Average-case analysis of algorithms using Kolmogorov complexity

Analyzing the average-case complexity of algorithms is a very practical but very difficult problem in computer science. In the past few years, we have demonstrated that Kolmogorov complexity is an important tool for analyzing the average-case complexity of algorithms. We have developed the incompres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computer science and technology Ročník 15; číslo 5; s. 402 - 408
Hlavní autoři: Jiang, Tao, Li, Ming, Vitányi, Paul M. B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Springer Nature B.V 01.09.2000
Department of Computing Science, University of California, Riverside, CA 92521, USA%Department of Computer Science, University of California, Santa Barbara, CA 93106, USA%CWI and University of Amsterdam, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Témata:
ISSN:1000-9000, 1860-4749
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Analyzing the average-case complexity of algorithms is a very practical but very difficult problem in computer science. In the past few years, we have demonstrated that Kolmogorov complexity is an important tool for analyzing the average-case complexity of algorithms. We have developed the incompressibility method. In this paper, several simple examples are used to further demonstrate the power and simplicity of such method. We prove bounds on the average-case number of stacks (queues) required for sorting sequential or parallel Queuesort or Stacksort.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1000-9000
1860-4749
DOI:10.1007/BF02950402