10.1016/j.celrep.2018.04.051_bib34) 2015; 10
Kalos (10.1016/j.celrep.2018.04.051_bib18) 2011; 3
Pegram (10.1016/j.celrep.2018.04.051_bib28) 2015; 29
Krevvata (10.1016/j.celrep.2018.04.051_bib21) 2014; 124
Brentjens (10.1016/j.celrep.2018.04.051_bib3) 2013; 5
Hart (10.1016/j.celrep.2018.04.051_bib14) 2011; 2
Gong (10.1016/j.celrep.2018.04.051_bib13) 1999; 1
Hu (10.1016/j.celrep.2018.04.051_bib15) 2017; 20
Gardner (10.1016/j.celrep.2018.04.051_bib12) 2017; 129
Jackson (10.1016/j.celrep.2018.04.051_bib16) 2016; 13
Chekmasova (10.1016/j.celrep.2018.04.051_bib5) 2010; 16
Gajewski (10.1016/j.celrep.2018.04.051_bib10) 2006; 213
Lee (10.1016/j.celrep.2018.04.051_bib22) 2015; 385
Cherkassky (10.1016/j.celrep.2018.04.051_bib6) 2016; 126
Feng (10.1016/j.celrep.2018.04.051_bib9) 2017; 10
Yuan (10.1016/j.celrep.2018.04.051_bib33) 2015; 5
Brown (10.1016/j.celrep.2018.04.051_bib4) 2016; 375
Khan (10.1016/j.celrep.2018.04.051_bib19) 2015; 6
Louis (10.1016/j.celrep.2018.04.051_bib23) 2011; 118
John (10.1016/j.celrep.2018.04.051_bib17) 2013; 19
Mantovani (10.1016/j.celrep.2018.04.051_bib24) 2002; 23
Brentjens (10.1016/j.celrep.2018.04.051_bib1) 2003; 9
Koneru (10.1016/j.celrep.2018.04.051_bib20) 2015; 4
References_xml – volume: 119
  start-page: 4133
  year: 2012
  end-page: 4141
  ident: bib27
  article-title: Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning
  publication-title: Blood
– volume: 6
  start-page: 11310
  year: 2015
  end-page: 11326
  ident: bib19
  article-title: Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer
  publication-title: Oncotarget
– volume: 108
  start-page: 246
  year: 2006
  end-page: 252
  ident: bib29
  article-title: Tumor growth impedes natural-killer-cell maturation in the bone marrow
  publication-title: Blood
– volume: 13
  start-page: 370
  year: 2016
  end-page: 383
  ident: bib16
  article-title: Driving CAR T-cells forward
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 5
  start-page: 14273
  year: 2015
  ident: bib33
  article-title: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression
  publication-title: Sci. Rep.
– volume: 4
  start-page: e994446
  year: 2015
  ident: bib20
  article-title: IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors
  publication-title: OncoImmunology
– volume: 349
  start-page: 1259425
  year: 2015
  ident: bib31
  article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system
  publication-title: Science
– volume: 126
  start-page: 3130
  year: 2016
  end-page: 3144
  ident: bib6
  article-title: Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition
  publication-title: J. Clin. Invest.
– volume: 1
  start-page: 123
  year: 1999
  end-page: 127
  ident: bib13
  article-title: Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen
  publication-title: Neoplasia
– volume: 20
  start-page: 3025
  year: 2017
  end-page: 3033
  ident: bib15
  article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18
  publication-title: Cell Rep.
– volume: 29
  start-page: 415
  year: 2015
  end-page: 422
  ident: bib28
  article-title: IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia
  publication-title: Leukemia
– volume: 23
  start-page: 549
  year: 2002
  end-page: 555
  ident: bib24
  article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol.
– volume: 10
  start-page: 316
  year: 2015
  end-page: 333
  ident: bib34
  article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm
  publication-title: Nat. Protoc.
– volume: 13
  start-page: 5426
  year: 2007
  end-page: 5435
  ident: bib2
  article-title: Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts
  publication-title: Clin. Cancer Res.
– volume: 124
  start-page: 2834
  year: 2014
  end-page: 2846
  ident: bib21
  article-title: Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts
  publication-title: Blood
– volume: 375
  start-page: 2561
  year: 2016
  end-page: 2569
  ident: bib4
  article-title: Regression of glioblastoma after chimeric antigen receptor T-cell therapy
  publication-title: N. Engl. J. Med.
– volume: 3
  start-page: 95ra73
  year: 2011
  ident: bib18
  article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: 224ra25
  year: 2014
  ident: bib8
  article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
  publication-title: Sci. Transl. Med.
– volume: 118
  start-page: 6050
  year: 2011
  end-page: 6056
  ident: bib23
  article-title: Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma
  publication-title: Blood
– volume: 9
  start-page: 279
  year: 2003
  end-page: 286
  ident: bib1
  article-title: Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15
  publication-title: Nat. Med.
– volume: 5
  start-page: 177ra38
  year: 2013
  ident: bib3
  article-title: CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia
  publication-title: Sci. Transl. Med.
– volume: 9
  start-page: eaaa0984
  year: 2017
  ident: bib26
  article-title: A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma
  publication-title: Sci. Transl. Med.
– volume: 5
  start-page: 1282
  year: 2015
  end-page: 1295
  ident: bib30
  article-title: Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
  publication-title: Cancer Discov.
– volume: 371
  start-page: 1507
  year: 2014
  end-page: 1517
  ident: bib25
  article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia
  publication-title: N. Engl. J. Med.
– volume: 213
  start-page: 131
  year: 2006
  end-page: 145
  ident: bib10
  article-title: Immune resistance orchestrated by the tumor microenvironment
  publication-title: Immunol. Rev.
– volume: 16
  start-page: 3594
  year: 2010
  end-page: 3606
  ident: bib5
  article-title: Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen
  publication-title: Clin. Cancer Res.
– volume: 385
  start-page: 517
  year: 2015
  end-page: 528
  ident: bib22
  article-title: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
  publication-title: Lancet
– volume: 127
  start-page: 2406
  year: 2016
  end-page: 2410
  ident: bib11
  article-title: Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
  publication-title: Blood
– volume: 2
  start-page: 29
  year: 2011
  ident: bib14
  article-title: IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer
  publication-title: Front. Immunol.
– volume: 19
  start-page: 5636
  year: 2013
  end-page: 5646
  ident: bib17
  article-title: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells
  publication-title: Clin. Cancer Res.
– volume: 10
  start-page: 4
  year: 2017
  ident: bib9
  article-title: Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma
  publication-title: J. Hematol. Oncol.
– volume: 21
  start-page: 3205
  year: 2017
  end-page: 3219
  ident: bib7
  article-title: CAR T cells releasing IL-18 convert to T-Bet
  publication-title: Cell Rep.
– volume: 23
  start-page: 184
  year: 2015
  end-page: 191
  ident: bib32
  article-title: Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia
  publication-title: Mol. Ther.
– volume: 129
  start-page: 3322
  year: 2017
  end-page: 3331
  ident: bib12
  article-title: Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
  publication-title: Blood
– volume: 118
  start-page: 6050
  year: 2011
  ident: 10.1016/j.celrep.2018.04.051_bib23
  article-title: Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma
  publication-title: Blood
  doi: 10.1182/blood-2011-05-354449
– volume: 13
  start-page: 370
  year: 2016
  ident: 10.1016/j.celrep.2018.04.051_bib16
  article-title: Driving CAR T-cells forward
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.36
– volume: 19
  start-page: 5636
  year: 2013
  ident: 10.1016/j.celrep.2018.04.051_bib17
  article-title: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-0458
– volume: 129
  start-page: 3322
  year: 2017
  ident: 10.1016/j.celrep.2018.04.051_bib12
  article-title: Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
  publication-title: Blood
  doi: 10.1182/blood-2017-02-769208
– volume: 23
  start-page: 184
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib32
  article-title: Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2014.164
– volume: 10
  start-page: 4
  year: 2017
  ident: 10.1016/j.celrep.2018.04.051_bib9
  article-title: Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-016-0378-7
– volume: 4
  start-page: e994446
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib20
  article-title: IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo
  publication-title: OncoImmunology
  doi: 10.4161/2162402X.2014.994446
– volume: 1
  start-page: 123
  year: 1999
  ident: 10.1016/j.celrep.2018.04.051_bib13
  article-title: Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900018
– volume: 349
  start-page: 1259425
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib31
  article-title: IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system
  publication-title: Science
  doi: 10.1126/science.1259425
– volume: 6
  start-page: 224ra25
  year: 2014
  ident: 10.1016/j.celrep.2018.04.051_bib8
  article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3008226
– volume: 21
  start-page: 3205
  year: 2017
  ident: 10.1016/j.celrep.2018.04.051_bib7
  article-title: CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.11.063
– volume: 20
  start-page: 3025
  year: 2017
  ident: 10.1016/j.celrep.2018.04.051_bib15
  article-title: Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.002
– volume: 13
  start-page: 5426
  year: 2007
  ident: 10.1016/j.celrep.2018.04.051_bib2
  article-title: Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-07-0674
– volume: 119
  start-page: 4133
  year: 2012
  ident: 10.1016/j.celrep.2018.04.051_bib27
  article-title: Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning
  publication-title: Blood
  doi: 10.1182/blood-2011-12-400044
– volume: 108
  start-page: 246
  year: 2006
  ident: 10.1016/j.celrep.2018.04.051_bib29
  article-title: Tumor growth impedes natural-killer-cell maturation in the bone marrow
  publication-title: Blood
  doi: 10.1182/blood-2005-11-4535
– volume: 371
  start-page: 1507
  year: 2014
  ident: 10.1016/j.celrep.2018.04.051_bib25
  article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1407222
– volume: 16
  start-page: 3594
  year: 2010
  ident: 10.1016/j.celrep.2018.04.051_bib5
  article-title: Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-0192
– volume: 2
  start-page: 29
  year: 2011
  ident: 10.1016/j.celrep.2018.04.051_bib14
  article-title: IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2011.00029
– volume: 29
  start-page: 415
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib28
  article-title: IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2014.215
– volume: 5
  start-page: 14273
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib33
  article-title: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression
  publication-title: Sci. Rep.
  doi: 10.1038/srep14273
– volume: 124
  start-page: 2834
  year: 2014
  ident: 10.1016/j.celrep.2018.04.051_bib21
  article-title: Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts
  publication-title: Blood
  doi: 10.1182/blood-2013-07-517219
– volume: 385
  start-page: 517
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib22
  article-title: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61403-3
– volume: 6
  start-page: 11310
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib19
  article-title: Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3597
– volume: 5
  start-page: 1282
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib30
  article-title: Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-1020
– volume: 10
  start-page: 316
  year: 2015
  ident: 10.1016/j.celrep.2018.04.051_bib34
  article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.020
– volume: 213
  start-page: 131
  year: 2006
  ident: 10.1016/j.celrep.2018.04.051_bib10
  article-title: Immune resistance orchestrated by the tumor microenvironment
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2006.00442.x
– volume: 126
  start-page: 3130
  year: 2016
  ident: 10.1016/j.celrep.2018.04.051_bib6
  article-title: Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI83092
– volume: 23
  start-page: 549
  year: 2002
  ident: 10.1016/j.celrep.2018.04.051_bib24
  article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(02)02302-5
– volume: 375
  start-page: 2561
  year: 2016
  ident: 10.1016/j.celrep.2018.04.051_bib4
  article-title: Regression of glioblastoma after chimeric antigen receptor T-cell therapy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1610497
– volume: 9
  start-page: eaaa0984
  year: 2017
  ident: 10.1016/j.celrep.2018.04.051_bib26
  article-title: A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa0984
– volume: 127
  start-page: 2406
  year: 2016
  ident: 10.1016/j.celrep.2018.04.051_bib11
  article-title: Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
  publication-title: Blood
  doi: 10.1182/blood-2015-08-665547
– volume: 3
  start-page: 95ra73
  year: 2011
  ident: 10.1016/j.celrep.2018.04.051_bib18
  article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002842
– volume: 5
  start-page: 177ra38
  year: 2013
  ident: 10.1016/j.celrep.2018.04.051_bib3
  article-title: CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005930
– volume: 9
  start-page: 279
  year: 2003
  ident: 10.1016/j.celrep.2018.04.051_bib1
  article-title: Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15
  publication-title: Nat. Med.
  doi: 10.1038/nm827
SSID ssj0000601194
Score 2.6192603
Snippet Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma....
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma....
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma....
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2130
SubjectTerms adoptive transfer
Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
armored CAR
Autocrine Communication - drug effects
B-ALL
B-Lymphocytes - drug effects
CAR T cell
Cell Proliferation - drug effects
Cell Survival - drug effects
chimeric antigen receptor
Disease Models, Animal
Humans
IL-18
Immune System - drug effects
Immune System - metabolism
Immunotherapy
Immunotherapy, Adoptive
interleukin-18
Interleukin-18 - metabolism
Mice, Inbred C57BL
Mice, SCID
MUC16
Neoplasms - drug therapy
Neoplasms - immunology
Neoplasms - pathology
ovarian cancer
Signal Transduction - drug effects
T-Lymphocytes - drug effects
T-Lymphocytes - immunology
Tumor Microenvironment - drug effects
Xenograft Model Antitumor Assays
Title Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System
URI https://dx.doi.org/10.1016/j.celrep.2018.04.051
https://www.ncbi.nlm.nih.gov/pubmed/29768210
https://www.proquest.com/docview/2040755569
https://pubmed.ncbi.nlm.nih.gov/PMC5986286
Volume 23
WOSCitedRecordID wos000432455600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKAhIXxJvyWBmJW5UqdV72sayKQELLHoroLXITR00JSdU2y5a_wC_lXzAT22m7BZY9cIka13ESzxd77Jn5hpDXkmeRnHrCYYGXOn6UTh3OReYgmd0UZhjflQ2J64fo9JRPJuKs0_lpY2HOi6gs-cWFWPxXUUMZCBtDZ68h7rZRKIDfIHQ4gtjh-E-CtwyDoEmO66_V0hk3zt542jtRRbFqjDOgYvZG5Uzb_4flOneayphpGcSWbHpvQIRmQCw2xs9Sp_QZJjYlmnUwGJVpZche32O8iTJE6LuaL966tVCg6dgGi-3uRYBa_z3XIUT1suqd9bdbul9qLP9YyFQuqtaNqKk8gel3VreFn_O5-iaho1b1Mt9oexbm_spte2aTY8DRPq_DPPVYyBh63jFNztlXvykzg7kOXjagjfZGZmP_UeZU820dzCB6M2PeT1QBfYK-f7zhwjW0uHuE3Zcm0ta90XrOzWPdSoytxK4fuxjsf5NFgRA7q3-tNCD5HvpAtK9lAz0bb8TDx_mTInW4ULrs77ujQI3vkbtm5UOHGrH3SUeVD8htnQt185D82OKW7uOWjmmDW2pwSy1u6Ra31OKWIm6pxS0F3FKDW7rFLa0yKMWGLG6pxi3VuH1EPr0djU_eOSZTiJP4obd2QsnlNEkTWD4INUhEJgZ8GqZ-FCqRyHQQQAFToWQyC2B0EqCguFCGVulMqVB5j8lRWZXqKaG-Cr1UZqDXRcoXmSvYIGMiCD2ZBkGSqi7xbLfHiaHRx2wuRfw3qXeJ01610DQyV9SPrERjowprFTcGnF5x5SsLgBhmCjT_yVJBR0IlH9YHQRCKLnmiAdE-C4NVCWcDF-67B5W2ArLQ7_9T5rOGjR4TPDAePrvmGz4nd7Yf-gtytF7W6iW5lZyv89XymNyIJvy4-UR-ATOSA4k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Tumor-Targeted+T+Cells+Mediate+Enhanced+Anti-Tumor+Efficacy+Both+Directly+and+through+Activation+of+the+Endogenous+Immune+System&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Avanzi%2C+Mauro+P.&rft.au=Yeku%2C+Oladapo&rft.au=Li%2C+Xinghuo&rft.au=Wijewarnasuriya%2C+Dinali+P.&rft.date=2018-05-15&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=7&rft.spage=2130&rft.epage=2141&rft_id=info:doi/10.1016%2Fj.celrep.2018.04.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2018_04_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon