SecureSense: End-to-end secure communication architecture for the cloud-connected Internet of Things
Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protoco...
Saved in:
| Published in: | Future generation computer systems Vol. 77; no. Dec; pp. 40 - 51 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2017
|
| Subjects: | |
| ISSN: | 0167-739X, 1872-7115, 1872-7115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend SicsthSense– a cloud platform for the IoT– with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource-constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense– our End-to-End (E2E) secure communication architecture for the IoT– consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform.
•Extending IoT capabilities from the PSK-based CoAP to RPK- and certificate-based CoAP.•Bring CoAP and DTLS-based security in SicsthSense, a cloud platform for the IoT.•Extensive empirical evaluation of E2E security for the cloud-connected IoT. |
|---|---|
| AbstractList | Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend SicsthSense– a cloud platform for the IoT– with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource-constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense– our End-to-End (E2E) secure communication architecture for the IoT– consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform. Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend SicsthSense– a cloud platform for the IoT– with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource-constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense– our End-to-End (E2E) secure communication architecture for the IoT– consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform. •Extending IoT capabilities from the PSK-based CoAP to RPK- and certificate-based CoAP.•Bring CoAP and DTLS-based security in SicsthSense, a cloud platform for the IoT.•Extensive empirical evaluation of E2E security for the cloud-connected IoT. Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend Sics(th)Sense- a cloud platform for the IoT- with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense- our End-to-End (E2E) secure communication architecture for the IoT- consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform. |
| Author | Raza, Shahid Helgason, Tómas Papadimitratos, Panos Voigt, Thiemo |
| Author_xml | – sequence: 1 givenname: Shahid surname: Raza fullname: Raza, Shahid email: shahid@sics.se organization: RISE SICS, Isafjordsgatan 22, Stockholm, Sweden – sequence: 2 givenname: Tómas surname: Helgason fullname: Helgason, Tómas email: tomash@sics.se organization: RISE SICS, Isafjordsgatan 22, Stockholm, Sweden – sequence: 3 givenname: Panos surname: Papadimitratos fullname: Papadimitratos, Panos email: papadim@kth.se organization: Networked Systems Security Group, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 4 givenname: Thiemo surname: Voigt fullname: Voigt, Thiemo email: thiemo@sics.se organization: RISE SICS, Isafjordsgatan 22, Stockholm, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212194$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30782$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-333812$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqFkcFOGzEQhi1EpQbaN-jBd_DWXm_sDQckBGmLhNQDtOpttGuPiUNiI9vbqm9fh7QXDs1ppJnvn5HmOyHHIQYk5IPgjeBCfVw3bipTwqblQjdcNZz3R2Qmet0yLcT8mMwqppmWix9vyUnOa84rKcWM2Hs0NXmPIeMFXQbLSmQYLM0vfWridjsFb4biY6BDMitf0OyOURcTLauKbOJkmYkh1AFaehsKpoCFRkcfVj485nfkjRs2Gd__rafk26flw_UXdvf18-311R0znZKFdXpAu-jt3Mix7Yx0C4lSOCWk45qPahw1ajdK7nhvOlQanZK6nZvOWjUqLU_J-X5v_oXP0wjPyW-H9Bvi4OHGf7-CmB5hmkBK2Yu24meH8eRBct3vaHaYfioraEUrFl3lL_a8STHnhA6MLy9vLGnwGxAcdvJgDXt5sJMHXEGVV8Pdq_C_cwdil_sY1i__9JggG4_BoPWpygEb_f8X_AFjULtQ |
| CitedBy_id | crossref_primary_10_1016_j_cose_2019_101658 crossref_primary_10_1109_JIOT_2019_2942085 crossref_primary_10_1155_2021_8847099 crossref_primary_10_1016_j_future_2018_06_040 crossref_primary_10_1016_j_future_2019_01_038 crossref_primary_10_1016_j_jnca_2020_102918 crossref_primary_10_1007_s11277_020_07769_2 crossref_primary_10_1109_JIOT_2019_2959428 crossref_primary_10_3390_s22072561 crossref_primary_10_1016_j_compind_2022_103802 crossref_primary_10_1016_j_iotcps_2021_12_003 crossref_primary_10_1007_s11277_020_07792_3 crossref_primary_10_1016_j_future_2017_07_060 crossref_primary_10_1109_JIOT_2019_2910233 crossref_primary_10_1109_ACCESS_2020_3002815 crossref_primary_10_1109_JIOT_2023_3252040 crossref_primary_10_1155_2022_1887424 |
| Cites_doi | 10.1109/MC.2009.54 10.1109/JSEN.2013.2277656 10.1109/TASE.2015.2511301 10.17487/rfc6282 10.1109/TII.2014.2306384 10.17487/rfc6347 10.17487/rfc7228 10.1109/NTMS.2015.7266475 10.17487/rfc7457 10.17487/rfc7252 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION ADTPV AOWAS D8V D8T ZZAVC DF2 |
| DOI | 10.1016/j.future.2017.06.008 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Freely available online SwePub Articles full text SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 51 |
| ExternalDocumentID | oai_DiVA_org_uu_333812 oai_DiVA_org_ri_30782 oai_DiVA_org_kth_212194 10_1016_j_future_2017_06_008 S0167739X17312360 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD ADTPV AOWAS D8V D8T ZZAVC DF2 |
| ID | FETCH-LOGICAL-c463t-47aed98d5c3b24c3f93e31f613f070b6bb7e7fb30f08c4e67ef63725c4dd6b673 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412036600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X 1872-7115 |
| IngestDate | Tue Nov 04 16:19:57 EST 2025 Wed Sep 24 03:29:02 EDT 2025 Tue Nov 04 16:28:07 EST 2025 Tue Nov 18 22:08:49 EST 2025 Sat Nov 29 02:59:43 EST 2025 Fri Feb 23 02:30:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Dec |
| Keywords | CoAP Security Internet of Things DTLS Cloud IoT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c463t-47aed98d5c3b24c3f93e31f613f070b6bb7e7fb30f08c4e67ef63725c4dd6b673 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30782 |
| PageCount | 12 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_333812 swepub_primary_oai_DiVA_org_ri_30782 swepub_primary_oai_DiVA_org_kth_212194 crossref_citationtrail_10_1016_j_future_2017_06_008 crossref_primary_10_1016_j_future_2017_06_008 elsevier_sciencedirect_doi_10_1016_j_future_2017_06_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-01 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Granjal, Monteiro, Sa Silva (b17) 2013 Kovatsch, Duquennoy, Dunkels (b29) 2011 Inria France (coordinator), H2020 Vessedia Project (2016–2019): Verification Engineering of Safety and Seuciry Critical Dynamic Industrial Applications. Kothmayr, Schmitt, Hu, Brunig, Carle (b11) 2012 Raza, Seitz, Sitenkov, Selander (b22) 2016; 13 Texas Instruments, CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee RISE SICS - sense.sics.se, Sics S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460 (Draft Standard), updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112, 1998. URL Sense Cloud Platform Suite Digi International, Digi Device Cloud (Etherios Device Cloud). Hummen, Wirtz, Ziegeldorf, Hiller, Wehrle (b16) 2013 Campagna (b14) 2013 P. Tuset-Peiró, X. Vilajosana, OpenMote Technologies. O. Bergmann, TinyDTLS Software Library Implementation, TZI Uni Bremen. Kovatsch, Lanter, Shelby (b25) 2014 J. Hui, P. Thubert, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks, RFC 6282. Request for Comments, IETF, Internet Engineering Task Force. 2011. Eclipse, Leshan, an OMA Lightweight M2M (LWM2M) implementation. Raza, Shafagh, Hewage, Hummen, Voigt (b1) 2013; 13 O.P. nol Piñol, S. Raza, J. Eriksson, T. Voigt, BSD-based elliptic curve cryptography for the open internet of things, in: The 7th IFIP International Conference on New Technologies, Mobility and Security, NTMS’15, Paris, France, 2015. Applications. Y. Sheffer, R. Holz, P. Saint-Andre, Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS), RFC 7457 RFC 7457 (Informational), Request for Comments, IETF, Internet Engineering Task Force, 2015. P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, T. Kivinen, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), RFC 7250, 2014. Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography, version 2.0, 2009. Santesson, Tschofenig (b15) 2015 Dunkels, Eriksson, Finne, Tsiftes (b31) 2011 E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2 RFC 6347, 2012. Accessed December 12 2016. Hu, Corke, Shih, Overs (b10) 2009 . LogMeIn Inc (LOGM), Xively enterprise IoT platform. Jiang, Da Xu, Cai, Jiang, Bu, Xu (b5) 2014; 10 Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), RFC 7252, 2014. Fouladgar, Mainaud, Masmoudi, Afifi (b18) 2006 Hummen, Shafagh, Raza, Voig, Wehrle (b19) 2014 C. Bormann, M. Ersue, A. Keranen, Terminology for Constrained-Node Networks, RFC 7228, 2014. Caicedo, Joshi, Tuladhar (b34) 2009; 42 Tiloca, Gehrmann, Seitz (b21) 2016 Bagci, Raza, Roedig, Voigt (b20) 2015 Dunkels, Schmidt, Finne, Eriksson, Österlind, Tsiftes, Durvy (b26) 2011 Kovatsch (10.1016/j.future.2017.06.008_b25) 2014 Jiang (10.1016/j.future.2017.06.008_b5) 2014; 10 Raza (10.1016/j.future.2017.06.008_b22) 2016; 13 10.1016/j.future.2017.06.008_b30 Caicedo (10.1016/j.future.2017.06.008_b34) 2009; 42 Hummen (10.1016/j.future.2017.06.008_b16) 2013 10.1016/j.future.2017.06.008_b7 Fouladgar (10.1016/j.future.2017.06.008_b18) 2006 10.1016/j.future.2017.06.008_b33 10.1016/j.future.2017.06.008_b6 10.1016/j.future.2017.06.008_b12 10.1016/j.future.2017.06.008_b9 Bagci (10.1016/j.future.2017.06.008_b20) 2015 10.1016/j.future.2017.06.008_b8 Hummen (10.1016/j.future.2017.06.008_b19) 2014 10.1016/j.future.2017.06.008_b32 10.1016/j.future.2017.06.008_b3 10.1016/j.future.2017.06.008_b2 Kothmayr (10.1016/j.future.2017.06.008_b11) 2012 Santesson (10.1016/j.future.2017.06.008_b15) 2015 10.1016/j.future.2017.06.008_b13 Campagna (10.1016/j.future.2017.06.008_b14) 2013 10.1016/j.future.2017.06.008_b35 10.1016/j.future.2017.06.008_b4 Tiloca (10.1016/j.future.2017.06.008_b21) 2016 Hu (10.1016/j.future.2017.06.008_b10) 2009 Dunkels (10.1016/j.future.2017.06.008_b31) 2011 Kovatsch (10.1016/j.future.2017.06.008_b29) 2011 Raza (10.1016/j.future.2017.06.008_b1) 2013; 13 10.1016/j.future.2017.06.008_b28 Granjal (10.1016/j.future.2017.06.008_b17) 2013 10.1016/j.future.2017.06.008_b23 Dunkels (10.1016/j.future.2017.06.008_b26) 2011 10.1016/j.future.2017.06.008_b27 10.1016/j.future.2017.06.008_b24 |
| References_xml | – start-page: 1 year: 2013 end-page: 10 ident: b16 article-title: Tailoring end-to-end IP security protocols to the Internet of Things publication-title: Network Protocols (ICNP), 2013 21st IEEE International Conference on – start-page: 855 year: 2011 end-page: 860 ident: b29 article-title: A low-power CoAP for Contiki publication-title: Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International Conference on – reference: P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, T. Kivinen, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), RFC 7250, 2014. – reference: Texas Instruments, CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee – start-page: 284 year: 2014 end-page: 292 ident: b19 article-title: Delegation-based authentication and authorization for the IP-based internet of things publication-title: Sensing, Communication, and Networking (SECON), 2014 Eleventh Annual IEEE International Conference on – volume: 13 start-page: 1270 year: 2016 end-page: 1280 ident: b22 article-title: S3K: Scalable security with symmetric KeysDTLS key establishment for the Internet of Things publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 13 start-page: 3711 year: 2013 end-page: 3720 ident: b1 article-title: Lithe: Lightweight secure CoAP for the internet of things publication-title: IEEE Sensors J. – reference: LogMeIn Inc (LOGM), Xively enterprise IoT platform. – reference: P. Tuset-Peiró, X. Vilajosana, OpenMote Technologies. – reference: Digi International, Digi Device Cloud (Etherios Device Cloud). – reference: C. Bormann, M. Ersue, A. Keranen, Terminology for Constrained-Node Networks, RFC 7228, 2014. – reference: Eclipse, Leshan, an OMA Lightweight M2M (LWM2M) implementation. – year: 2015 ident: b15 publication-title: Transport Layer Security (TLS) Cached Information Extension, Internet-Draft draft-ietf-tls-cached-info-19, IETF Secretariat – reference: Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), RFC 7252, 2014. – start-page: 1 year: 2016 end-page: 21 ident: b21 article-title: On improving resistance to denial of service and key provisioning scalability of the dtls handshake publication-title: Int. J. Inf. Security – reference: Inria France (coordinator), H2020 Vessedia Project (2016–2019): Verification Engineering of Safety and Seuciry Critical Dynamic Industrial Applications. – reference: E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2 RFC 6347, 2012. – year: 2013 ident: b14 publication-title: SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV), Version 1.0, Certicom Research – year: 2015 ident: b20 article-title: Fusion: coalesced confidential storage and communication framework for the IoT publication-title: Secur. Commun. Netw. – volume: 10 start-page: 1443 year: 2014 end-page: 1451 ident: b5 article-title: An IoT-oriented data storage framework in cloud computing platform publication-title: IEEE Trans. Ind. Inform. – year: 2011 ident: b26 publication-title: The Contiki OS: The Operating System for the Internet of Things – start-page: 32 year: 2006 end-page: 42 ident: b18 article-title: Tiny 3-TLS: A trust delegation protocol for wireless sensor networks publication-title: Security and Privacy in Ad-Hoc and Sensor Networks – reference: S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460 (Draft Standard), updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112, 1998. URL – reference: Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography, version 2.0, 2009. – reference: Y. Sheffer, R. Holz, P. Saint-Andre, Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS), RFC 7457 RFC 7457 (Informational), Request for Comments, IETF, Internet Engineering Task Force, 2015. – reference: Sense Cloud Platform Suite, – year: 2011 ident: b31 publication-title: Powertrace: Network-Level Power Profiling for Low-Power Wireless Networks – reference: . – reference: RISE SICS - sense.sics.se, Sics – reference: J. Hui, P. Thubert, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks, RFC 6282. Request for Comments, IETF, Internet Engineering Task Force. 2011. – start-page: 296 year: 2009 end-page: 311 ident: b10 article-title: secfleck: A public key technology platform for wireless sensor networks publication-title: Wireless Sensor Networks – reference: O.P. nol Piñol, S. Raza, J. Eriksson, T. Voigt, BSD-based elliptic curve cryptography for the open internet of things, in: The 7th IFIP International Conference on New Technologies, Mobility and Security, NTMS’15, Paris, France, 2015. – reference: . (Accessed December 12 2016. – start-page: 1 year: 2014 end-page: 6 ident: b25 article-title: Californium: Scalable cloud services for the internet of things with CoAP publication-title: Internet of Things (IOT), 2014 International Conference on the – reference: O. Bergmann, TinyDTLS Software Library Implementation, TZI Uni Bremen. – reference: Applications. – start-page: 1 year: 2013 end-page: 9 ident: b17 article-title: End-to-end transport-layer security for Internet-integrated sensing applications with mutual and delegated ECC public-key authentication publication-title: IFIP Networking Conference, 2013 – volume: 42 start-page: 36 year: 2009 end-page: 42 ident: b34 article-title: IPv6 security challenges publication-title: IEEE Comput. – start-page: 956 year: 2012 end-page: 963 ident: b11 article-title: A DTLS based end-to-end security architecture for the Internet of Things with two-way authentication publication-title: Local Computer Networks Workshops (LCN Workshops), 2012 IEEE 37th Conference on – ident: 10.1016/j.future.2017.06.008_b4 – volume: 42 start-page: 36 issue: 2 year: 2009 ident: 10.1016/j.future.2017.06.008_b34 article-title: IPv6 security challenges publication-title: IEEE Comput. doi: 10.1109/MC.2009.54 – start-page: 1 year: 2013 ident: 10.1016/j.future.2017.06.008_b17 article-title: End-to-end transport-layer security for Internet-integrated sensing applications with mutual and delegated ECC public-key authentication – ident: 10.1016/j.future.2017.06.008_b6 – volume: 13 start-page: 3711 issue: 10 year: 2013 ident: 10.1016/j.future.2017.06.008_b1 article-title: Lithe: Lightweight secure CoAP for the internet of things publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2013.2277656 – ident: 10.1016/j.future.2017.06.008_b2 – start-page: 1 year: 2016 ident: 10.1016/j.future.2017.06.008_b21 article-title: On improving resistance to denial of service and key provisioning scalability of the dtls handshake publication-title: Int. J. Inf. Security – volume: 13 start-page: 1270 issue: 3 year: 2016 ident: 10.1016/j.future.2017.06.008_b22 article-title: S3K: Scalable security with symmetric KeysDTLS key establishment for the Internet of Things publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2511301 – ident: 10.1016/j.future.2017.06.008_b30 – year: 2015 ident: 10.1016/j.future.2017.06.008_b20 article-title: Fusion: coalesced confidential storage and communication framework for the IoT publication-title: Secur. Commun. Netw. – ident: 10.1016/j.future.2017.06.008_b9 doi: 10.17487/rfc6282 – ident: 10.1016/j.future.2017.06.008_b32 – volume: 10 start-page: 1443 issue: 2 year: 2014 ident: 10.1016/j.future.2017.06.008_b5 article-title: An IoT-oriented data storage framework in cloud computing platform publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2014.2306384 – ident: 10.1016/j.future.2017.06.008_b8 doi: 10.17487/rfc6347 – ident: 10.1016/j.future.2017.06.008_b28 – ident: 10.1016/j.future.2017.06.008_b23 doi: 10.17487/rfc7228 – start-page: 956 year: 2012 ident: 10.1016/j.future.2017.06.008_b11 article-title: A DTLS based end-to-end security architecture for the Internet of Things with two-way authentication – ident: 10.1016/j.future.2017.06.008_b24 – start-page: 1 year: 2014 ident: 10.1016/j.future.2017.06.008_b25 article-title: Californium: Scalable cloud services for the internet of things with CoAP – ident: 10.1016/j.future.2017.06.008_b13 doi: 10.1109/NTMS.2015.7266475 – year: 2015 ident: 10.1016/j.future.2017.06.008_b15 – year: 2011 ident: 10.1016/j.future.2017.06.008_b26 – ident: 10.1016/j.future.2017.06.008_b3 – start-page: 855 year: 2011 ident: 10.1016/j.future.2017.06.008_b29 article-title: A low-power CoAP for Contiki – start-page: 296 year: 2009 ident: 10.1016/j.future.2017.06.008_b10 article-title: secfleck: A public key technology platform for wireless sensor networks – start-page: 284 year: 2014 ident: 10.1016/j.future.2017.06.008_b19 article-title: Delegation-based authentication and authorization for the IP-based internet of things – ident: 10.1016/j.future.2017.06.008_b12 – ident: 10.1016/j.future.2017.06.008_b35 – ident: 10.1016/j.future.2017.06.008_b27 – ident: 10.1016/j.future.2017.06.008_b33 doi: 10.17487/rfc7457 – year: 2011 ident: 10.1016/j.future.2017.06.008_b31 – start-page: 1 year: 2013 ident: 10.1016/j.future.2017.06.008_b16 article-title: Tailoring end-to-end IP security protocols to the Internet of Things – ident: 10.1016/j.future.2017.06.008_b7 doi: 10.17487/rfc7252 – start-page: 32 year: 2006 ident: 10.1016/j.future.2017.06.008_b18 article-title: Tiny 3-TLS: A trust delegation protocol for wireless sensor networks – year: 2013 ident: 10.1016/j.future.2017.06.008_b14 |
| SSID | ssj0001731 |
| Score | 2.412256 |
| Snippet | Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 40 |
| SubjectTerms | Asymmetric cryptography Cloud Clouds CoAP Communication architectures Constrained Application Protocol (CoAP) DTLS End-to-end secure communications Experimental evaluation Internet of Things Internet protocols Interoperability IoT Network architecture Network protocols Network security Secure communication Security Wireless sensor networks |
| Title | SecureSense: End-to-end secure communication architecture for the cloud-connected Internet of Things |
| URI | https://dx.doi.org/10.1016/j.future.2017.06.008 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212194 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30782 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-333812 |
| Volume | 77 |
| WOSCitedRecordID | wos000412036600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbapEM7pM8g7gse0m4KbFLSkaORJmiLIggQ1_BGUBTpOg3kwJWDIL--x4ckB0EeHboQAkGKFo883p2P30fIbllmdmiZSIAqnqQGC0WNSoRQGkQuDPWIN5MfcHTEp1NxHNne_ng6Aagqfnkpzv-rqLEOhe2uzv6DuNuXYgU-o9CxRLFj-SDB-wi6OUH39FqWz6EHD3GMySYKXUdCh4jm3CW9qytvUZ7sdYHSs5mKV7PGbe0xnrOlux_l_qmPeP-O9GhRz9t3TRbzWb3WLcYX8MzqcjViyBFVKTBPeNvqzEi9EpRewFu6oYtDWOB0L4CjuCw68FCpA96dPddQrr_MJyO5WM7k7_qXxCN1KNLHZJNCJlBdbY6-HUy_t4fsECLVZPxxzq_mgM4CWrjNDUmfxndz9FstkHWoWG9ejF-QregX9EdBni_JI1O9Is8bzo1-VMGvybM18b4hPw8Pxvtfk0hokeg0Z3WSgjKl4GWmWUFTzaxwIWiLFpVFzVvkRQEGbMEGdsB1anIwNmdAM52WZV7kwLbJRrWozA7p08wMmEgL3F3o46IPWXJFCxgKhRa4stAjrPlIqSPauyMdOZNNWt-pDFMj3dRIn93IeyRpe50HtJN72kMzfzJabMESk7gI7un5OUx3O84tK6BHdu9quJxL5qzcHvl0V7PVSjKGxil9-9Bx35Gn3W54Tzbq5cp8IE_0Be6h5ce4HP8CnCOJfg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SecureSense&rft.jtitle=Future+generation+computer+systems&rft.au=Raza%2C+S.&rft.au=Helgason%2C+T.&rft.au=Papadimitratos%2C+Panagiotis&rft.au=Voigt%2C+T.&rft.date=2017-12-01&rft.issn=0167-739X&rft.volume=77&rft.spage=40&rft_id=info:doi/10.1016%2Fj.future.2017.06.008&rft.externalDocID=oai_DiVA_org_kth_212194 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |