SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZ...
Gespeichert in:
| Veröffentlicht in: | Biomimetics (Basel, Switzerland) Jg. 10; H. 10; S. 664 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.10.2025
|
| Schlagworte: | |
| ISSN: | 2313-7673, 2313-7673 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. |
|---|---|
| AbstractList | To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover-mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs-including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties-and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30-40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (-20 to -30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of "economic efficiency and low-carbon operation", offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover-mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs-including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties-and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30-40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (-20 to -30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of "economic efficiency and low-carbon operation", offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling.To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover-mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs-including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties-and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30-40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (-20 to -30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of "economic efficiency and low-carbon operation", offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. |
| Audience | Academic |
| Author | Wei, Qi Cao, Lihong |
| Author_xml | – sequence: 1 givenname: Lihong orcidid: 0009-0007-5620-8520 surname: Cao fullname: Cao, Lihong – sequence: 2 givenname: Qi surname: Wei fullname: Wei, Qi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41149194$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1r3DAQhk1JadI0v6BQBL30sqm-bFm9mdCPhYQ9pL3kIiRr5Gixpa1kB9JfX203TT8Ic5AYnnmHd2ZeVkchBqiq1wSfMybxe-Pj5CeYfZ8JJhg3DX9WnVBG2Eo0gh399T-uznLeYoyJbGrO8YvqmBPCJZH8pDLXN5vuA-oCWk-7FO_Aouv7AGnwuWijGzBJo81u9pP_oWcfA-rGISY_307IxYSufJ_ikHwp62_BLqMPA9LBoisd9AAThPlV9dzpMcPZw3taffv08evFl9Xl5vP6ortc9bxh86rWNQgtra4xYU7otuUYWN3IlgMI3jaiBiMcE8RSDC2m1khaU-7AGS56zU6r9UHXRr1Vu-Qnne5V1F79SsQ0KJ2KqREUc84aS4kzVHInnSHSWuOkaG0JLIrWu4NWmcn3BfKsJp97GEcdIC5ZMVoGzqlgdUHf_odu45JCcbqn6pZRTsQfatClvw8uzkn3e1HVtQ3lggrKC3X-BFXCwuT7cgHOl_w_BW8emi9mAvvo-veCC8AOQFlTzgncI0Kw2l-SeuKS2E9qC7vP |
| Cites_doi | 10.1016/j.cie.2020.107050 10.1016/j.eswa.2022.119269 10.1016/j.eswa.2023.121219 10.1109/CEC.2014.6900380 10.1109/ACCESS.2022.3172789 10.1016/j.eswa.2022.116924 10.1016/j.array.2025.100484 10.1016/j.advengsoft.2016.01.008 10.3390/sym16030286 10.1016/j.engappai.2021.104314 10.1007/s10462-024-10821-3 10.3390/en9121031 10.1109/TSMC.2025.3551325 10.1007/s11227-022-04959-6 10.1016/j.engappai.2019.103249 10.3390/en10040566 10.3389/fenrg.2023.1354869 10.1109/TSG.2016.2550422 10.1016/j.advengsoft.2013.12.007 10.1109/CEC.2017.7969336 10.1109/TSG.2014.2311465 10.1016/j.epsr.2025.111837 10.1016/j.epsr.2017.01.014 10.1007/s10922-024-09860-6 10.1016/j.advengsoft.2024.103694 10.1016/j.aej.2023.11.004 10.1109/TPWRS.2019.2923027 10.1016/j.knosys.2022.108320 10.1126/science.220.4598.671 10.1007/s10462-024-10716-3 10.1109/ACCESS.2021.3133286 10.1016/j.egyr.2022.03.131 10.1016/j.apenergy.2025.126491 10.1007/s42835-025-02394-0 10.1016/j.eswa.2020.113377 10.1109/TSTE.2024.3368656 10.1016/j.eswa.2024.124955 10.1016/j.compbiomed.2022.105858 10.1063/5.0255039 10.1016/j.knosys.2025.113589 10.1007/s10586-024-04931-4 10.1007/s10462-024-10729-y 10.1016/j.knosys.2023.111257 10.1007/s11227-024-06548-1 10.1016/j.jclepro.2020.125419 10.1109/TSG.2025.3526931 10.1016/j.future.2019.02.028 10.1016/j.est.2024.112137 10.1155/2018/9842025 10.1109/TSG.2016.2516256 10.1016/j.esd.2020.08.001 10.3390/en18164423 10.1016/j.energy.2018.12.079 10.3390/biomimetics10070420 10.1007/s10586-024-05005-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
| DOI | 10.3390/biomimetics10100664 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_3ffdbd21fb294f9fb19ddbf978d8d807 A862472724 41149194 10_3390_biomimetics10100664 |
| Genre | Journal Article |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c463t-5a5e7a9da5013f7a8840e356984ee748675eb7f371d20e802db92524fefb47ca3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601876500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-7673 |
| IngestDate | Mon Nov 03 22:05:09 EST 2025 Wed Oct 29 17:10:13 EDT 2025 Tue Oct 28 21:34:01 EDT 2025 Wed Nov 12 17:02:19 EST 2025 Tue Nov 11 03:50:52 EST 2025 Sat Nov 01 14:17:13 EDT 2025 Sat Nov 29 07:16:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Zebra Optimization Algorithm economic cost optimization innovation management microgrid scheduling global optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c463t-5a5e7a9da5013f7a8840e356984ee748675eb7f371d20e802db92524fefb47ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0007-5620-8520 |
| OpenAccessLink | https://www.proquest.com/docview/3265832417?pq-origsite=%requestingapplication% |
| PMID | 41149194 |
| PQID | 3265832417 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ffdbd21fb294f9fb19ddbf978d8d807 proquest_miscellaneous_3266442735 proquest_journals_3265832417 gale_infotracmisc_A862472724 gale_infotracacademiconefile_A862472724 pubmed_primary_41149194 crossref_primary_10_3390_biomimetics10100664 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Chu (ref_3) 2024; 15 Heidari (ref_24) 2019; 97 Ouammi (ref_5) 2020; 58 Chopra (ref_36) 2022; 198 Trojovska (ref_37) 2022; 10 Mohammed (ref_53) 2025; 28 ref_56 Lyu (ref_54) 2024; 257 Alfaifi (ref_41) 2024; 32 Ren (ref_40) 2024; 81 Wang (ref_48) 2025; 318 Hayyolalam (ref_29) 2020; 87 ref_16 Yu (ref_44) 2024; 57 Qiu (ref_2) 2024; 93 Mohamed (ref_28) 2024; 284 Mirjalili (ref_32) 2016; 95 Shami (ref_46) 2023; 35 Xue (ref_25) 2022; 79 Nayeri (ref_27) 2021; 152 Zamani (ref_45) 2022; 148 ref_21 Faramarzi (ref_31) 2020; 152 ref_20 He (ref_19) 2025; 55 Krishnan (ref_12) 2018; 2018 Zhao (ref_15) 2025; 247 Mirjalili (ref_23) 2014; 69 Fu (ref_34) 2024; 57 Shen (ref_55) 2023; 215 Esmaeili (ref_7) 2019; 34 Lu (ref_18) 2025; 17 Faridnia (ref_6) 2019; 171 Zhou (ref_14) 2025; 16 Carpinelli (ref_58) 2016; 8 Hashim (ref_51) 2023; 85 Dehghani (ref_30) 2021; 9 Mei (ref_4) 2022; 8 Hashim (ref_33) 2022; 242 Arkwazee (ref_39) 2025; 27 Liu (ref_13) 2017; 145 Wang (ref_52) 2024; 195 ref_47 Zhu (ref_49) 2024; 236 ref_43 Nguyen (ref_11) 2018; 9 ref_42 ref_1 Punia (ref_38) 2025; 28 Zamani (ref_35) 2021; 104 Khodaei (ref_10) 2014; 5 ref_9 ref_8 Park (ref_17) 2025; 399 Kirkpatrick (ref_22) 1983; 220 Rana (ref_57) 2020; 286 Fu (ref_26) 2024; 57 |
| References_xml | – volume: 152 start-page: 107050 year: 2021 ident: ref_27 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107050 – volume: 215 start-page: 119269 year: 2023 ident: ref_55 article-title: An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119269 – volume: 236 start-page: 121219 year: 2024 ident: ref_49 article-title: Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121219 – ident: ref_47 doi: 10.1109/CEC.2014.6900380 – volume: 10 start-page: 49445 year: 2022 ident: ref_37 article-title: Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3172789 – volume: 198 start-page: 116924 year: 2022 ident: ref_36 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – volume: 27 start-page: 100484 year: 2025 ident: ref_39 article-title: Enhanced zebra optimization algorithm for sustainable combined economic and emission dispatch in power systems publication-title: Array doi: 10.1016/j.array.2025.100484 – volume: 95 start-page: 51 year: 2016 ident: ref_32 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_50 doi: 10.3390/sym16030286 – volume: 104 start-page: 104314 year: 2021 ident: ref_35 article-title: QANA: Quantum-based avian navigation optimizer algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104314 – volume: 57 start-page: 277 year: 2024 ident: ref_44 article-title: Improved multi-strategy adaptive Grey Wolf Optimization for practical engineering applications and high-dimensional problem solving publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10821-3 – ident: ref_9 doi: 10.3390/en9121031 – volume: 55 start-page: 4348 year: 2025 ident: ref_19 article-title: Optimal Scheduling of a Hydrogen-Based Microgrid for an Industrial Park: A Reinforcement Learning Approach publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2025.3551325 – volume: 79 start-page: 7305 year: 2022 ident: ref_25 article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-022-04959-6 – volume: 87 start-page: 103249 year: 2020 ident: ref_29 article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Engineering Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – ident: ref_8 doi: 10.3390/en10040566 – ident: ref_1 doi: 10.3389/fenrg.2023.1354869 – volume: 9 start-page: 274 year: 2018 ident: ref_11 article-title: A Big Data Scale Algorithm for Optimal Scheduling of Integrated Microgrids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2550422 – volume: 69 start-page: 46 year: 2014 ident: ref_23 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_42 doi: 10.1109/CEC.2017.7969336 – volume: 5 start-page: 1584 year: 2014 ident: ref_10 article-title: Resiliency-Oriented Microgrid Optimal Scheduling publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2311465 – volume: 247 start-page: 111837 year: 2025 ident: ref_15 article-title: Multi-objective optimal scheduling of microgrid considering pumped storage and demand response publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2025.111837 – volume: 145 start-page: 197 year: 2017 ident: ref_13 article-title: Microgrid optimal scheduling with chance-constrained islanding capability publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.014 – volume: 32 start-page: 85 year: 2024 ident: ref_41 article-title: Chaotic Zebra Optimization Algorithm for Increasing the Lifetime of Wireless Sensor Network publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-024-09860-6 – volume: 195 start-page: 103694 year: 2024 ident: ref_52 article-title: Arctic puffin optimization: A bio-inspired metaheuristic algorithm for solving engineering design optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2024.103694 – volume: 85 start-page: 29 year: 2023 ident: ref_51 article-title: An efficient adaptive-mutated Coati optimization algorithm for feature selection and global optimization publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.11.004 – volume: 34 start-page: 5063 year: 2019 ident: ref_7 article-title: Optimal Operation Scheduling of a Microgrid Incorporating Battery Swapping Stations publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2923027 – volume: 242 start-page: 108320 year: 2022 ident: ref_33 article-title: Snake Optimizer: A novel meta-heuristic optimization algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108320 – volume: 220 start-page: 671 year: 1983 ident: ref_22 article-title: Optimization by Simulated Annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 57 start-page: 134 year: 2024 ident: ref_34 article-title: Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10716-3 – volume: 9 start-page: 162059 year: 2021 ident: ref_30 article-title: Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133286 – volume: 8 start-page: 4512 year: 2022 ident: ref_4 article-title: Multi-objective optimal scheduling of microgrid with electric vehicles publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.131 – volume: 399 start-page: 126491 year: 2025 ident: ref_17 article-title: Resynchronization scheduling policy for multiple microgrids for optimal distributed system operation with enhanced flexibility publication-title: Appl. Energy doi: 10.1016/j.apenergy.2025.126491 – ident: ref_16 doi: 10.1007/s42835-025-02394-0 – volume: 152 start-page: 113377 year: 2020 ident: ref_31 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 15 start-page: 1715 year: 2024 ident: ref_3 article-title: Scheduling of Software-Defined Microgrids for Optimal Frequency Regulation publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2024.3368656 – volume: 257 start-page: 124955 year: 2024 ident: ref_54 article-title: MMPA: A modified marine predator algorithm for 3D UAV path planning in complex environments with multiple threats publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124955 – volume: 148 start-page: 105858 year: 2022 ident: ref_45 article-title: Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105858 – volume: 17 start-page: 025301 year: 2025 ident: ref_18 article-title: Multi-objective optimal scheduling of islanded microgrid based on ISSA publication-title: J. Renew. Sustain. Energy doi: 10.1063/5.0255039 – volume: 318 start-page: 113589 year: 2025 ident: ref_48 article-title: The Animated Oat Optimization Algorithm: A nature-inspired metaheuristic for engineering optimization and a case study on Wireless Sensor Networks publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2025.113589 – ident: ref_21 – volume: 28 start-page: 267 year: 2025 ident: ref_38 article-title: Enhanced zebra optimization algorithm for reliability redundancy allocation and engineering optimization problems publication-title: Clust. Comput. doi: 10.1007/s10586-024-04931-4 – volume: 57 start-page: 123 year: 2024 ident: ref_26 article-title: Secretary bird optimization algorithm: A new metaheuristic for solving global optimization problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10729-y – volume: 284 start-page: 111257 year: 2024 ident: ref_28 article-title: Crested Porcupine Optimizer: A new nature-inspired metaheuristic publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.111257 – volume: 81 start-page: 266 year: 2024 ident: ref_40 article-title: PID parameter tuning optimization based on multi-strategy fusion improved zebra optimization algorithm publication-title: J. Supercomput. doi: 10.1007/s11227-024-06548-1 – volume: 286 start-page: 125419 year: 2020 ident: ref_57 article-title: Real-time scheduling of community microgrid publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125419 – volume: 16 start-page: 2000 year: 2025 ident: ref_14 article-title: Optimal Scheduling for Networked Microgrids Considering Back-to-Back MVDC Systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2025.3526931 – volume: 97 start-page: 849 year: 2019 ident: ref_24 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 93 start-page: 112137 year: 2024 ident: ref_2 article-title: Optimal scheduling for microgrids considering long-term and short-term energy storage publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112137 – volume: 2018 start-page: 9842025 year: 2018 ident: ref_12 article-title: Optimal Scheduling of a Microgrid Including Pump Scheduling and Network Constraints publication-title: Complexity doi: 10.1155/2018/9842025 – volume: 8 start-page: 2109 year: 2016 ident: ref_58 article-title: A Multi-Objective Approach for Microgrid Scheduling publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2516256 – volume: 58 start-page: 129 year: 2020 ident: ref_5 article-title: Optimal operation scheduling for a smart greenhouse integrated microgrid publication-title: Energy Sustain. Dev. doi: 10.1016/j.esd.2020.08.001 – volume: 35 start-page: 9193 year: 2023 ident: ref_46 article-title: Velocity pausing particle swarm optimization: A novel variant for global optimization publication-title: Neural Comput. Appl. – ident: ref_20 doi: 10.3390/en18164423 – volume: 171 start-page: 435 year: 2019 ident: ref_6 article-title: Optimal scheduling in a microgrid with tidal generation publication-title: Energy doi: 10.1016/j.energy.2018.12.079 – ident: ref_43 – ident: ref_56 doi: 10.3390/biomimetics10070420 – volume: 28 start-page: 430 year: 2025 ident: ref_53 article-title: Dhole optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Clust. Comput. doi: 10.1007/s10586-024-05005-1 |
| SSID | ssj0001965440 |
| Score | 2.3051357 |
| Snippet | To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 664 |
| SubjectTerms | Air quality management Algorithms Alternative energy sources Analysis Batteries Carbon Cost control economic cost optimization Efficiency Emissions Emissions (Pollution) Energy consumption Energy minerals Energy resources Foraging behavior Fossil fuels Fuel cells global optimization Industrial efficiency innovation management Linear programming Mathematical optimization microgrid scheduling Operating costs Optimization algorithms Optimization techniques Pollutants Predation Renewable resources Scheduling Sustainable development Wind power Zebra Optimization Algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELopTHQkFGQnAhauLYccwtICoutEgFqerF8nPZis2ibFqp_54ZO126gMQF5RZ7ZHvGjxl75htCXrZwLMumcYWDHTKF5BTGt7xQMrrGyuhZZVOyCXl01J6eqs83Un2hT1iGB86MO6hj9BYoomWKRxVtpby3EYwfD1-OIy-lumFMnWfQF8F5mWGGarDrDzCafbHEwMA1zEI8afnWUZQQ-__cl3_TNtOpc3iP3J3URdrlbu6SW6G_T_a6Hkzl5RV9RZMDZ7oZ3yP25Oy4e0u7nuabguDpyRWG9iUsZnqGT8T0GLaI5RR7Sbvv89WwGL8tKaiu9BP65s2HBZCBJD26qM-p6T395SLzgHw9_PDl_cdiSqEAvG_qsRBGBGmUNwJUvShNC_ZcqEWjWh6CRLQ9EUAitaw8K0NbMm8VE4zHEC2XztQPyU6_6sNjQm3pDOOGl0DJmQdFR5SWu9jG2tWhETPy5pqb-kdGytBgYSDz9V-YPyPvkOObqghznX6A8PUkfP0v4c_Ia5SXxsU4DsaZKaYAeoywVrrD8Bd8aobm9rdqwiJy28XXEtfTIl5r0GwFbHi8gnZebIqREh3T-rC6SHVAowQdEMb_KM-UzZA42JqqUvzJ_xjqU3KHYerh5Ee4T3bG4SI8I7fd5bhYD8_T7P8Jq7sLqg priority: 102 providerName: Directory of Open Access Journals |
| Title | SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41149194 https://www.proquest.com/docview/3265832417 https://www.proquest.com/docview/3266442735 https://doaj.org/article/3ffdbd21fb294f9fb19ddbf978d8d807 |
| Volume | 10 |
| WOSCitedRecordID | wos001601876500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M7P dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbhMx0KItBy68CiVQIiMhuLDqPuz1mgvaolZwaLqiIIVeVn6GSGRTki1S_54Z7yZRAHFBe_NjbWsenhnPg5CXBVzLIs9NZIBDhpCcSNmCRVJ4k2vhbZroUGxCjEbFeCyr3uC27N0qVzwxMGo7N2gjPwIxgwP2sUS8u_oRYdUofF3tS2jskD3MkpAG171qY2OROWcs7pINZaDdH2FM-3SG4YFLwEW8b9nWhRTy9v_JnX-TOcPdc3rvf3d9n9ztpU5admjygNxyzUOyXzagcc9u6Csa_ECDgX2f6IvL8_ItLRvaGRycpRc3GCEYUjrTS3xppufAaWZ9CCctv09gzfbbjIIETM_QxW-ymMI0QAiLnu4TqhpLN542j8iX05PP7z9EfSUGAGGetRFX3AklreIgMXqhClALXcZzWTDnBCbt4w4Am4nEprEr4tRqmfKUeec1E0Zlj8luM2_cE0J1bFTKFIthJkstyEs81sz4wmcmczkfkDcrcNRXXcKNGhQVhF79F-gNyDGCbD0Us2WHhvliUvfEV2feWw1Y53UqmZdeJ9Ja7UGBtvDFYkBeI8BrpOl2oYzqQxNgx5gdqy4xigZfrGG5w62RQItmu3uFBnXPC5b1BgcG5MW6G2eif1vj5tdhDAimIErC-Q86VFsfiYHKKhPJnv7758_InRRrEwdHw0Oy2y6u3XNy2_xsp8vFkOyIcTEke8cno-rTMFgehoFYoK36eFZ9_QW0Th0W |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQv3MalMMBIXF6IljpOHCMhFC7Tqq1dpQ1p7CXYsV0q0XS0Gah_it_IOU7aqoB42wPKW3yJHX8-F_tcCHmaAlsWSVIEBVBI75ITKJPyQApXJFo4wzraJ5sQ_X56ciIHG-TnwhcGzSoXNNETajMp8Ix8B8SMGNDHO-LN2bcAs0bh7eoihUYNi307_wEq2-x19z2s7zPGdj8cv9sLmqwCMJwkqoJYxVYoaVQM0o8TKgUVx0ZxIlNurcAAdLGFQUaiY1ho05AZLVnMuLNOc1GoCPq9RDY5gr1FNgfd3uDT6lRHJjHnYR3eKIpkuINe9KMxOiTOAP3I4fkaC_SZAv7kB79JuZ7b7V7_3_7TDXKtkatpVm-Em2TDlrfIVlaqajKe0-fUW7r6K4Qtoo9OD7NXNCtpfaRiDT2aow-kD1pNT_EunR4CLR03Tqo0-zqEOVZfxhRkfNpDI8bhdATNAPIGbfmHVJWGrmyJbpOPFzLbO6RVTkp7j1AdFopxxUNoyZkBiTAONS9c6qIiskncJi8Xy5-f1SFFclDFEC35X9DSJm8RIsuqGA_cv5hMh3lDXvLIOaNhXznNJHfS6Y40RjspUgNPKNrkBQIsR6pVTVWhGucLGDHG_8oz9BPCO3n43PZaTaA2xXrxAnZ5Q-1m-QpzbfJkWYwt0YKvtJNzXwdEbxCWYf53a2gvp8RBKZcdye__u_PH5Mrece8gP-j29x-QqwwzMXuzym3Sqqbn9iG5XHyvRrPpo2ZbUvL5ohH-C6aQdb0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAv3MalMMBIXF6ImjpOHCMhFBgV1VhXaSCNvQRfSyWajjYD9a_x6zgnSVsVEG97QHlr7MROv3POZ_tcCHmcglkWSWICAxqyCskJlE15IIU3iRbesq6uik2IwSA9PpbDLfJzGQuDbpVLnVgpajs1uEfeAZoRA_p4V3R84xYx3Ou9Ov0WYAUpPGldltOoIbLvFj9g-TZ_2d-D__oJY723H968C5oKAzC0JCqDWMVOKGlVDEzIC5XCcsdFcSJT7pzAZHSxgwFHomtZ6NKQWS1ZzLh3XnNhVATPvUC2gZJz1iLbw_7B8NN6h0cmMedhneooimTYwYj68QSDE-cgCWjt-YY5rKoG_GkbfmO8leXrXf2fv9k1cqXh2zSrBeQ62XLFDbKTFaqcThb0Ka08YKujhR2ij04Osxc0K2i91eIsPVpgbGSVzJqe4Bk7PQQdO2mCV2n2dQRzLL9MKHB_eoDOjaPZGLqBKFj08R9RVVi69jG6ST6ey2xvkVYxLdwdQnVoFOOKh9CTMwtMMQ41Nz71kYlcErfJ8yUU8tM61UgOSzRETv4X5LTJa4TLqinmCa9-mM5GeaN28sh7q0HevGaSe-l1V1qrvRSphSsUbfIMwZajNitnyqgmKANGjHnB8gzjh_CsHl63u9EStJDZvL2EYN5owXm-xl-bPFrdxp7o2Ve46VnVBig5kGiY_-0a5qspcVisy67kd__98IfkEsA6f98f7N8jlxkWaK68LXdJq5ydufvkovlejuezB42EUvL5vAH-Cy9Ofn0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SZOA%3A+An+Improved+Synergistic+Zebra+Optimization+Algorithm+for+Microgrid+Scheduling+and+Management&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Lihong&rft.au=Wei%2C+Qi&rft.date=2025-10-01&rft.eissn=2313-7673&rft.volume=10&rft.issue=10&rft_id=info:doi/10.3390%2Fbiomimetics10100664&rft_id=info%3Apmid%2F41149194&rft.externalDocID=41149194 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |