Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems

The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaran...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 185; číslo 3; s. 927 - 944
Hlavní autoři: Bergou, El Houcine, Diouane, Youssef, Kungurtsev, Vyacheslav
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2020
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt method that matches, simultaneously, the state of the art in all of these convergence properties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior of our proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01666-1