Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems

The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaran...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 185; no. 3; pp. 927 - 944
Main Authors: Bergou, El Houcine, Diouane, Youssef, Kungurtsev, Vyacheslav
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2020
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt method that matches, simultaneously, the state of the art in all of these convergence properties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior of our proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01666-1