Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems

The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 185; H. 3; S. 927 - 944
Hauptverfasser: Bergou, El Houcine, Diouane, Youssef, Kungurtsev, Vyacheslav
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2020
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt method that matches, simultaneously, the state of the art in all of these convergence properties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior of our proposed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01666-1