SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management

To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomimetics (Basel, Switzerland) Jg. 10; H. 10; S. 664
Hauptverfasser: Cao, Lihong, Wei, Qi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.10.2025
Schlagworte:
ISSN:2313-7673, 2313-7673
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling.
AbstractList To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover-mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs-including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties-and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30-40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (-20 to -30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of "economic efficiency and low-carbon operation", offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover-mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs-including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties-and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30-40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (-20 to -30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of "economic efficiency and low-carbon operation", offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling.To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover-mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs-including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties-and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30-40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (-20 to -30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of "economic efficiency and low-carbon operation", offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling.
Audience Academic
Author Wei, Qi
Cao, Lihong
Author_xml – sequence: 1
  givenname: Lihong
  orcidid: 0009-0007-5620-8520
  surname: Cao
  fullname: Cao, Lihong
– sequence: 2
  givenname: Qi
  surname: Wei
  fullname: Wei, Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41149194$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQhk1JadI0v6BQBL30sqm-bFm9mdCPhYQ9pL3kIiRr5Gixpa1kB9JfX203TT8Ic5AYnnmHd2ZeVkchBqiq1wSfMybxe-Pj5CeYfZ8JJhg3DX9WnVBG2Eo0gh399T-uznLeYoyJbGrO8YvqmBPCJZH8pDLXN5vuA-oCWk-7FO_Aouv7AGnwuWijGzBJo81u9pP_oWcfA-rGISY_307IxYSufJ_ikHwp62_BLqMPA9LBoisd9AAThPlV9dzpMcPZw3taffv08evFl9Xl5vP6ortc9bxh86rWNQgtra4xYU7otuUYWN3IlgMI3jaiBiMcE8RSDC2m1khaU-7AGS56zU6r9UHXRr1Vu-Qnne5V1F79SsQ0KJ2KqREUc84aS4kzVHInnSHSWuOkaG0JLIrWu4NWmcn3BfKsJp97GEcdIC5ZMVoGzqlgdUHf_odu45JCcbqn6pZRTsQfatClvw8uzkn3e1HVtQ3lggrKC3X-BFXCwuT7cgHOl_w_BW8emi9mAvvo-veCC8AOQFlTzgncI0Kw2l-SeuKS2E9qC7vP
Cites_doi 10.1016/j.cie.2020.107050
10.1016/j.eswa.2022.119269
10.1016/j.eswa.2023.121219
10.1109/CEC.2014.6900380
10.1109/ACCESS.2022.3172789
10.1016/j.eswa.2022.116924
10.1016/j.array.2025.100484
10.1016/j.advengsoft.2016.01.008
10.3390/sym16030286
10.1016/j.engappai.2021.104314
10.1007/s10462-024-10821-3
10.3390/en9121031
10.1109/TSMC.2025.3551325
10.1007/s11227-022-04959-6
10.1016/j.engappai.2019.103249
10.3390/en10040566
10.3389/fenrg.2023.1354869
10.1109/TSG.2016.2550422
10.1016/j.advengsoft.2013.12.007
10.1109/CEC.2017.7969336
10.1109/TSG.2014.2311465
10.1016/j.epsr.2025.111837
10.1016/j.epsr.2017.01.014
10.1007/s10922-024-09860-6
10.1016/j.advengsoft.2024.103694
10.1016/j.aej.2023.11.004
10.1109/TPWRS.2019.2923027
10.1016/j.knosys.2022.108320
10.1126/science.220.4598.671
10.1007/s10462-024-10716-3
10.1109/ACCESS.2021.3133286
10.1016/j.egyr.2022.03.131
10.1016/j.apenergy.2025.126491
10.1007/s42835-025-02394-0
10.1016/j.eswa.2020.113377
10.1109/TSTE.2024.3368656
10.1016/j.eswa.2024.124955
10.1016/j.compbiomed.2022.105858
10.1063/5.0255039
10.1016/j.knosys.2025.113589
10.1007/s10586-024-04931-4
10.1007/s10462-024-10729-y
10.1016/j.knosys.2023.111257
10.1007/s11227-024-06548-1
10.1016/j.jclepro.2020.125419
10.1109/TSG.2025.3526931
10.1016/j.future.2019.02.028
10.1016/j.est.2024.112137
10.1155/2018/9842025
10.1109/TSG.2016.2516256
10.1016/j.esd.2020.08.001
10.3390/en18164423
10.1016/j.energy.2018.12.079
10.3390/biomimetics10070420
10.1007/s10586-024-05005-1
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/biomimetics10100664
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_3ffdbd21fb294f9fb19ddbf978d8d807
A862472724
41149194
10_3390_biomimetics10100664
Genre Journal Article
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c463t-5a5e7a9da5013f7a8840e356984ee748675eb7f371d20e802db92524fefb47ca3
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601876500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-7673
IngestDate Mon Nov 03 22:05:09 EST 2025
Wed Oct 29 17:10:13 EDT 2025
Tue Oct 28 21:34:01 EDT 2025
Wed Nov 12 17:02:19 EST 2025
Tue Nov 11 03:50:52 EST 2025
Sat Nov 01 14:17:13 EDT 2025
Sat Nov 29 07:16:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Zebra Optimization Algorithm
economic cost optimization
innovation management
microgrid scheduling
global optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-5a5e7a9da5013f7a8840e356984ee748675eb7f371d20e802db92524fefb47ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-5620-8520
OpenAccessLink https://www.proquest.com/docview/3265832417?pq-origsite=%requestingapplication%
PMID 41149194
PQID 3265832417
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_3ffdbd21fb294f9fb19ddbf978d8d807
proquest_miscellaneous_3266442735
proquest_journals_3265832417
gale_infotracmisc_A862472724
gale_infotracacademiconefile_A862472724
pubmed_primary_41149194
crossref_primary_10_3390_biomimetics10100664
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Chu (ref_3) 2024; 15
Heidari (ref_24) 2019; 97
Ouammi (ref_5) 2020; 58
Chopra (ref_36) 2022; 198
Trojovska (ref_37) 2022; 10
Mohammed (ref_53) 2025; 28
ref_56
Lyu (ref_54) 2024; 257
Alfaifi (ref_41) 2024; 32
Ren (ref_40) 2024; 81
Wang (ref_48) 2025; 318
Hayyolalam (ref_29) 2020; 87
ref_16
Yu (ref_44) 2024; 57
Qiu (ref_2) 2024; 93
Mohamed (ref_28) 2024; 284
Mirjalili (ref_32) 2016; 95
Shami (ref_46) 2023; 35
Xue (ref_25) 2022; 79
Nayeri (ref_27) 2021; 152
Zamani (ref_45) 2022; 148
ref_21
Faramarzi (ref_31) 2020; 152
ref_20
He (ref_19) 2025; 55
Krishnan (ref_12) 2018; 2018
Zhao (ref_15) 2025; 247
Mirjalili (ref_23) 2014; 69
Fu (ref_34) 2024; 57
Shen (ref_55) 2023; 215
Esmaeili (ref_7) 2019; 34
Lu (ref_18) 2025; 17
Faridnia (ref_6) 2019; 171
Zhou (ref_14) 2025; 16
Carpinelli (ref_58) 2016; 8
Hashim (ref_51) 2023; 85
Dehghani (ref_30) 2021; 9
Mei (ref_4) 2022; 8
Hashim (ref_33) 2022; 242
Arkwazee (ref_39) 2025; 27
Liu (ref_13) 2017; 145
Wang (ref_52) 2024; 195
ref_47
Zhu (ref_49) 2024; 236
ref_43
Nguyen (ref_11) 2018; 9
ref_42
ref_1
Punia (ref_38) 2025; 28
Zamani (ref_35) 2021; 104
Khodaei (ref_10) 2014; 5
ref_9
ref_8
Park (ref_17) 2025; 399
Kirkpatrick (ref_22) 1983; 220
Rana (ref_57) 2020; 286
Fu (ref_26) 2024; 57
References_xml – volume: 152
  start-page: 107050
  year: 2021
  ident: ref_27
  article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107050
– volume: 215
  start-page: 119269
  year: 2023
  ident: ref_55
  article-title: An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119269
– volume: 236
  start-page: 121219
  year: 2024
  ident: ref_49
  article-title: Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121219
– ident: ref_47
  doi: 10.1109/CEC.2014.6900380
– volume: 10
  start-page: 49445
  year: 2022
  ident: ref_37
  article-title: Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172789
– volume: 198
  start-page: 116924
  year: 2022
  ident: ref_36
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume: 27
  start-page: 100484
  year: 2025
  ident: ref_39
  article-title: Enhanced zebra optimization algorithm for sustainable combined economic and emission dispatch in power systems
  publication-title: Array
  doi: 10.1016/j.array.2025.100484
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_32
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_50
  doi: 10.3390/sym16030286
– volume: 104
  start-page: 104314
  year: 2021
  ident: ref_35
  article-title: QANA: Quantum-based avian navigation optimizer algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104314
– volume: 57
  start-page: 277
  year: 2024
  ident: ref_44
  article-title: Improved multi-strategy adaptive Grey Wolf Optimization for practical engineering applications and high-dimensional problem solving
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10821-3
– ident: ref_9
  doi: 10.3390/en9121031
– volume: 55
  start-page: 4348
  year: 2025
  ident: ref_19
  article-title: Optimal Scheduling of a Hydrogen-Based Microgrid for an Industrial Park: A Reinforcement Learning Approach
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2025.3551325
– volume: 79
  start-page: 7305
  year: 2022
  ident: ref_25
  article-title: Dung beetle optimizer: A new meta-heuristic algorithm for global optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04959-6
– volume: 87
  start-page: 103249
  year: 2020
  ident: ref_29
  article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– ident: ref_8
  doi: 10.3390/en10040566
– ident: ref_1
  doi: 10.3389/fenrg.2023.1354869
– volume: 9
  start-page: 274
  year: 2018
  ident: ref_11
  article-title: A Big Data Scale Algorithm for Optimal Scheduling of Integrated Microgrids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2550422
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_23
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref_42
  doi: 10.1109/CEC.2017.7969336
– volume: 5
  start-page: 1584
  year: 2014
  ident: ref_10
  article-title: Resiliency-Oriented Microgrid Optimal Scheduling
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2311465
– volume: 247
  start-page: 111837
  year: 2025
  ident: ref_15
  article-title: Multi-objective optimal scheduling of microgrid considering pumped storage and demand response
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2025.111837
– volume: 145
  start-page: 197
  year: 2017
  ident: ref_13
  article-title: Microgrid optimal scheduling with chance-constrained islanding capability
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.014
– volume: 32
  start-page: 85
  year: 2024
  ident: ref_41
  article-title: Chaotic Zebra Optimization Algorithm for Increasing the Lifetime of Wireless Sensor Network
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-024-09860-6
– volume: 195
  start-page: 103694
  year: 2024
  ident: ref_52
  article-title: Arctic puffin optimization: A bio-inspired metaheuristic algorithm for solving engineering design optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2024.103694
– volume: 85
  start-page: 29
  year: 2023
  ident: ref_51
  article-title: An efficient adaptive-mutated Coati optimization algorithm for feature selection and global optimization
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.11.004
– volume: 34
  start-page: 5063
  year: 2019
  ident: ref_7
  article-title: Optimal Operation Scheduling of a Microgrid Incorporating Battery Swapping Stations
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2923027
– volume: 242
  start-page: 108320
  year: 2022
  ident: ref_33
  article-title: Snake Optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108320
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_22
  article-title: Optimization by Simulated Annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 57
  start-page: 134
  year: 2024
  ident: ref_34
  article-title: Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10716-3
– volume: 9
  start-page: 162059
  year: 2021
  ident: ref_30
  article-title: Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133286
– volume: 8
  start-page: 4512
  year: 2022
  ident: ref_4
  article-title: Multi-objective optimal scheduling of microgrid with electric vehicles
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.131
– volume: 399
  start-page: 126491
  year: 2025
  ident: ref_17
  article-title: Resynchronization scheduling policy for multiple microgrids for optimal distributed system operation with enhanced flexibility
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2025.126491
– ident: ref_16
  doi: 10.1007/s42835-025-02394-0
– volume: 152
  start-page: 113377
  year: 2020
  ident: ref_31
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 15
  start-page: 1715
  year: 2024
  ident: ref_3
  article-title: Scheduling of Software-Defined Microgrids for Optimal Frequency Regulation
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2024.3368656
– volume: 257
  start-page: 124955
  year: 2024
  ident: ref_54
  article-title: MMPA: A modified marine predator algorithm for 3D UAV path planning in complex environments with multiple threats
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124955
– volume: 148
  start-page: 105858
  year: 2022
  ident: ref_45
  article-title: Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105858
– volume: 17
  start-page: 025301
  year: 2025
  ident: ref_18
  article-title: Multi-objective optimal scheduling of islanded microgrid based on ISSA
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/5.0255039
– volume: 318
  start-page: 113589
  year: 2025
  ident: ref_48
  article-title: The Animated Oat Optimization Algorithm: A nature-inspired metaheuristic for engineering optimization and a case study on Wireless Sensor Networks
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2025.113589
– ident: ref_21
– volume: 28
  start-page: 267
  year: 2025
  ident: ref_38
  article-title: Enhanced zebra optimization algorithm for reliability redundancy allocation and engineering optimization problems
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04931-4
– volume: 57
  start-page: 123
  year: 2024
  ident: ref_26
  article-title: Secretary bird optimization algorithm: A new metaheuristic for solving global optimization problems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10729-y
– volume: 284
  start-page: 111257
  year: 2024
  ident: ref_28
  article-title: Crested Porcupine Optimizer: A new nature-inspired metaheuristic
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.111257
– volume: 81
  start-page: 266
  year: 2024
  ident: ref_40
  article-title: PID parameter tuning optimization based on multi-strategy fusion improved zebra optimization algorithm
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-024-06548-1
– volume: 286
  start-page: 125419
  year: 2020
  ident: ref_57
  article-title: Real-time scheduling of community microgrid
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125419
– volume: 16
  start-page: 2000
  year: 2025
  ident: ref_14
  article-title: Optimal Scheduling for Networked Microgrids Considering Back-to-Back MVDC Systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2025.3526931
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_24
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 93
  start-page: 112137
  year: 2024
  ident: ref_2
  article-title: Optimal scheduling for microgrids considering long-term and short-term energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112137
– volume: 2018
  start-page: 9842025
  year: 2018
  ident: ref_12
  article-title: Optimal Scheduling of a Microgrid Including Pump Scheduling and Network Constraints
  publication-title: Complexity
  doi: 10.1155/2018/9842025
– volume: 8
  start-page: 2109
  year: 2016
  ident: ref_58
  article-title: A Multi-Objective Approach for Microgrid Scheduling
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2516256
– volume: 58
  start-page: 129
  year: 2020
  ident: ref_5
  article-title: Optimal operation scheduling for a smart greenhouse integrated microgrid
  publication-title: Energy Sustain. Dev.
  doi: 10.1016/j.esd.2020.08.001
– volume: 35
  start-page: 9193
  year: 2023
  ident: ref_46
  article-title: Velocity pausing particle swarm optimization: A novel variant for global optimization
  publication-title: Neural Comput. Appl.
– ident: ref_20
  doi: 10.3390/en18164423
– volume: 171
  start-page: 435
  year: 2019
  ident: ref_6
  article-title: Optimal scheduling in a microgrid with tidal generation
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.079
– ident: ref_43
– ident: ref_56
  doi: 10.3390/biomimetics10070420
– volume: 28
  start-page: 430
  year: 2025
  ident: ref_53
  article-title: Dhole optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-05005-1
SSID ssj0001965440
Score 2.3051357
Snippet To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 664
SubjectTerms Air quality management
Algorithms
Alternative energy sources
Analysis
Batteries
Carbon
Cost control
economic cost optimization
Efficiency
Emissions
Emissions (Pollution)
Energy consumption
Energy minerals
Energy resources
Foraging behavior
Fossil fuels
Fuel cells
global optimization
Industrial efficiency
innovation management
Linear programming
Mathematical optimization
microgrid scheduling
Operating costs
Optimization algorithms
Optimization techniques
Pollutants
Predation
Renewable resources
Scheduling
Sustainable development
Wind power
Zebra Optimization Algorithm
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELopTHQkFGQnAhauLYccwtICoutEgFqerF8nPZis2ibFqp_54ZO126gMQF5RZ7ZHvGjxl75htCXrZwLMumcYWDHTKF5BTGt7xQMrrGyuhZZVOyCXl01J6eqs83Un2hT1iGB86MO6hj9BYoomWKRxVtpby3EYwfD1-OIy-lumFMnWfQF8F5mWGGarDrDzCafbHEwMA1zEI8afnWUZQQ-__cl3_TNtOpc3iP3J3URdrlbu6SW6G_T_a6Hkzl5RV9RZMDZ7oZ3yP25Oy4e0u7nuabguDpyRWG9iUsZnqGT8T0GLaI5RR7Sbvv89WwGL8tKaiu9BP65s2HBZCBJD26qM-p6T395SLzgHw9_PDl_cdiSqEAvG_qsRBGBGmUNwJUvShNC_ZcqEWjWh6CRLQ9EUAitaw8K0NbMm8VE4zHEC2XztQPyU6_6sNjQm3pDOOGl0DJmQdFR5SWu9jG2tWhETPy5pqb-kdGytBgYSDz9V-YPyPvkOObqghznX6A8PUkfP0v4c_Ia5SXxsU4DsaZKaYAeoywVrrD8Bd8aobm9rdqwiJy28XXEtfTIl5r0GwFbHi8gnZebIqREh3T-rC6SHVAowQdEMb_KM-UzZA42JqqUvzJ_xjqU3KHYerh5Ee4T3bG4SI8I7fd5bhYD8_T7P8Jq7sLqg
  priority: 102
  providerName: Directory of Open Access Journals
Title SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
URI https://www.ncbi.nlm.nih.gov/pubmed/41149194
https://www.proquest.com/docview/3265832417
https://www.proquest.com/docview/3266442735
https://doaj.org/article/3ffdbd21fb294f9fb19ddbf978d8d807
Volume 10
WOSCitedRecordID wos001601876500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M7P
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbhMx0KItBy68CiVQIiMhuLDqPuz1mgvaolZwaLqiIIVeVn6GSGRTki1S_54Z7yZRAHFBe_NjbWsenhnPg5CXBVzLIs9NZIBDhpCcSNmCRVJ4k2vhbZroUGxCjEbFeCyr3uC27N0qVzwxMGo7N2gjPwIxgwP2sUS8u_oRYdUofF3tS2jskD3MkpAG171qY2OROWcs7pINZaDdH2FM-3SG4YFLwEW8b9nWhRTy9v_JnX-TOcPdc3rvf3d9n9ztpU5admjygNxyzUOyXzagcc9u6Csa_ECDgX2f6IvL8_ItLRvaGRycpRc3GCEYUjrTS3xppufAaWZ9CCctv09gzfbbjIIETM_QxW-ymMI0QAiLnu4TqhpLN542j8iX05PP7z9EfSUGAGGetRFX3AklreIgMXqhClALXcZzWTDnBCbt4w4Am4nEprEr4tRqmfKUeec1E0Zlj8luM2_cE0J1bFTKFIthJkstyEs81sz4wmcmczkfkDcrcNRXXcKNGhQVhF79F-gNyDGCbD0Us2WHhvliUvfEV2feWw1Y53UqmZdeJ9Ja7UGBtvDFYkBeI8BrpOl2oYzqQxNgx5gdqy4xigZfrGG5w62RQItmu3uFBnXPC5b1BgcG5MW6G2eif1vj5tdhDAimIErC-Q86VFsfiYHKKhPJnv7758_InRRrEwdHw0Oy2y6u3XNy2_xsp8vFkOyIcTEke8cno-rTMFgehoFYoK36eFZ9_QW0Th0W
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQv3MalMMBIXF6IljpOHCMhFC7Tqq1dpQ1p7CXYsV0q0XS0Gah_it_IOU7aqoB42wPKW3yJHX8-F_tcCHmaAlsWSVIEBVBI75ITKJPyQApXJFo4wzraJ5sQ_X56ciIHG-TnwhcGzSoXNNETajMp8Ix8B8SMGNDHO-LN2bcAs0bh7eoihUYNi307_wEq2-x19z2s7zPGdj8cv9sLmqwCMJwkqoJYxVYoaVQM0o8TKgUVx0ZxIlNurcAAdLGFQUaiY1ho05AZLVnMuLNOc1GoCPq9RDY5gr1FNgfd3uDT6lRHJjHnYR3eKIpkuINe9KMxOiTOAP3I4fkaC_SZAv7kB79JuZ7b7V7_3_7TDXKtkatpVm-Em2TDlrfIVlaqajKe0-fUW7r6K4Qtoo9OD7NXNCtpfaRiDT2aow-kD1pNT_EunR4CLR03Tqo0-zqEOVZfxhRkfNpDI8bhdATNAPIGbfmHVJWGrmyJbpOPFzLbO6RVTkp7j1AdFopxxUNoyZkBiTAONS9c6qIiskncJi8Xy5-f1SFFclDFEC35X9DSJm8RIsuqGA_cv5hMh3lDXvLIOaNhXznNJHfS6Y40RjspUgNPKNrkBQIsR6pVTVWhGucLGDHG_8oz9BPCO3n43PZaTaA2xXrxAnZ5Q-1m-QpzbfJkWYwt0YKvtJNzXwdEbxCWYf53a2gvp8RBKZcdye__u_PH5Mrece8gP-j29x-QqwwzMXuzym3Sqqbn9iG5XHyvRrPpo2ZbUvL5ohH-C6aQdb0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAv3MalMMBIXF6ImjpOHCMhFBgV1VhXaSCNvQRfSyWajjYD9a_x6zgnSVsVEG97QHlr7MROv3POZ_tcCHmcglkWSWICAxqyCskJlE15IIU3iRbesq6uik2IwSA9PpbDLfJzGQuDbpVLnVgpajs1uEfeAZoRA_p4V3R84xYx3Ou9Ov0WYAUpPGldltOoIbLvFj9g-TZ_2d-D__oJY723H968C5oKAzC0JCqDWMVOKGlVDEzIC5XCcsdFcSJT7pzAZHSxgwFHomtZ6NKQWS1ZzLh3XnNhVATPvUC2gZJz1iLbw_7B8NN6h0cmMedhneooimTYwYj68QSDE-cgCWjt-YY5rKoG_GkbfmO8leXrXf2fv9k1cqXh2zSrBeQ62XLFDbKTFaqcThb0Ka08YKujhR2ij04Osxc0K2i91eIsPVpgbGSVzJqe4Bk7PQQdO2mCV2n2dQRzLL9MKHB_eoDOjaPZGLqBKFj08R9RVVi69jG6ST6ey2xvkVYxLdwdQnVoFOOKh9CTMwtMMQ41Nz71kYlcErfJ8yUU8tM61UgOSzRETv4X5LTJa4TLqinmCa9-mM5GeaN28sh7q0HevGaSe-l1V1qrvRSphSsUbfIMwZajNitnyqgmKANGjHnB8gzjh_CsHl63u9EStJDZvL2EYN5owXm-xl-bPFrdxp7o2Ve46VnVBig5kGiY_-0a5qspcVisy67kd__98IfkEsA6f98f7N8jlxkWaK68LXdJq5ydufvkovlejuezB42EUvL5vAH-Cy9Ofn0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SZOA%3A+An+Improved+Synergistic+Zebra+Optimization+Algorithm+for+Microgrid+Scheduling+and+Management&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Lihong&rft.au=Wei%2C+Qi&rft.date=2025-10-01&rft.eissn=2313-7673&rft.volume=10&rft.issue=10&rft_id=info:doi/10.3390%2Fbiomimetics10100664&rft_id=info%3Apmid%2F41149194&rft.externalDocID=41149194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon