β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME

Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrener...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell reports (Cambridge) Ročník 37; číslo 4; s. 109883
Hlavní autoři: Mohammadpour, Hemn, MacDonald, Cameron R., McCarthy, Philip L., Abrams, Scott I., Repasky, Elizabeth A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 26.10.2021
Témata:
ISSN:2211-1247, 2211-1247
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrenergic receptor (β2-AR) expression on MDSCs increases with tumor growth and that the β2-AR stress pathway drives the immune suppressive activity of MDSCs by altering their metabolism. We show that β2-AR signaling decreases glycolysis and increases oxidative phosphorylation and fatty acid oxidation (FAO). It also increases expression of the fatty acid transporter CPT1A, which is necessary for the FAO-mediated immunosuppressive function of MDSCs. Moreover, we show that β2-AR signaling increases autophagy and activates the arachidonic acid cycle, both required for increasing the release of the immunosuppressive mediator, PGE2. Our data reveal that β2-AR signaling triggered by stress is an important physiological regulator of key metabolic pathways in MDSCs, driving their immunosuppressive function. [Display omitted] •Tumor progression increases the expression of β2-AR on MDSCs•β2-AR signaling increases fatty acid oxidation and oxidative phosphorylation in MDSCs•β2-AR signaling in MDSCs increases autophagy-mediated PGE2 production Mohammadpour et al. show that β2-AR signaling in MDSCs alters their metabolic state and increases their immunosuppressive function. Specific processes found to be increased include fatty acid oxidation, oxidative phosphorylation, and autophagy. In addition, these metabolic alterations facilitate an increase in PGE2 production via elevated COX2 expression.
AbstractList Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrenergic receptor (β2-AR) expression on MDSCs increases with tumor growth and that the β2-AR stress pathway drives the immune suppressive activity of MDSCs by altering their metabolism. We show that β2-AR signaling decreases glycolysis and increases oxidative phosphorylation and fatty acid oxidation (FAO). It also increases expression of the fatty acid transporter CPT1A, which is necessary for the FAO-mediated immunosuppressive function of MDSCs. Moreover, we show that β2-AR signaling increases autophagy and activates the arachidonic acid cycle, both required for increasing the release of the immunosuppressive mediator, PGE2. Our data reveal that β2-AR signaling triggered by stress is an important physiological regulator of key metabolic pathways in MDSCs, driving their immunosuppressive function. Mohammadpour et al. show that β2-AR signaling in MDSCs alters their metabolic state and increases their immunosuppressive function. Specific processes found to be increased include fatty acid oxidation, oxidative phosphorylation, and autophagy. In addition, these metabolic alterations facilitate an increase in PGE2 production via elevated COX2 expression.
Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrenergic receptor (β2-AR) expression on MDSCs increases with tumor growth and that the β2-AR stress pathway drives the immune suppressive activity of MDSCs by altering their metabolism. We show that β2-AR signaling decreases glycolysis and increases oxidative phosphorylation and fatty acid oxidation (FAO). It also increases expression of the fatty acid transporter CPT1A, which is necessary for the FAO-mediated immunosuppressive function of MDSCs. Moreover, we show that β2-AR signaling increases autophagy and activates the arachidonic acid cycle, both required for increasing the release of the immunosuppressive mediator, PGE2. Our data reveal that β2-AR signaling triggered by stress is an important physiological regulator of key metabolic pathways in MDSCs, driving their immunosuppressive function. [Display omitted] •Tumor progression increases the expression of β2-AR on MDSCs•β2-AR signaling increases fatty acid oxidation and oxidative phosphorylation in MDSCs•β2-AR signaling in MDSCs increases autophagy-mediated PGE2 production Mohammadpour et al. show that β2-AR signaling in MDSCs alters their metabolic state and increases their immunosuppressive function. Specific processes found to be increased include fatty acid oxidation, oxidative phosphorylation, and autophagy. In addition, these metabolic alterations facilitate an increase in PGE2 production via elevated COX2 expression.
Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrenergic receptor (β2-AR) expression on MDSCs increases with tumor growth and that the β2-AR stress pathway drives the immune suppressive activity of MDSCs by altering their metabolism. We show that β2-AR signaling decreases glycolysis and increases oxidative phosphorylation and fatty acid oxidation (FAO). It also increases expression of the fatty acid transporter CPT1A, which is necessary for the FAO-mediated immunosuppressive function of MDSCs. Moreover, we show that β2-AR signaling increases autophagy and activates the arachidonic acid cycle, both required for increasing the release of the immunosuppressive mediator, PGE2. Our data reveal that β2-AR signaling triggered by stress is an important physiological regulator of key metabolic pathways in MDSCs, driving their immunosuppressive function.Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrenergic receptor (β2-AR) expression on MDSCs increases with tumor growth and that the β2-AR stress pathway drives the immune suppressive activity of MDSCs by altering their metabolism. We show that β2-AR signaling decreases glycolysis and increases oxidative phosphorylation and fatty acid oxidation (FAO). It also increases expression of the fatty acid transporter CPT1A, which is necessary for the FAO-mediated immunosuppressive function of MDSCs. Moreover, we show that β2-AR signaling increases autophagy and activates the arachidonic acid cycle, both required for increasing the release of the immunosuppressive mediator, PGE2. Our data reveal that β2-AR signaling triggered by stress is an important physiological regulator of key metabolic pathways in MDSCs, driving their immunosuppressive function.
Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved. Identifying these mechanisms could lead to therapeutic interventions to boost cancer immunotherapy efficacy. Here, we reveal that β2 adrenergic receptor (β2-AR) expression on MDSCs increases with tumor growth and that the β2-AR stress pathway drives the immune suppressive activity of MDSCs by altering their metabolism. We show that β2-AR signaling decreases glycolysis and increases oxidative phosphorylation and fatty acid oxidation (FAO). It also increases expression of the fatty acid transporter CPT1A, which is necessary for the FAO-mediated immunosuppressive function of MDSCs. Moreover, we show that β2-AR signaling increases autophagy and activates the arachidonic acid cycle, both required for increasing the release of the immunosuppressive mediator, PGE2. Our data reveal that β2-AR signaling triggered by stress is an important physiological regulator of key metabolic pathways in MDSCs, driving their immunosuppressive function.
ArticleNumber 109883
Author Repasky, Elizabeth A.
Abrams, Scott I.
MacDonald, Cameron R.
McCarthy, Philip L.
Mohammadpour, Hemn
AuthorAffiliation 2 Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
1 Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
3 Lead contact
AuthorAffiliation_xml – name: 2 Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
– name: 3 Lead contact
– name: 1 Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
Author_xml – sequence: 1
  givenname: Hemn
  orcidid: 0000-0002-0158-7283
  surname: Mohammadpour
  fullname: Mohammadpour, Hemn
  email: hemn.mohammadpour@roswellpark.org
  organization: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
– sequence: 2
  givenname: Cameron R.
  orcidid: 0000-0002-7402-7113
  surname: MacDonald
  fullname: MacDonald, Cameron R.
  organization: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
– sequence: 3
  givenname: Philip L.
  orcidid: 0000-0002-9577-3879
  surname: McCarthy
  fullname: McCarthy, Philip L.
  organization: Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
– sequence: 4
  givenname: Scott I.
  orcidid: 0000-0002-8742-4708
  surname: Abrams
  fullname: Abrams, Scott I.
  organization: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
– sequence: 5
  givenname: Elizabeth A.
  surname: Repasky
  fullname: Repasky, Elizabeth A.
  email: elizabeth.repasky@roswellpark.org
  organization: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34706232$$D View this record in MEDLINE/PubMed
BookMark eNqFUctuFDEQtFAQCSF_gJCPXGaxPc_lgISiQCIFcQlny-Ppme2Vxx5sz0Z7zSfxIXwTHu0GBQ7gi612dVV31UtyYp0FQl5ztuKMV--2Kw3Gw7QSTPBUWjdN_oycCcF5xkVRnzx5n5KLELYsnYpxvi5ekNO8qFklcnFGHn7-EJnqPFjwA2rqQcMUnacBB6sM2iGVhtmoCIGOEFXrTIJNKm7u1T5Q7TGiVoZGR8c9GIdd1oHHHXQ0zNPkIYTElqY1tJ-tjugsvce4QUvjBujdl6tX5HmvTICL431Ovn26uru8zm6_fr65_Hib6aLKY1ZVfalYXyidN02dg2hVUZZlq2tetWvOBe9FXop1CVCyJheNYHUBnNdrXqeqys_JhwPvNLcjdBps9MrIyeOo_F46hfLPH4sbObidbJJvBasSwdsjgXffZwhRjhiWzZQFNwcpyqauqzTTAn3zVOu3yKPxCfD-ANDeheChlxqjWtxJ0mgkZ3IJWm7lIWi5BC0PQafm4q_mR_7_tB0NgOTyDsHLoBGshg5T7FF2Dv9N8Auzy8bh
CitedBy_id crossref_primary_10_1007_s12032_025_02911_1
crossref_primary_10_1038_s41577_023_00949_8
crossref_primary_10_1245_s10434_024_16195_8
crossref_primary_10_3389_fcell_2024_1310442
crossref_primary_10_1016_j_scib_2025_09_034
crossref_primary_10_3389_fimmu_2024_1497468
crossref_primary_10_1038_s41467_024_47096_9
crossref_primary_10_1111_vco_12891
crossref_primary_10_1177_15347354221096081
crossref_primary_10_3390_futurepharmacol5030038
crossref_primary_10_1016_j_jare_2025_08_052
crossref_primary_10_1186_s40364_024_00646_1
crossref_primary_10_1016_j_breast_2025_104474
crossref_primary_10_1186_s13578_023_01138_9
crossref_primary_10_3390_cells11010020
crossref_primary_10_1016_j_smim_2022_101657
crossref_primary_10_3390_cancers14102541
crossref_primary_10_1002_adbi_202300528
crossref_primary_10_1002_mco2_784
crossref_primary_10_1111_crj_70080
crossref_primary_10_1038_s41419_023_05631_4
crossref_primary_10_1016_j_molmed_2023_05_010
crossref_primary_10_1053_j_gastro_2024_05_014
crossref_primary_10_1002_adbi_202200031
crossref_primary_10_1002_eji_202250345
crossref_primary_10_1136_jitc_2025_011609
crossref_primary_10_1002_ctm2_1483
crossref_primary_10_1016_j_intimp_2025_115321
crossref_primary_10_1016_j_bbrc_2024_150042
crossref_primary_10_1136_jitc_2023_007802
crossref_primary_10_1016_j_biopha_2024_116609
crossref_primary_10_1186_s12943_025_02277_y
crossref_primary_10_3390_cancers16010074
crossref_primary_10_1016_j_pharmthera_2025_108849
crossref_primary_10_3389_fcell_2022_896147
crossref_primary_10_3389_fimmu_2022_1102471
crossref_primary_10_1016_j_celrep_2025_116059
crossref_primary_10_1186_s12929_023_00903_9
crossref_primary_10_32604_biocell_2023_027677
crossref_primary_10_32604_or_2024_048564
crossref_primary_10_1016_j_cstres_2024_01_006
crossref_primary_10_1210_endocr_bqad126
crossref_primary_10_1097_CMR_0000000000000943
crossref_primary_10_1007_s11684_025_1124_8
crossref_primary_10_3389_fimmu_2022_842949
crossref_primary_10_1136_jitc_2024_009910
crossref_primary_10_1186_s12943_025_02413_8
crossref_primary_10_1016_j_cophys_2023_100720
crossref_primary_10_3389_fimmu_2025_1653548
crossref_primary_10_1155_2022_8300187
crossref_primary_10_1080_08820139_2023_2232403
crossref_primary_10_3389_fcell_2022_887076
crossref_primary_10_1016_j_bbcan_2025_189447
crossref_primary_10_1038_s41417_025_00886_9
crossref_primary_10_3389_fimmu_2022_1018903
crossref_primary_10_3389_fnins_2023_1321176
crossref_primary_10_3390_cells14070496
crossref_primary_10_3389_fphar_2024_1423502
crossref_primary_10_1186_s12967_025_06657_2
crossref_primary_10_1007_s10549_024_07369_9
crossref_primary_10_1101_gad_352294_124
crossref_primary_10_1038_s41416_022_01891_7
crossref_primary_10_1111_febs_17280
crossref_primary_10_3390_ijms24010767
crossref_primary_10_1038_s41392_025_02241_8
crossref_primary_10_3389_fimmu_2023_1141712
crossref_primary_10_3390_biology13110949
crossref_primary_10_3389_fimmu_2022_937406
crossref_primary_10_1016_j_canlet_2025_217451
crossref_primary_10_1016_j_canlet_2024_217076
crossref_primary_10_1158_2326_6066_CIR_23_0976
crossref_primary_10_3389_fimmu_2022_933847
crossref_primary_10_1186_s10020_025_01132_6
crossref_primary_10_1186_s12943_024_02219_0
crossref_primary_10_1038_s41568_025_00831_w
Cites_doi 10.1189/jlb.1209821
10.1038/ncomms14979
10.1038/s41590-017-0022-x
10.3389/fimmu.2018.00398
10.1007/s00281-020-00815-y
10.1158/2326-6066.CIR-20-0445
10.1172/JCI129502
10.1188/20.CJON.51-57
10.1126/sciimmunol.aay6017
10.1016/j.it.2016.01.004
10.1158/2159-8290.CD-18-1398
10.1080/2162402X.2017.1405205
10.1172/JCI120888
10.1189/jlb.0510303
10.1158/2326-6066.CIR-15-0036
10.3389/fimmu.2019.00475
10.1042/CS20060307
10.1038/cddis.2016.132
10.1038/ni.1937
10.1172/JCI97953
10.3389/fimmu.2019.01399
10.4049/jimmunol.1701019
10.1038/s41416-019-0650-z
10.1007/s00281-012-0342-8
10.1016/j.immuni.2015.09.001
10.1038/s41419-020-02936-6
10.1038/s41593-019-0430-3
10.1189/jlb.3HI0715-305R
10.1038/jid.2015.3
10.1038/s41577-020-00490-y
10.1016/j.it.2014.12.005
10.1155/2019/3809308
10.1016/j.cellimm.2021.104297
10.1126/science.1236361
10.1186/1471-2121-13-18
10.1016/j.cmet.2018.04.022
10.1073/pnas.1304291110
10.1007/s00262-018-2243-8
10.1158/0008-5472.CAN-06-4174
10.4103/1673-5374.244793
10.1158/0008-5472.CAN-17-0546
10.1038/s41416-019-0644-x
10.3389/fimmu.2019.00115
10.1038/s41467-020-17882-2
10.1016/j.cmet.2006.05.011
10.1080/2162402X.2017.1344804
10.1038/s41416-018-0333-1
10.1073/pnas.1306340110
10.1016/j.jnutbio.2015.11.002
10.1096/fj.201801733R
10.3389/fimmu.2020.01371
10.1158/1078-0432.CCR-20-2381
10.15698/cst2019.02.176
10.1093/nar/gkw377
10.3389/fimmu.2019.00172
10.1038/s41586-019-1118-2
10.1111/imr.12655
10.1016/j.pharmthera.2006.11.006
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2021.109883
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 109883
ExternalDocumentID PMC8601406
34706232
10_1016_j_celrep_2021_109883
S221112472101353X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA205246
– fundername: NCI NIH HHS
  grantid: F32 CA239356
– fundername: NCI NIH HHS
  grantid: R01 CA172105
– fundername: NCI NIH HHS
  grantid: T32 CA085183
– fundername: NHLBI NIH HHS
  grantid: K99 HL155792
– fundername: NCI NIH HHS
  grantid: R01 CA099326
– fundername: NCI NIH HHS
  grantid: P30 CA016056
– fundername: NCI NIH HHS
  grantid: F30 CA265127
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c463t-66f5a0f4ac38873e2ba4555bc716b91121f235295ee5083282074e117917295a3
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711887800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Tue Sep 30 17:04:15 EDT 2025
Wed Oct 01 14:49:47 EDT 2025
Thu Jan 02 22:55:16 EST 2025
Wed Nov 05 20:54:18 EST 2025
Tue Nov 18 21:35:26 EST 2025
Tue Jul 25 21:02:19 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords stress
MDSCs
autophagy
prostaglandin E2
cancer
metabolism
β-adrenergic signaling
fatty acid oxidation
immune suppression
oxidative phosphorylation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-66f5a0f4ac38873e2ba4555bc716b91121f235295ee5083282074e117917295a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
H.M. initiated and H.M., C.R.M., S.I.A., and E.A.R. designed the study; H.M. performed the experiments, with assistance from C.R.M. H.M., C.R.M., P.L.M., S.I.A., and E.A.R. analyzed and interpreted the data and wrote the paper.
AUTHOR CONTRIBUTIONS
ORCID 0000-0002-8742-4708
0000-0002-0158-7283
0000-0002-9577-3879
0000-0002-7402-7113
OpenAccessLink http://dx.doi.org/10.1016/j.celrep.2021.109883
PMID 34706232
PQID 2587765556
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8601406
proquest_miscellaneous_2587765556
pubmed_primary_34706232
crossref_citationtrail_10_1016_j_celrep_2021_109883
crossref_primary_10_1016_j_celrep_2021_109883
elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109883
PublicationCentury 2000
PublicationDate 2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Qiao, Chen, Mohammadpour, MacDonald, Bucsek, Hylander, Barbi, Repasky (bib40) 2021; 9
Raud, McGuire, Jones, Sparwasser, Berod (bib43) 2018; 283
Li, Tanikawa, Kryczek, Xia, Li, Wu, Wei, Zhao, Vatan, Wen (bib28) 2018; 28
Yan, Adeshakin, Xu, Afolabi, Zhang, Chen, Wan (bib57) 2019; 10
Kokolus, Capitano, Lee, Eng, Waight, Hylander, Sexton, Hong, Gordon, Abrams, Repasky (bib23) 2013; 110
Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann (bib26) 2016; 44
Alissafi, Hatzioannou, Mintzas, Barouni, Banos, Sormendi, Polyzos, Xilouri, Wielockx, Gogas, Verginis (bib3) 2018; 128
Gandhi, Pandey, Attwood, Ji, Witkiewicz, Knudsen, Allen, Tario, Wallace, Cedeno (bib13) 2021; 27
Veglia, Tyurin, Blasi, De Leo, Kossenkov, Donthireddy, To, Schug, Basu, Wang (bib50) 2019; 569
Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib48) 2006; 4
Qiao, Bucsek, Winder, Chen, Giridharan, Olejniczak, Hylander, Repasky (bib39) 2019; 68
Won, Deshane, Leavenworth, Oliva, Griguer (bib55) 2019; 3
Groth, Hu, Weber, Fleming, Altevogt, Utikal, Umansky (bib15) 2019; 120
Kokolus, Zhang, Sivik, Schmeck, Zhu, Repasky, Drabick, Schell (bib24) 2017; 7
Nakanishi, Rosenberg (bib33) 2013; 35
Ramos, Arnsten (bib42) 2007; 113
Hammami, Chen, Murschel, Bronte, De Crescenzo, Jolicoeur (bib16) 2012; 13
Wang, DuBois (bib53) 2018; 128
Roca-Agujetas, de Dios, Lestón, Marí, Morales, Colell (bib44) 2019; 2019
Al-Khami, Zheng, Del Valle, Hossain, Wyczechowska, Zabaleta, Sanchez, Dean, Rodriguez, Ochoa (bib2) 2017; 6
Bucsek, Qiao, MacDonald, Giridharan, Evans, Niedzwecki, Liu, Kokolus, Eng, Messmer (bib8) 2017; 77
Pawelec, Picard, Bueno, Verschoor, Ostrand-Rosenberg (bib38) 2021; 362
Wang, Ding, Guo, Wang (bib54) 2019; 10
Ouzounova, Lee, Piranlioglu, El Andaloussi, Kolhe, Demirci, Marasco, Asm, Chadli, Hassan (bib36) 2017; 8
Lochner, Berod, Sparwasser (bib29) 2015; 36
Tomić, Joksimović, Bekić, Vasiljević, Milanović, Čolić, Vučević (bib47) 2019; 10
Magnon, Hall, Lin, Xue, Gerber, Freedland, Frenette (bib30) 2013; 341
Gosain, Gage-Bouchard, Ambrosone, Repasky, Gandhi (bib14) 2020; 42
Hubler, Kennedy (bib21) 2016; 34
Alshetaiwi, Pervolarakis, McIntyre, Ma, Nguyen, Rath, Nee, Hernandez, Evans, Torosian (bib4) 2020; 5
Bosc, Broin, Fanjul, Saland, Farge, Courdy, Batut, Masoud, Larrue, Skuli (bib7) 2020; 11
Cluxton, Petrasca, Moran, Fletcher (bib9) 2019; 10
He, Ren, Guo, Deng (bib17) 2019; 14
Veglia, Perego, Gabrilovich (bib49) 2018; 19
Kamiya, Hayama, Kato, Shimomura, Shimomura, Irie, Kaneko, Yanagawa, Kobayashi, Ochiya (bib22) 2019; 22
Holubarsch, Rohrbach, Karrasch, Boehm, Polonski, Ponikowski, Rhein (bib18) 2007; 113
Xiong, Wen, Fairchild, Zaytseva, Weiss, Evers, Gao (bib56) 2020; 11
Biswas (bib5) 2015; 43
Ou, Shi, Dong, Liu, Schmidt, Nagarkatti, Nagarkatti, Fan, Ai (bib35) 2015; 135
Abuatiq, Brown, Wolles, Randall (bib1) 2020; 24
Hossain, Al-Khami, Wyczechowska, Hernandez, Zheng, Reiss, Valle, Trillo-Tinoco, Maj, Zou (bib19) 2015; 3
Ostrand-Rosenberg, Fenselau (bib34) 2018; 200
Biswas, Mantovani (bib6) 2010; 11
Yang, Li, Liu, Dai, Bazhin (bib58) 2020; 11
Hu, Pang, Lin, Zhen, Yi (bib20) 2020; 122
Mohammadpour, MacDonald, Qiao, Chen, Dong, Hylander, McCarthy, Abrams, Repasky (bib31) 2019; 129
Serafini (bib45) 2010; 88
Nachmany, Bogoch, Sivan, Amar, Bondar, Zohar, Yakubovsky, Fainaru, Klausner, Pencovich (bib32) 2019; 33
Faulkner, Jobling, March, Jiang, Hondermarck (bib11) 2019; 9
Vistein, Puthenveedu (bib52) 2013; 110
Parker, Horn, Ostrand-Rosenberg (bib37) 2016; 100
Koundouros, Poulogiannis (bib25) 2020; 122
Eruslanov, Daurkin, Ortiz, Vieweg, Kusmartsev (bib10) 2010; 88
Veglia, Sanseviero, Gabrilovich (bib51) 2021; 21
Sinha, Clements, Fulton, Ostrand-Rosenberg (bib46) 2007; 67
Kumar, Patel, Tcyganov, Gabrilovich (bib27) 2016; 37
Qu, Zeng, Liu, Wang, Deng (bib41) 2016; 7
Fleming, Hu, Weber, Nagibin, Groth, Altevogt, Utikal, Umansky (bib12) 2018; 9
Bucsek (10.1016/j.celrep.2021.109883_bib8) 2017; 77
Gosain (10.1016/j.celrep.2021.109883_bib14) 2020; 42
Hossain (10.1016/j.celrep.2021.109883_bib19) 2015; 3
Qu (10.1016/j.celrep.2021.109883_bib41) 2016; 7
Roca-Agujetas (10.1016/j.celrep.2021.109883_bib44) 2019; 2019
Tomić (10.1016/j.celrep.2021.109883_bib47) 2019; 10
Hammami (10.1016/j.celrep.2021.109883_bib16) 2012; 13
Al-Khami (10.1016/j.celrep.2021.109883_bib2) 2017; 6
Kokolus (10.1016/j.celrep.2021.109883_bib24) 2017; 7
Alshetaiwi (10.1016/j.celrep.2021.109883_bib4) 2020; 5
Won (10.1016/j.celrep.2021.109883_bib55) 2019; 3
Bosc (10.1016/j.celrep.2021.109883_bib7) 2020; 11
Nakanishi (10.1016/j.celrep.2021.109883_bib33) 2013; 35
Vistein (10.1016/j.celrep.2021.109883_bib52) 2013; 110
Sinha (10.1016/j.celrep.2021.109883_bib46) 2007; 67
Kokolus (10.1016/j.celrep.2021.109883_bib23) 2013; 110
Veglia (10.1016/j.celrep.2021.109883_bib49) 2018; 19
Cluxton (10.1016/j.celrep.2021.109883_bib9) 2019; 10
Magnon (10.1016/j.celrep.2021.109883_bib30) 2013; 341
Eruslanov (10.1016/j.celrep.2021.109883_bib10) 2010; 88
Kamiya (10.1016/j.celrep.2021.109883_bib22) 2019; 22
Fleming (10.1016/j.celrep.2021.109883_bib12) 2018; 9
He (10.1016/j.celrep.2021.109883_bib17) 2019; 14
Hu (10.1016/j.celrep.2021.109883_bib20) 2020; 122
Wang (10.1016/j.celrep.2021.109883_bib53) 2018; 128
Faulkner (10.1016/j.celrep.2021.109883_bib11) 2019; 9
Biswas (10.1016/j.celrep.2021.109883_bib5) 2015; 43
Mohammadpour (10.1016/j.celrep.2021.109883_bib31) 2019; 129
Ouzounova (10.1016/j.celrep.2021.109883_bib36) 2017; 8
Koundouros (10.1016/j.celrep.2021.109883_bib25) 2020; 122
Lochner (10.1016/j.celrep.2021.109883_bib29) 2015; 36
Raud (10.1016/j.celrep.2021.109883_bib43) 2018; 283
Serafini (10.1016/j.celrep.2021.109883_bib45) 2010; 88
Biswas (10.1016/j.celrep.2021.109883_bib6) 2010; 11
Nachmany (10.1016/j.celrep.2021.109883_bib32) 2019; 33
Li (10.1016/j.celrep.2021.109883_bib28) 2018; 28
Ramos (10.1016/j.celrep.2021.109883_bib42) 2007; 113
Yang (10.1016/j.celrep.2021.109883_bib58) 2020; 11
Pawelec (10.1016/j.celrep.2021.109883_bib38) 2021; 362
Qiao (10.1016/j.celrep.2021.109883_bib39) 2019; 68
Abuatiq (10.1016/j.celrep.2021.109883_bib1) 2020; 24
Yan (10.1016/j.celrep.2021.109883_bib57) 2019; 10
Groth (10.1016/j.celrep.2021.109883_bib15) 2019; 120
Veglia (10.1016/j.celrep.2021.109883_bib51) 2021; 21
Kuleshov (10.1016/j.celrep.2021.109883_bib26) 2016; 44
Qiao (10.1016/j.celrep.2021.109883_bib40) 2021; 9
Ostrand-Rosenberg (10.1016/j.celrep.2021.109883_bib34) 2018; 200
Xiong (10.1016/j.celrep.2021.109883_bib56) 2020; 11
Vats (10.1016/j.celrep.2021.109883_bib48) 2006; 4
Alissafi (10.1016/j.celrep.2021.109883_bib3) 2018; 128
Ou (10.1016/j.celrep.2021.109883_bib35) 2015; 135
Kumar (10.1016/j.celrep.2021.109883_bib27) 2016; 37
Wang (10.1016/j.celrep.2021.109883_bib54) 2019; 10
Veglia (10.1016/j.celrep.2021.109883_bib50) 2019; 569
Gandhi (10.1016/j.celrep.2021.109883_bib13) 2021; 27
Parker (10.1016/j.celrep.2021.109883_bib37) 2016; 100
Holubarsch (10.1016/j.celrep.2021.109883_bib18) 2007; 113
Hubler (10.1016/j.celrep.2021.109883_bib21) 2016; 34
References_xml – volume: 9
  start-page: 398
  year: 2018
  ident: bib12
  article-title: Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression
  publication-title: Front. Immunol.
– volume: 122
  start-page: 4
  year: 2020
  end-page: 22
  ident: bib25
  article-title: Reprogramming of fatty acid metabolism in cancer
  publication-title: Br. J. Cancer
– volume: 128
  start-page: 2732
  year: 2018
  end-page: 2742
  ident: bib53
  article-title: Role of prostanoids in gastrointestinal cancer
  publication-title: J. Clin. Invest.
– volume: 34
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib21
  article-title: Role of lipids in the metabolism and activation of immune cells
  publication-title: J. Nutr. Biochem.
– volume: 77
  start-page: 5639
  year: 2017
  end-page: 5651
  ident: bib8
  article-title: β-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy
  publication-title: Cancer Res.
– volume: 36
  start-page: 81
  year: 2015
  end-page: 91
  ident: bib29
  article-title: Fatty acid metabolism in the regulation of T cell function
  publication-title: Trends Immunol.
– volume: 113
  start-page: 523
  year: 2007
  end-page: 536
  ident: bib42
  article-title: Adrenergic pharmacology and cognition: focus on the prefrontal cortex
  publication-title: Pharmacol. Ther.
– volume: 68
  start-page: 11
  year: 2019
  end-page: 22
  ident: bib39
  article-title: β-Adrenergic signaling blocks murine CD8
  publication-title: Cancer Immunol. Immunother.
– volume: 88
  start-page: 827
  year: 2010
  end-page: 829
  ident: bib45
  article-title: Editorial: PGE2-producing MDSC: a role in tumor progression?
  publication-title: J. Leukoc. Biol.
– volume: 7
  start-page: e1405205
  year: 2017
  ident: bib24
  article-title: Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice
  publication-title: OncoImmunology
– volume: 22
  start-page: 1289
  year: 2019
  end-page: 1305
  ident: bib22
  article-title: Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression
  publication-title: Nat. Neurosci.
– volume: 33
  start-page: 5967
  year: 2019
  end-page: 5978
  ident: bib32
  article-title: CD11b
  publication-title: FASEB J.
– volume: 100
  start-page: 463
  year: 2016
  end-page: 470
  ident: bib37
  article-title: High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy
  publication-title: J. Leukoc. Biol.
– volume: 3
  start-page: 47
  year: 2019
  end-page: 65
  ident: bib55
  article-title: Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma
  publication-title: Cell Stress
– volume: 8
  start-page: 14979
  year: 2017
  ident: bib36
  article-title: Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade
  publication-title: Nat. Commun.
– volume: 24
  start-page: 51
  year: 2020
  end-page: 57
  ident: bib1
  article-title: Perceptions of stress: patient and caregiver experiences with stressors during hospitalization
  publication-title: Clin. J. Oncol. Nurs.
– volume: 35
  start-page: 123
  year: 2013
  end-page: 137
  ident: bib33
  article-title: Multifaceted roles of PGE 2 in inflammation and cancer
  publication-title: Semin. Immunopathol.
– volume: 10
  start-page: 1399
  year: 2019
  ident: bib57
  article-title: Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor
  publication-title: Front. Immunol.
– volume: 200
  start-page: 422
  year: 2018
  end-page: 431
  ident: bib34
  article-title: Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment
  publication-title: J. Immunol.
– volume: 110
  start-page: 15289
  year: 2013
  end-page: 15294
  ident: bib52
  article-title: Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: W90
  year: 2016
  end-page: W97
  ident: bib26
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
– volume: 362
  start-page: 104297
  year: 2021
  ident: bib38
  article-title: MDSCs, ageing and inflammageing
  publication-title: Cell. Immunol.
– volume: 14
  start-page: 280
  year: 2019
  end-page: 288
  ident: bib17
  article-title: Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke
  publication-title: Neural Regen. Res.
– volume: 10
  start-page: 115
  year: 2019
  ident: bib9
  article-title: Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis
  publication-title: Front. Immunol.
– volume: 122
  start-page: 23
  year: 2020
  end-page: 29
  ident: bib20
  article-title: Energy metabolism manipulates the fate and function of tumour myeloid-derived suppressor cells
  publication-title: Br. J. Cancer
– volume: 7
  start-page: e2226
  year: 2016
  ident: bib41
  article-title: Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer
  publication-title: Cell Death Dis.
– volume: 37
  start-page: 208
  year: 2016
  end-page: 220
  ident: bib27
  article-title: The nature of myeloid-derived suppressor cells in the tumor microenvironment
  publication-title: Trends Immunol.
– volume: 5
  start-page: eaay6017
  year: 2020
  ident: bib4
  article-title: Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics
  publication-title: Sci. Immunol.
– volume: 43
  start-page: 435
  year: 2015
  end-page: 449
  ident: bib5
  article-title: Metabolic reprogramming of immune cells in cancer progression
  publication-title: Immunity
– volume: 113
  start-page: 205
  year: 2007
  end-page: 212
  ident: bib18
  article-title: A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study
  publication-title: Clin. Sci. (Lond.)
– volume: 283
  start-page: 213
  year: 2018
  end-page: 231
  ident: bib43
  article-title: Fatty acid metabolism in CD8
  publication-title: Immunol. Rev.
– volume: 21
  start-page: 485
  year: 2021
  end-page: 498
  ident: bib51
  article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
  publication-title: Nat. Rev. Immunol.
– volume: 10
  start-page: 172
  year: 2019
  ident: bib54
  article-title: MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation
  publication-title: Front. Immunol.
– volume: 11
  start-page: 736
  year: 2020
  ident: bib56
  article-title: Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer
  publication-title: Cell Death Dis.
– volume: 11
  start-page: 4056
  year: 2020
  ident: bib7
  article-title: Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites
  publication-title: Nat. Commun.
– volume: 88
  start-page: 839
  year: 2010
  end-page: 848
  ident: bib10
  article-title: Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE
  publication-title: J. Leukoc. Biol.
– volume: 4
  start-page: 13
  year: 2006
  end-page: 24
  ident: bib48
  article-title: Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
– volume: 67
  start-page: 4507
  year: 2007
  end-page: 4513
  ident: bib46
  article-title: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells
  publication-title: Cancer Res.
– volume: 19
  start-page: 108
  year: 2018
  end-page: 119
  ident: bib49
  article-title: Myeloid-derived suppressor cells coming of age
  publication-title: Nat. Immunol.
– volume: 6
  start-page: e1344804
  year: 2017
  ident: bib2
  article-title: Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells
  publication-title: OncoImmunology
– volume: 27
  start-page: 87
  year: 2021
  end-page: 95
  ident: bib13
  article-title: Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor Activity
  publication-title: Clin. Cancer Res.
– volume: 110
  start-page: 20176
  year: 2013
  end-page: 20181
  ident: bib23
  article-title: Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 120
  start-page: 16
  year: 2019
  end-page: 25
  ident: bib15
  article-title: Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression
  publication-title: Br. J. Cancer
– volume: 135
  start-page: 1425
  year: 2015
  end-page: 1434
  ident: bib35
  article-title: Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells
  publication-title: J. Invest. Dermatol.
– volume: 2019
  start-page: 3809308
  year: 2019
  ident: bib44
  article-title: Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress
  publication-title: Oxid. Med. Cell. Longev.
– volume: 13
  start-page: 18
  year: 2012
  ident: bib16
  article-title: Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models
  publication-title: BMC Cell Biol.
– volume: 129
  start-page: 5537
  year: 2019
  end-page: 5552
  ident: bib31
  article-title: β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 1371
  year: 2020
  ident: bib58
  article-title: Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation
  publication-title: Front. Immunol.
– volume: 28
  start-page: 87
  year: 2018
  end-page: 103.e6
  ident: bib28
  article-title: Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer
  publication-title: Cell Metab.
– volume: 3
  start-page: 1236
  year: 2015
  end-page: 1247
  ident: bib19
  article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
  publication-title: Cancer Immunol. Res.
– volume: 341
  start-page: 1236361
  year: 2013
  ident: bib30
  article-title: Autonomic nerve development contributes to prostate cancer progression
  publication-title: Science
– volume: 10
  start-page: 475
  year: 2019
  ident: bib47
  article-title: Prostaglanin-E2 potentiates the suppressive functions of human mononuclear myeloid-derived suppressor cells and increases their capacity to expand IL-10-producing regulatory T cell subsets
  publication-title: Front. Immunol.
– volume: 42
  start-page: 719
  year: 2020
  end-page: 734
  ident: bib14
  article-title: Stress reduction strategies in breast cancer: review of pharmacologic and non-pharmacologic based strategies
  publication-title: Semin. Immunopathol.
– volume: 128
  start-page: 3840
  year: 2018
  end-page: 3852
  ident: bib3
  article-title: Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
– volume: 569
  start-page: 73
  year: 2019
  end-page: 78
  ident: bib50
  article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer
  publication-title: Nature
– volume: 11
  start-page: 889
  year: 2010
  end-page: 896
  ident: bib6
  article-title: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
  publication-title: Nat. Immunol.
– volume: 9
  start-page: 651
  year: 2021
  end-page: 664
  ident: bib40
  article-title: Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment
  publication-title: Cancer Immunol. Res.
– volume: 9
  start-page: 702
  year: 2019
  end-page: 710
  ident: bib11
  article-title: Tumor neurobiology and the war of nerves in cancer
  publication-title: Cancer Discov.
– volume: 88
  start-page: 839
  year: 2010
  ident: 10.1016/j.celrep.2021.109883_bib10
  article-title: Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1209821
– volume: 8
  start-page: 14979
  year: 2017
  ident: 10.1016/j.celrep.2021.109883_bib36
  article-title: Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14979
– volume: 19
  start-page: 108
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib49
  article-title: Myeloid-derived suppressor cells coming of age
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0022-x
– volume: 9
  start-page: 398
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib12
  article-title: Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00398
– volume: 42
  start-page: 719
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib14
  article-title: Stress reduction strategies in breast cancer: review of pharmacologic and non-pharmacologic based strategies
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-020-00815-y
– volume: 9
  start-page: 651
  year: 2021
  ident: 10.1016/j.celrep.2021.109883_bib40
  article-title: Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-20-0445
– volume: 129
  start-page: 5537
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib31
  article-title: β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI129502
– volume: 24
  start-page: 51
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib1
  article-title: Perceptions of stress: patient and caregiver experiences with stressors during hospitalization
  publication-title: Clin. J. Oncol. Nurs.
  doi: 10.1188/20.CJON.51-57
– volume: 5
  start-page: eaay6017
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib4
  article-title: Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aay6017
– volume: 37
  start-page: 208
  year: 2016
  ident: 10.1016/j.celrep.2021.109883_bib27
  article-title: The nature of myeloid-derived suppressor cells in the tumor microenvironment
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2016.01.004
– volume: 9
  start-page: 702
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib11
  article-title: Tumor neurobiology and the war of nerves in cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-18-1398
– volume: 7
  start-page: e1405205
  year: 2017
  ident: 10.1016/j.celrep.2021.109883_bib24
  article-title: Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1405205
– volume: 128
  start-page: 3840
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib3
  article-title: Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI120888
– volume: 88
  start-page: 827
  year: 2010
  ident: 10.1016/j.celrep.2021.109883_bib45
  article-title: Editorial: PGE2-producing MDSC: a role in tumor progression?
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0510303
– volume: 3
  start-page: 1236
  year: 2015
  ident: 10.1016/j.celrep.2021.109883_bib19
  article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-15-0036
– volume: 10
  start-page: 475
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib47
  article-title: Prostaglanin-E2 potentiates the suppressive functions of human mononuclear myeloid-derived suppressor cells and increases their capacity to expand IL-10-producing regulatory T cell subsets
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00475
– volume: 113
  start-page: 205
  year: 2007
  ident: 10.1016/j.celrep.2021.109883_bib18
  article-title: A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS20060307
– volume: 7
  start-page: e2226
  year: 2016
  ident: 10.1016/j.celrep.2021.109883_bib41
  article-title: Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.132
– volume: 11
  start-page: 889
  year: 2010
  ident: 10.1016/j.celrep.2021.109883_bib6
  article-title: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1937
– volume: 128
  start-page: 2732
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib53
  article-title: Role of prostanoids in gastrointestinal cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI97953
– volume: 10
  start-page: 1399
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib57
  article-title: Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01399
– volume: 200
  start-page: 422
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib34
  article-title: Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1701019
– volume: 122
  start-page: 4
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib25
  article-title: Reprogramming of fatty acid metabolism in cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0650-z
– volume: 35
  start-page: 123
  year: 2013
  ident: 10.1016/j.celrep.2021.109883_bib33
  article-title: Multifaceted roles of PGE 2 in inflammation and cancer
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-012-0342-8
– volume: 43
  start-page: 435
  year: 2015
  ident: 10.1016/j.celrep.2021.109883_bib5
  article-title: Metabolic reprogramming of immune cells in cancer progression
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.09.001
– volume: 11
  start-page: 736
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib56
  article-title: Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-02936-6
– volume: 22
  start-page: 1289
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib22
  article-title: Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0430-3
– volume: 100
  start-page: 463
  year: 2016
  ident: 10.1016/j.celrep.2021.109883_bib37
  article-title: High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.3HI0715-305R
– volume: 135
  start-page: 1425
  year: 2015
  ident: 10.1016/j.celrep.2021.109883_bib35
  article-title: Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2015.3
– volume: 21
  start-page: 485
  year: 2021
  ident: 10.1016/j.celrep.2021.109883_bib51
  article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-00490-y
– volume: 36
  start-page: 81
  year: 2015
  ident: 10.1016/j.celrep.2021.109883_bib29
  article-title: Fatty acid metabolism in the regulation of T cell function
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.12.005
– volume: 2019
  start-page: 3809308
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib44
  article-title: Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/3809308
– volume: 362
  start-page: 104297
  year: 2021
  ident: 10.1016/j.celrep.2021.109883_bib38
  article-title: MDSCs, ageing and inflammageing
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2021.104297
– volume: 341
  start-page: 1236361
  year: 2013
  ident: 10.1016/j.celrep.2021.109883_bib30
  article-title: Autonomic nerve development contributes to prostate cancer progression
  publication-title: Science
  doi: 10.1126/science.1236361
– volume: 13
  start-page: 18
  year: 2012
  ident: 10.1016/j.celrep.2021.109883_bib16
  article-title: Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models
  publication-title: BMC Cell Biol.
  doi: 10.1186/1471-2121-13-18
– volume: 28
  start-page: 87
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib28
  article-title: Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.04.022
– volume: 110
  start-page: 20176
  year: 2013
  ident: 10.1016/j.celrep.2021.109883_bib23
  article-title: Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1304291110
– volume: 68
  start-page: 11
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib39
  article-title: β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-018-2243-8
– volume: 67
  start-page: 4507
  year: 2007
  ident: 10.1016/j.celrep.2021.109883_bib46
  article-title: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-4174
– volume: 14
  start-page: 280
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib17
  article-title: Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.244793
– volume: 77
  start-page: 5639
  year: 2017
  ident: 10.1016/j.celrep.2021.109883_bib8
  article-title: β-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0546
– volume: 122
  start-page: 23
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib20
  article-title: Energy metabolism manipulates the fate and function of tumour myeloid-derived suppressor cells
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0644-x
– volume: 10
  start-page: 115
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib9
  article-title: Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00115
– volume: 11
  start-page: 4056
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib7
  article-title: Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17882-2
– volume: 4
  start-page: 13
  year: 2006
  ident: 10.1016/j.celrep.2021.109883_bib48
  article-title: Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.011
– volume: 6
  start-page: e1344804
  year: 2017
  ident: 10.1016/j.celrep.2021.109883_bib2
  article-title: Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1344804
– volume: 120
  start-page: 16
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib15
  article-title: Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-018-0333-1
– volume: 110
  start-page: 15289
  year: 2013
  ident: 10.1016/j.celrep.2021.109883_bib52
  article-title: Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1306340110
– volume: 34
  start-page: 1
  year: 2016
  ident: 10.1016/j.celrep.2021.109883_bib21
  article-title: Role of lipids in the metabolism and activation of immune cells
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2015.11.002
– volume: 33
  start-page: 5967
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib32
  article-title: CD11b+Ly6G+ myeloid-derived suppressor cells promote liver regeneration in a murine model of major hepatectomy
  publication-title: FASEB J.
  doi: 10.1096/fj.201801733R
– volume: 11
  start-page: 1371
  year: 2020
  ident: 10.1016/j.celrep.2021.109883_bib58
  article-title: Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01371
– volume: 27
  start-page: 87
  year: 2021
  ident: 10.1016/j.celrep.2021.109883_bib13
  article-title: Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor Activity
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-2381
– volume: 3
  start-page: 47
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib55
  article-title: Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma
  publication-title: Cell Stress
  doi: 10.15698/cst2019.02.176
– volume: 44
  start-page: W90
  issue: W1
  year: 2016
  ident: 10.1016/j.celrep.2021.109883_bib26
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 10
  start-page: 172
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib54
  article-title: MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00172
– volume: 569
  start-page: 73
  year: 2019
  ident: 10.1016/j.celrep.2021.109883_bib50
  article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1118-2
– volume: 283
  start-page: 213
  year: 2018
  ident: 10.1016/j.celrep.2021.109883_bib43
  article-title: Fatty acid metabolism in CD8+ T cell memory: challenging current concepts
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12655
– volume: 113
  start-page: 523
  year: 2007
  ident: 10.1016/j.celrep.2021.109883_bib42
  article-title: Adrenergic pharmacology and cognition: focus on the prefrontal cortex
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2006.11.006
SSID ssj0000601194
Score 2.5780172
Snippet Myeloid-derived suppressor cells (MDSCs) impede antitumor immunity; however, the precise mechanisms that regulate their suppressive function remain unresolved....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109883
SubjectTerms Animals
autophagy
cancer
fatty acid oxidation
immune suppression
Lipid Metabolism - genetics
Lipid Metabolism - immunology
MDSCs
metabolism
Mice
Mice, Knockout
Myeloid-Derived Suppressor Cells - metabolism
Neoplasm Proteins - genetics
Neoplasm Proteins - immunology
Neoplasms - genetics
Neoplasms - immunology
Oxidative Phosphorylation
prostaglandin E2
Receptors, Adrenergic, beta-2 - genetics
Receptors, Adrenergic, beta-2 - immunology
Signal Transduction - immunology
stress
Tumor Microenvironment - genetics
Tumor Microenvironment - immunology
β-adrenergic signaling
Title β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME
URI https://dx.doi.org/10.1016/j.celrep.2021.109883
https://www.ncbi.nlm.nih.gov/pubmed/34706232
https://www.proquest.com/docview/2587765556
https://pubmed.ncbi.nlm.nih.gov/PMC8601406
Volume 37
WOSCitedRecordID wos000711887800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6ARI3iH_Kz2QkdhWlap04Ti5HVQTSOiFWpN5FTuKyTm1SJe1Yb3kk3oAX4Jk4J47TtBsaIHETRU4cO-d8sc85OT-EvBE8jqNuwOxEcdd2JQvsiAeODaslcyY89mWvDBQ-Ficn_ngcfGy1fphYmIuZSFP_8jJY_FdWQxswG0Nn_4Ld9UOhAc6B6XAEtsPxjxh_2B8cvgXdT2KMtsq_lDma0Xklyy301pBlAHqua9CrAmtIAxAw1zVWJ_4q14UVm_oHIJjO12qWTROgcg4LY2IVq0XpOwtPQ6O_hRtjiSG06FZOk6PhoCn09vE-83MC_xqbOLGGGWKYncn5XCYLeEW9Hc5r2A5lw4QNnVUOw33qbEyKfSCDRou2D1nH9cWjKK-sSadlFooPnaadg5WOdjqYXhvfTADOln8oY-iRx3TSzo66pq1a5HVmmQrM7rV7hzZjnHeAeECSDs4Bk235utDOTlbuUxwFBwGVGUuHjPfILSZ4EDS0ei0MYFI99G2op2UCOEsvw6uD_U5AuqoA7frxNgSj0X1yr9Jo6JFG4gPSUulDckfXOF0_It9-fm9ikRos0hqLtMYirbFIDRapwSJdZnQHi3SDRYpYpAaLVGORAhYpYPEx-fxuMOq_t6vCH3bses7S9rwJl92JK2MH9kBHsUi6nPMoBuU-gt2Z9SbMwT_USmE1AwZSrHAVJjcEcTzg0nlC9tMsVc8I7YEs4kfC9ROlXA-0adC3ZRR4CsT2qKtYmziG2mFcZcXH4iyz0Lg_noeaRyHyKNQ8ahO77rXQWWFuuF8YRoaVZKsl1hDAd0PP14bvISz8SEyZqmxVhIz7QnhAFq9Nnmoc1HNxXNEFvQbeTmwhpL4Bk8pvX0mnZ2Vyed9Dm4v3_J9n_ILc3Xy-L8n-Ml-pV-R2fLGcFvkB2RNj_6D8Rn4BB0T2vA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B22-adrenergic+receptor+signaling+regulates+metabolic+pathways+critical+to+myeloid-derived+suppressor+cell+function+within+the+TME&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Mohammadpour%2C+Hemn&rft.au=MacDonald%2C+Cameron+R.&rft.au=McCarthy%2C+Philip+L.&rft.au=Abrams%2C+Scott+I.&rft.date=2021-10-26&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=37&rft.issue=4&rft_id=info:doi/10.1016%2Fj.celrep.2021.109883&rft.externalDocID=S221112472101353X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon