SecureSense: End-to-end secure communication architecture for the cloud-connected Internet of Things

Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protoco...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 77; no. Dec; pp. 40 - 51
Main Authors: Raza, Shahid, Helgason, Tómas, Papadimitratos, Panos, Voigt, Thiemo
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2017
Subjects:
ISSN:0167-739X, 1872-7115, 1872-7115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend SicsthSense– a cloud platform for the IoT– with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource-constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense– our End-to-End (E2E) secure communication architecture for the IoT– consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security,  (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform. •Extending IoT capabilities from the PSK-based CoAP to RPK- and certificate-based CoAP.•Bring CoAP and DTLS-based security in SicsthSense, a cloud platform for the IoT.•Extensive empirical evaluation of E2E security for the cloud-connected IoT.
AbstractList Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend SicsthSense– a cloud platform for the IoT– with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource-constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense– our End-to-End (E2E) secure communication architecture for the IoT– consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform.
Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend SicsthSense– a cloud platform for the IoT– with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource-constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense– our End-to-End (E2E) secure communication architecture for the IoT– consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security,  (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform. •Extending IoT capabilities from the PSK-based CoAP to RPK- and certificate-based CoAP.•Bring CoAP and DTLS-based security in SicsthSense, a cloud platform for the IoT.•Extensive empirical evaluation of E2E security for the cloud-connected IoT.
Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart thing deployments require security. CoAP mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol. In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-based) of CoAP in a real cloud-connected IoT setup. We extend Sics(th)Sense- a cloud platform for the IoT- with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our knowledge, this is the first effort toward providing end-to-end secure communication between resource constrained smart things and cloud back-ends which supports all three security modes of CoAP both on the client side and the server side. SecureSense- our End-to-End (E2E) secure communication architecture for the IoT- consists of all standard-based protocols, and implementation of these protocols are open source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license implementation make it possible for future IoT product and service providers to account for security overhead while using all standardized protocols and while ensuring interoperability among different vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the IoT, and (iii) detailed experimental evaluation and benchmarking of E2E security between a network of smart things and a cloud platform.
Author Raza, Shahid
Helgason, Tómas
Papadimitratos, Panos
Voigt, Thiemo
Author_xml – sequence: 1
  givenname: Shahid
  surname: Raza
  fullname: Raza, Shahid
  email: shahid@sics.se
  organization: RISE SICS, Isafjordsgatan 22, Stockholm, Sweden
– sequence: 2
  givenname: Tómas
  surname: Helgason
  fullname: Helgason, Tómas
  email: tomash@sics.se
  organization: RISE SICS, Isafjordsgatan 22, Stockholm, Sweden
– sequence: 3
  givenname: Panos
  surname: Papadimitratos
  fullname: Papadimitratos, Panos
  email: papadim@kth.se
  organization: Networked Systems Security Group, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 4
  givenname: Thiemo
  surname: Voigt
  fullname: Voigt, Thiemo
  email: thiemo@sics.se
  organization: RISE SICS, Isafjordsgatan 22, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212194$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30782$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-333812$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkcFOGzEQhi1EpQbaN-jBd_DWXm_sDQckBGmLhNQDtOpttGuPiUNiI9vbqm9fh7QXDs1ppJnvn5HmOyHHIQYk5IPgjeBCfVw3bipTwqblQjdcNZz3R2Qmet0yLcT8mMwqppmWix9vyUnOa84rKcWM2Hs0NXmPIeMFXQbLSmQYLM0vfWridjsFb4biY6BDMitf0OyOURcTLauKbOJkmYkh1AFaehsKpoCFRkcfVj485nfkjRs2Gd__rafk26flw_UXdvf18-311R0znZKFdXpAu-jt3Mix7Yx0C4lSOCWk45qPahw1ajdK7nhvOlQanZK6nZvOWjUqLU_J-X5v_oXP0wjPyW-H9Bvi4OHGf7-CmB5hmkBK2Yu24meH8eRBct3vaHaYfioraEUrFl3lL_a8STHnhA6MLy9vLGnwGxAcdvJgDXt5sJMHXEGVV8Pdq_C_cwdil_sY1i__9JggG4_BoPWpygEb_f8X_AFjULtQ
CitedBy_id crossref_primary_10_1016_j_cose_2019_101658
crossref_primary_10_1109_JIOT_2019_2942085
crossref_primary_10_1155_2021_8847099
crossref_primary_10_1016_j_future_2018_06_040
crossref_primary_10_1016_j_future_2019_01_038
crossref_primary_10_1016_j_jnca_2020_102918
crossref_primary_10_1007_s11277_020_07769_2
crossref_primary_10_1109_JIOT_2019_2959428
crossref_primary_10_3390_s22072561
crossref_primary_10_1016_j_compind_2022_103802
crossref_primary_10_1016_j_iotcps_2021_12_003
crossref_primary_10_1007_s11277_020_07792_3
crossref_primary_10_1016_j_future_2017_07_060
crossref_primary_10_1109_JIOT_2019_2910233
crossref_primary_10_1109_ACCESS_2020_3002815
crossref_primary_10_1109_JIOT_2023_3252040
crossref_primary_10_1155_2022_1887424
Cites_doi 10.1109/MC.2009.54
10.1109/JSEN.2013.2277656
10.1109/TASE.2015.2511301
10.17487/rfc6282
10.1109/TII.2014.2306384
10.17487/rfc6347
10.17487/rfc7228
10.1109/NTMS.2015.7266475
10.17487/rfc7457
10.17487/rfc7252
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
D8V
D8T
ZZAVC
DF2
DOI 10.1016/j.future.2017.06.008
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Freely available online
SwePub Articles full text
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 51
ExternalDocumentID oai_DiVA_org_uu_333812
oai_DiVA_org_ri_30782
oai_DiVA_org_kth_212194
10_1016_j_future_2017_06_008
S0167739X17312360
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AOWAS
D8V
D8T
ZZAVC
DF2
ID FETCH-LOGICAL-c463t-47aed98d5c3b24c3f93e31f613f070b6bb7e7fb30f08c4e67ef63725c4dd6b673
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412036600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
1872-7115
IngestDate Tue Nov 04 16:19:57 EST 2025
Wed Sep 24 03:29:02 EDT 2025
Tue Nov 04 16:28:07 EST 2025
Tue Nov 18 22:08:49 EST 2025
Sat Nov 29 02:59:43 EST 2025
Fri Feb 23 02:30:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Dec
Keywords CoAP
Security
Internet of Things
DTLS
Cloud
IoT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-47aed98d5c3b24c3f93e31f613f070b6bb7e7fb30f08c4e67ef63725c4dd6b673
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30782
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_uu_333812
swepub_primary_oai_DiVA_org_ri_30782
swepub_primary_oai_DiVA_org_kth_212194
crossref_citationtrail_10_1016_j_future_2017_06_008
crossref_primary_10_1016_j_future_2017_06_008
elsevier_sciencedirect_doi_10_1016_j_future_2017_06_008
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Granjal, Monteiro, Sa Silva (b17) 2013
Kovatsch, Duquennoy, Dunkels (b29) 2011
Inria France (coordinator), H2020 Vessedia Project (2016–2019): Verification Engineering of Safety and Seuciry Critical Dynamic Industrial Applications.
Kothmayr, Schmitt, Hu, Brunig, Carle (b11) 2012
Raza, Seitz, Sitenkov, Selander (b22) 2016; 13
Texas Instruments, CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee
RISE SICS - sense.sics.se, Sics
S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460 (Draft Standard), updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112, 1998. URL
Sense Cloud Platform Suite
Digi International, Digi Device Cloud (Etherios Device Cloud).
Hummen, Wirtz, Ziegeldorf, Hiller, Wehrle (b16) 2013
Campagna (b14) 2013
P. Tuset-Peiró, X. Vilajosana, OpenMote Technologies.
O. Bergmann, TinyDTLS Software Library Implementation, TZI Uni Bremen.
Kovatsch, Lanter, Shelby (b25) 2014
J. Hui, P. Thubert, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks, RFC 6282. Request for Comments, IETF, Internet Engineering Task Force. 2011.
Eclipse, Leshan, an OMA Lightweight M2M (LWM2M) implementation.
Raza, Shafagh, Hewage, Hummen, Voigt (b1) 2013; 13
O.P. nol Piñol, S. Raza, J. Eriksson, T. Voigt, BSD-based elliptic curve cryptography for the open internet of things, in: The 7th IFIP International Conference on New Technologies, Mobility and Security, NTMS’15, Paris, France, 2015.
Applications.
Y. Sheffer, R. Holz, P. Saint-Andre, Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS), RFC 7457 RFC 7457 (Informational), Request for Comments, IETF, Internet Engineering Task Force, 2015.
P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, T. Kivinen, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), RFC 7250, 2014.
Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography, version 2.0, 2009.
Santesson, Tschofenig (b15) 2015
Dunkels, Eriksson, Finne, Tsiftes (b31) 2011
E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2 RFC 6347, 2012.
Accessed December 12 2016.
Hu, Corke, Shih, Overs (b10) 2009
.
LogMeIn Inc (LOGM), Xively enterprise IoT platform.
Jiang, Da Xu, Cai, Jiang, Bu, Xu (b5) 2014; 10
Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), RFC 7252, 2014.
Fouladgar, Mainaud, Masmoudi, Afifi (b18) 2006
Hummen, Shafagh, Raza, Voig, Wehrle (b19) 2014
C. Bormann, M. Ersue, A. Keranen, Terminology for Constrained-Node Networks, RFC 7228, 2014.
Caicedo, Joshi, Tuladhar (b34) 2009; 42
Tiloca, Gehrmann, Seitz (b21) 2016
Bagci, Raza, Roedig, Voigt (b20) 2015
Dunkels, Schmidt, Finne, Eriksson, Österlind, Tsiftes, Durvy (b26) 2011
Kovatsch (10.1016/j.future.2017.06.008_b25) 2014
Jiang (10.1016/j.future.2017.06.008_b5) 2014; 10
Raza (10.1016/j.future.2017.06.008_b22) 2016; 13
10.1016/j.future.2017.06.008_b30
Caicedo (10.1016/j.future.2017.06.008_b34) 2009; 42
Hummen (10.1016/j.future.2017.06.008_b16) 2013
10.1016/j.future.2017.06.008_b7
Fouladgar (10.1016/j.future.2017.06.008_b18) 2006
10.1016/j.future.2017.06.008_b33
10.1016/j.future.2017.06.008_b6
10.1016/j.future.2017.06.008_b12
10.1016/j.future.2017.06.008_b9
Bagci (10.1016/j.future.2017.06.008_b20) 2015
10.1016/j.future.2017.06.008_b8
Hummen (10.1016/j.future.2017.06.008_b19) 2014
10.1016/j.future.2017.06.008_b32
10.1016/j.future.2017.06.008_b3
10.1016/j.future.2017.06.008_b2
Kothmayr (10.1016/j.future.2017.06.008_b11) 2012
Santesson (10.1016/j.future.2017.06.008_b15) 2015
10.1016/j.future.2017.06.008_b13
Campagna (10.1016/j.future.2017.06.008_b14) 2013
10.1016/j.future.2017.06.008_b35
10.1016/j.future.2017.06.008_b4
Tiloca (10.1016/j.future.2017.06.008_b21) 2016
Hu (10.1016/j.future.2017.06.008_b10) 2009
Dunkels (10.1016/j.future.2017.06.008_b31) 2011
Kovatsch (10.1016/j.future.2017.06.008_b29) 2011
Raza (10.1016/j.future.2017.06.008_b1) 2013; 13
10.1016/j.future.2017.06.008_b28
Granjal (10.1016/j.future.2017.06.008_b17) 2013
10.1016/j.future.2017.06.008_b23
Dunkels (10.1016/j.future.2017.06.008_b26) 2011
10.1016/j.future.2017.06.008_b27
10.1016/j.future.2017.06.008_b24
References_xml – start-page: 1
  year: 2013
  end-page: 10
  ident: b16
  article-title: Tailoring end-to-end IP security protocols to the Internet of Things
  publication-title: Network Protocols (ICNP), 2013 21st IEEE International Conference on
– start-page: 855
  year: 2011
  end-page: 860
  ident: b29
  article-title: A low-power CoAP for Contiki
  publication-title: Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International Conference on
– reference: P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, T. Kivinen, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), RFC 7250, 2014.
– reference: Texas Instruments, CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee
– start-page: 284
  year: 2014
  end-page: 292
  ident: b19
  article-title: Delegation-based authentication and authorization for the IP-based internet of things
  publication-title: Sensing, Communication, and Networking (SECON), 2014 Eleventh Annual IEEE International Conference on
– volume: 13
  start-page: 1270
  year: 2016
  end-page: 1280
  ident: b22
  article-title: S3K: Scalable security with symmetric KeysDTLS key establishment for the Internet of Things
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 13
  start-page: 3711
  year: 2013
  end-page: 3720
  ident: b1
  article-title: Lithe: Lightweight secure CoAP for the internet of things
  publication-title: IEEE Sensors J.
– reference: LogMeIn Inc (LOGM), Xively enterprise IoT platform.
– reference: P. Tuset-Peiró, X. Vilajosana, OpenMote Technologies.
– reference: Digi International, Digi Device Cloud (Etherios Device Cloud).
– reference: C. Bormann, M. Ersue, A. Keranen, Terminology for Constrained-Node Networks, RFC 7228, 2014.
– reference: Eclipse, Leshan, an OMA Lightweight M2M (LWM2M) implementation.
– year: 2015
  ident: b15
  publication-title: Transport Layer Security (TLS) Cached Information Extension, Internet-Draft draft-ietf-tls-cached-info-19, IETF Secretariat
– reference: Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), RFC 7252, 2014.
– start-page: 1
  year: 2016
  end-page: 21
  ident: b21
  article-title: On improving resistance to denial of service and key provisioning scalability of the dtls handshake
  publication-title: Int. J. Inf. Security
– reference: Inria France (coordinator), H2020 Vessedia Project (2016–2019): Verification Engineering of Safety and Seuciry Critical Dynamic Industrial Applications.
– reference: E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2 RFC 6347, 2012.
– year: 2013
  ident: b14
  publication-title: SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV), Version 1.0, Certicom Research
– year: 2015
  ident: b20
  article-title: Fusion: coalesced confidential storage and communication framework for the IoT
  publication-title: Secur. Commun. Netw.
– volume: 10
  start-page: 1443
  year: 2014
  end-page: 1451
  ident: b5
  article-title: An IoT-oriented data storage framework in cloud computing platform
  publication-title: IEEE Trans. Ind. Inform.
– year: 2011
  ident: b26
  publication-title: The Contiki OS: The Operating System for the Internet of Things
– start-page: 32
  year: 2006
  end-page: 42
  ident: b18
  article-title: Tiny 3-TLS: A trust delegation protocol for wireless sensor networks
  publication-title: Security and Privacy in Ad-Hoc and Sensor Networks
– reference: S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460 (Draft Standard), updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112, 1998. URL
– reference: Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography, version 2.0, 2009.
– reference: Y. Sheffer, R. Holz, P. Saint-Andre, Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS), RFC 7457 RFC 7457 (Informational), Request for Comments, IETF, Internet Engineering Task Force, 2015.
– reference: Sense Cloud Platform Suite,
– year: 2011
  ident: b31
  publication-title: Powertrace: Network-Level Power Profiling for Low-Power Wireless Networks
– reference: .
– reference: RISE SICS - sense.sics.se, Sics
– reference: J. Hui, P. Thubert, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks, RFC 6282. Request for Comments, IETF, Internet Engineering Task Force. 2011.
– start-page: 296
  year: 2009
  end-page: 311
  ident: b10
  article-title: secfleck: A public key technology platform for wireless sensor networks
  publication-title: Wireless Sensor Networks
– reference: O.P. nol Piñol, S. Raza, J. Eriksson, T. Voigt, BSD-based elliptic curve cryptography for the open internet of things, in: The 7th IFIP International Conference on New Technologies, Mobility and Security, NTMS’15, Paris, France, 2015.
– reference: . (Accessed December 12 2016.
– start-page: 1
  year: 2014
  end-page: 6
  ident: b25
  article-title: Californium: Scalable cloud services for the internet of things with CoAP
  publication-title: Internet of Things (IOT), 2014 International Conference on the
– reference: O. Bergmann, TinyDTLS Software Library Implementation, TZI Uni Bremen.
– reference: Applications.
– start-page: 1
  year: 2013
  end-page: 9
  ident: b17
  article-title: End-to-end transport-layer security for Internet-integrated sensing applications with mutual and delegated ECC public-key authentication
  publication-title: IFIP Networking Conference, 2013
– volume: 42
  start-page: 36
  year: 2009
  end-page: 42
  ident: b34
  article-title: IPv6 security challenges
  publication-title: IEEE Comput.
– start-page: 956
  year: 2012
  end-page: 963
  ident: b11
  article-title: A DTLS based end-to-end security architecture for the Internet of Things with two-way authentication
  publication-title: Local Computer Networks Workshops (LCN Workshops), 2012 IEEE 37th Conference on
– ident: 10.1016/j.future.2017.06.008_b4
– volume: 42
  start-page: 36
  issue: 2
  year: 2009
  ident: 10.1016/j.future.2017.06.008_b34
  article-title: IPv6 security challenges
  publication-title: IEEE Comput.
  doi: 10.1109/MC.2009.54
– start-page: 1
  year: 2013
  ident: 10.1016/j.future.2017.06.008_b17
  article-title: End-to-end transport-layer security for Internet-integrated sensing applications with mutual and delegated ECC public-key authentication
– ident: 10.1016/j.future.2017.06.008_b6
– volume: 13
  start-page: 3711
  issue: 10
  year: 2013
  ident: 10.1016/j.future.2017.06.008_b1
  article-title: Lithe: Lightweight secure CoAP for the internet of things
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2013.2277656
– ident: 10.1016/j.future.2017.06.008_b2
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2017.06.008_b21
  article-title: On improving resistance to denial of service and key provisioning scalability of the dtls handshake
  publication-title: Int. J. Inf. Security
– volume: 13
  start-page: 1270
  issue: 3
  year: 2016
  ident: 10.1016/j.future.2017.06.008_b22
  article-title: S3K: Scalable security with symmetric KeysDTLS key establishment for the Internet of Things
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2511301
– ident: 10.1016/j.future.2017.06.008_b30
– year: 2015
  ident: 10.1016/j.future.2017.06.008_b20
  article-title: Fusion: coalesced confidential storage and communication framework for the IoT
  publication-title: Secur. Commun. Netw.
– ident: 10.1016/j.future.2017.06.008_b9
  doi: 10.17487/rfc6282
– ident: 10.1016/j.future.2017.06.008_b32
– volume: 10
  start-page: 1443
  issue: 2
  year: 2014
  ident: 10.1016/j.future.2017.06.008_b5
  article-title: An IoT-oriented data storage framework in cloud computing platform
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2306384
– ident: 10.1016/j.future.2017.06.008_b8
  doi: 10.17487/rfc6347
– ident: 10.1016/j.future.2017.06.008_b28
– ident: 10.1016/j.future.2017.06.008_b23
  doi: 10.17487/rfc7228
– start-page: 956
  year: 2012
  ident: 10.1016/j.future.2017.06.008_b11
  article-title: A DTLS based end-to-end security architecture for the Internet of Things with two-way authentication
– ident: 10.1016/j.future.2017.06.008_b24
– start-page: 1
  year: 2014
  ident: 10.1016/j.future.2017.06.008_b25
  article-title: Californium: Scalable cloud services for the internet of things with CoAP
– ident: 10.1016/j.future.2017.06.008_b13
  doi: 10.1109/NTMS.2015.7266475
– year: 2015
  ident: 10.1016/j.future.2017.06.008_b15
– year: 2011
  ident: 10.1016/j.future.2017.06.008_b26
– ident: 10.1016/j.future.2017.06.008_b3
– start-page: 855
  year: 2011
  ident: 10.1016/j.future.2017.06.008_b29
  article-title: A low-power CoAP for Contiki
– start-page: 296
  year: 2009
  ident: 10.1016/j.future.2017.06.008_b10
  article-title: secfleck: A public key technology platform for wireless sensor networks
– start-page: 284
  year: 2014
  ident: 10.1016/j.future.2017.06.008_b19
  article-title: Delegation-based authentication and authorization for the IP-based internet of things
– ident: 10.1016/j.future.2017.06.008_b12
– ident: 10.1016/j.future.2017.06.008_b35
– ident: 10.1016/j.future.2017.06.008_b27
– ident: 10.1016/j.future.2017.06.008_b33
  doi: 10.17487/rfc7457
– year: 2011
  ident: 10.1016/j.future.2017.06.008_b31
– start-page: 1
  year: 2013
  ident: 10.1016/j.future.2017.06.008_b16
  article-title: Tailoring end-to-end IP security protocols to the Internet of Things
– ident: 10.1016/j.future.2017.06.008_b7
  doi: 10.17487/rfc7252
– start-page: 32
  year: 2006
  ident: 10.1016/j.future.2017.06.008_b18
  article-title: Tiny 3-TLS: A trust delegation protocol for wireless sensor networks
– year: 2013
  ident: 10.1016/j.future.2017.06.008_b14
SSID ssj0001731
Score 2.412256
Snippet Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike traditional wireless sensor networks, Internet-connected smart...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Asymmetric cryptography
Cloud
Clouds
CoAP
Communication architectures
Constrained Application Protocol (CoAP)
DTLS
End-to-end secure communications
Experimental evaluation
Internet of Things
Internet protocols
Interoperability
IoT
Network architecture
Network protocols
Network security
Secure communication
Security
Wireless sensor networks
Title SecureSense: End-to-end secure communication architecture for the cloud-connected Internet of Things
URI https://dx.doi.org/10.1016/j.future.2017.06.008
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212194
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30782
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-333812
Volume 77
WOSCitedRecordID wos000412036600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbapEM7pM8g7gse0m4KbFLSkaORJmiLIggQ1_BGUBTpOg3kwJWDIL--x4ckB0EeHboQAkGKFo883p2P30fIbllmdmiZSIAqnqQGC0WNSoRQGkQuDPWIN5MfcHTEp1NxHNne_ng6Aagqfnkpzv-rqLEOhe2uzv6DuNuXYgU-o9CxRLFj-SDB-wi6OUH39FqWz6EHD3GMySYKXUdCh4jm3CW9qytvUZ7sdYHSs5mKV7PGbe0xnrOlux_l_qmPeP-O9GhRz9t3TRbzWb3WLcYX8MzqcjViyBFVKTBPeNvqzEi9EpRewFu6oYtDWOB0L4CjuCw68FCpA96dPddQrr_MJyO5WM7k7_qXxCN1KNLHZJNCJlBdbY6-HUy_t4fsECLVZPxxzq_mgM4CWrjNDUmfxndz9FstkHWoWG9ejF-QregX9EdBni_JI1O9Is8bzo1-VMGvybM18b4hPw8Pxvtfk0hokeg0Z3WSgjKl4GWmWUFTzaxwIWiLFpVFzVvkRQEGbMEGdsB1anIwNmdAM52WZV7kwLbJRrWozA7p08wMmEgL3F3o46IPWXJFCxgKhRa4stAjrPlIqSPauyMdOZNNWt-pDFMj3dRIn93IeyRpe50HtJN72kMzfzJabMESk7gI7un5OUx3O84tK6BHdu9quJxL5qzcHvl0V7PVSjKGxil9-9Bx35Gn3W54Tzbq5cp8IE_0Be6h5ce4HP8CnCOJfg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SecureSense&rft.jtitle=Future+generation+computer+systems&rft.au=Raza%2C+S.&rft.au=Helgason%2C+T.&rft.au=Papadimitratos%2C+Panagiotis&rft.au=Voigt%2C+T.&rft.date=2017-12-01&rft.issn=0167-739X&rft.volume=77&rft.spage=40&rft_id=info:doi/10.1016%2Fj.future.2017.06.008&rft.externalDocID=oai_DiVA_org_kth_212194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon