Predicting Chemical Reaction Barriers with a Machine Learning Model
In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have beg...
Uloženo v:
| Vydáno v: | Catalysis letters Ročník 149; číslo 9; s. 2347 - 2354 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2019
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1011-372X, 1572-879X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity.
Graphical Abstract |
|---|---|
| AbstractList | In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. Here in our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst's affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst's affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. Graphical In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. Graphical Abstract |
| Audience | Academic |
| Author | Gauthier, Joseph A. Singh, Aayush R. Rohr, Brian A. Nørskov, Jens K. |
| Author_xml | – sequence: 1 givenname: Aayush R. surname: Singh fullname: Singh, Aayush R. organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis – sequence: 2 givenname: Brian A. surname: Rohr fullname: Rohr, Brian A. organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis – sequence: 3 givenname: Joseph A. surname: Gauthier fullname: Gauthier, Joseph A. organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis – sequence: 4 givenname: Jens K. surname: Nørskov fullname: Nørskov, Jens K. email: norskov@stanford.edu organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, Department of Physics, Denmark Technical University |
| BackLink | https://www.osti.gov/servlets/purl/1546783$$D View this record in Osti.gov |
| BookMark | eNp9kU9PHCEYh0ljk6rtF-hpUk8eRoEZ_h1106rJmja2TbwRlnnZxYygwKbbby_jmDT2YDhA3jwPvLy_A7QXYgCEPhN8QjAWp5lgxmmLiWoxFZi1u3donzBBWynU7V49Y0LaTtDbD-gg5zuMsRJE7aPFjwSDt8WHdbPYwL23ZmxuwNRKDM25SclDys0fXzaNaa6N3fgAzRJMCpNyHQcYP6L3zowZPr3sh-j3t6-_Fpft8vvF1eJs2dqed6XtGCg8KDp0QjgJeMWEUEI5zghfAaPESWnIgJ0ZKKy4MCuOB9L3XApHWK-6Q_Rlvjfm4nW2voDd2BgC2KIrwYXsKnQ0Qw8pPm4hF30XtynUvjTtMReqU0pW6mSm1mYE7YOLJRlb1zCNoM7W-Vo_Y4pSTiSbrj1-JVSmwK6szTZnffXz5jUrZ9ammHMCp2urZhpofcSPmmA9habn0HQNTT-HpndVpf-pD8nfm_T3bambpVzhsIb078tvWE-MFak- |
| CitedBy_id | crossref_primary_10_3390_ijms25073860 crossref_primary_10_1016_j_proci_2020_09_019 crossref_primary_10_1002_advs_202106043 crossref_primary_10_1002_minf_202200275 crossref_primary_10_1016_j_jallcom_2024_175546 crossref_primary_10_1021_acs_joc_5c01229 crossref_primary_10_1016_j_apcatb_2024_124070 crossref_primary_10_1002_qua_70036 crossref_primary_10_21926_cr_2502005 crossref_primary_10_1038_s41524_025_01691_6 crossref_primary_10_1007_s00894_020_04438_w crossref_primary_10_1021_acs_jpca_5c00675 crossref_primary_10_1088_2515_7655_ab2060 crossref_primary_10_1016_j_cej_2025_163947 crossref_primary_10_1016_j_ces_2022_118146 crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1016_j_poly_2024_117336 crossref_primary_10_1002_adma_202402369 crossref_primary_10_1002_adts_202100414 crossref_primary_10_1039_D0ME00134A crossref_primary_10_1016_j_cej_2021_131639 crossref_primary_10_1016_j_commatsci_2021_110390 crossref_primary_10_1002_cctc_202201108 crossref_primary_10_1039_D3SC03922F crossref_primary_10_1088_2632_2153_acee42 crossref_primary_10_1016_j_apcatb_2020_119866 crossref_primary_10_1021_jacs_4c01524 crossref_primary_10_1515_znb_2022_0070 crossref_primary_10_1002_chem_202200062 crossref_primary_10_1088_2632_2153_aba822 crossref_primary_10_1038_s41570_025_00740_4 crossref_primary_10_1002_wcms_1604 crossref_primary_10_1016_j_cclet_2024_110454 crossref_primary_10_1016_j_nanoen_2023_108695 crossref_primary_10_1039_D0SC03552A crossref_primary_10_1021_acscatal_5c02818 crossref_primary_10_1016_j_cej_2020_125469 crossref_primary_10_1039_D2SC02925A crossref_primary_10_1002_cphc_202300933 crossref_primary_10_1007_s11244_020_01283_2 crossref_primary_10_1038_s41467_023_44629_6 crossref_primary_10_1016_j_ceramint_2020_08_121 crossref_primary_10_1007_s00214_024_03124_x crossref_primary_10_1039_D0SC00445F crossref_primary_10_1021_acs_jpcc_3c07398 crossref_primary_10_1002_adma_202005484 crossref_primary_10_1039_D2CY00284A crossref_primary_10_1002_aic_16663 crossref_primary_10_1002_wcms_1593 |
| Cites_doi | 10.1021/ct400195d 10.1016/S0360-0564(02)45013-4 10.1103/PhysRevMaterials.2.083802 10.1016/j.jcat.2006.02.016 10.1039/C7CP00375G 10.1063/1.1329672 10.1039/TF9363201333 10.1039/c1cp20547a 10.1021/acs.jpclett.5b01660 10.1016/j.cpc.2016.05.010 10.1103/PhysRevB.41.7892 10.1021/acs.jpclett.6b01254 10.1021/acscatal.7b01648 10.1063/1.1323224 10.1103/PhysRevLett.119.150601 10.1063/1.480097 10.1063/1.5023563 10.1038/ncomms14621 10.1038/s41467-017-00839-3 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
| CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
| DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI |
| DOI | 10.1007/s10562-019-02705-x |
| DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Materials Science Collection |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1572-879X |
| EndPage | 2354 |
| ExternalDocumentID | 1546783 A592261853 10_1007_s10562_019_02705_x |
| GrantInformation_xml | – fundername: Basic Energy Sciences funderid: http://dx.doi.org/10.13039/100006151 – fundername: Villum Fonden grantid: 9455 funderid: http://dx.doi.org/10.13039/100008398 |
| GroupedDBID | -4Y -58 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29B 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZMTXR ~EX ~KM -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF HZ~ KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCG SCLPG T16 TEORI W4F DWQXO PKEHL PQEST PQQKQ PQUKI PRINS AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM ADOXG AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OIOZB OTOTI SQXTU UNUBA |
| ID | FETCH-LOGICAL-c463t-35e90d92d377f8e0b577979f6516be521f88a1d0fad2eb67ab60d144687f15493 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1011-372X |
| IngestDate | Mon Jul 03 03:58:41 EDT 2023 Sat Nov 08 14:32:11 EST 2025 Sat Nov 29 10:16:05 EST 2025 Wed Nov 26 10:01:05 EST 2025 Sat Nov 29 04:09:05 EST 2025 Tue Nov 18 20:40:01 EST 2025 Fri Feb 21 02:41:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Kinetic modeling Density functional theory Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c463t-35e90d92d377f8e0b577979f6516be521f88a1d0fad2eb67ab60d144687f15493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-76SF00515 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1546783 |
| PQID | 2406793998 |
| PQPubID | 2043868 |
| PageCount | 8 |
| ParticipantIDs | osti_scitechconnect_1546783 proquest_journals_2406793998 gale_infotracacademiconefile_A592261853 gale_incontextgauss_ISR_A592261853 crossref_citationtrail_10_1007_s10562_019_02705_x crossref_primary_10_1007_s10562_019_02705_x springer_journals_10_1007_s10562_019_02705_x |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht – name: United States |
| PublicationTitle | Catalysis letters |
| PublicationTitleAbbrev | Catal Lett |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Ma, Li, Achenie, Xin (CR18) 2015; 6 Khorshidi, Peterson (CR9) 2016; 207 Wang, Petzold, Tripkovic (CR5) 2011; 13 Andersson, Bligaard, Kustov (CR7) 2006; 239 Schneider, Dai, Topper (CR15) 2017; 119 Ulissi, Medford, Bligaard (CR17) 2017; 8 CR13 Vanderbilt (CR19) 1990; 41 Henkelman, Jónsson (CR1) 1999; 111 Ulissi, Singh, Tsai, Nørskov (CR12) 2016; 7 Peterson, Christensen, Khorshidi (CR8) 2017; 19 CR10 Hansen, Montavon, Biegler (CR14) 2013; 9 Hammer, Nørskov (CR6) 2000; 45 Henkelman, Jónsson (CR3) 2000; 113 Samuelson, Thorp, Kassouf (CR4) 1968; 63 Ouyang, Curtarolo, Ahmetcik (CR20) 2018 Henkelman, Uberuaga, Jónsson (CR2) 2000; 113 Ulissi, Tang, Xiao (CR16) 2017; 7 Pedregosa, Varoquaux, Gramfort (CR21) 2011; 12 Jørgensen, Mesta, Shil (CR11) 2018 MP Andersson (2705_CR7) 2006; 239 PB Jørgensen (2705_CR11) 2018 AA Peterson (2705_CR8) 2017; 19 E Schneider (2705_CR15) 2017; 119 ZW Ulissi (2705_CR17) 2017; 8 F Pedregosa (2705_CR21) 2011; 12 G Henkelman (2705_CR1) 1999; 111 G Henkelman (2705_CR2) 2000; 113 B Hammer (2705_CR6) 2000; 45 S Wang (2705_CR5) 2011; 13 P Samuelson (2705_CR4) 1968; 63 2705_CR13 X Ma (2705_CR18) 2015; 6 K Hansen (2705_CR14) 2013; 9 2705_CR10 R Ouyang (2705_CR20) 2018 G Henkelman (2705_CR3) 2000; 113 A Khorshidi (2705_CR9) 2016; 207 ZW Ulissi (2705_CR12) 2016; 7 ZW Ulissi (2705_CR16) 2017; 7 D Vanderbilt (2705_CR19) 1990; 41 |
| References_xml | – volume: 9 start-page: 3404 year: 2013 end-page: 3419 ident: CR14 article-title: Assessment and validation of machine learning methods for predicting molecular atomization energies publication-title: J Chem Theory Comput doi: 10.1021/ct400195d – volume: 45 start-page: 71 year: 2000 end-page: 129 ident: CR6 article-title: Theoretical surface science and catalysis—calculations and concepts publication-title: Adv Catal doi: 10.1016/S0360-0564(02)45013-4 – year: 2018 ident: CR20 article-title: SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates publication-title: Phys Rev Mater doi doi: 10.1103/PhysRevMaterials.2.083802 – volume: 239 start-page: 501 year: 2006 end-page: 506 ident: CR7 article-title: Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts publication-title: J Catal doi: 10.1016/j.jcat.2006.02.016 – volume: 19 start-page: 10978 year: 2017 end-page: 10985 ident: CR8 article-title: Addressing uncertainty in atomistic machine learning publication-title: Phys Chem Chem Phys doi: 10.1039/C7CP00375G – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR2 article-title: Climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J Chem Phys doi: 10.1063/1.1329672 – volume: 63 start-page: 1049 year: 1968 ident: CR4 article-title: Beat the Market: A Scientific Stock Market System publication-title: J Am Stat Assoc doi: 10.1039/TF9363201333 – volume: 13 start-page: 20760 year: 2011 ident: CR5 article-title: Universal transition state scaling relations for (de)hydrogenation over transition metals publication-title: Phys Chem Chem Phys doi: 10.1039/c1cp20547a – ident: CR13 – ident: CR10 – volume: 6 start-page: 3528 year: 2015 end-page: 3533 ident: CR18 article-title: Machine-learning-augmented chemisorption model for CO electroreduction catalyst screening publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b01660 – volume: 207 start-page: 310 year: 2016 end-page: 324 ident: CR9 article-title: Amp: A modular approach to machine learning in atomistic simulations publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2016.05.010 – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: CR19 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys Rev B doi: 10.1103/PhysRevB.41.7892 – volume: 7 start-page: 3931 year: 2016 end-page: 3935 ident: CR12 article-title: Automated discovery and construction of surface phase diagrams using machine learning publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b01254 – volume: 7 start-page: 66006608 year: 2017 ident: CR16 article-title: Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO reduction publication-title: ACS Catal doi: 10.1021/acscatal.7b01648 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR21 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: CR3 article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points publication-title: J Chem Phys doi: 10.1063/1.1323224 – volume: 119 start-page: 150601 year: 2017 ident: CR15 article-title: Stochastic neural network approach for learning high-dimensional free energy surfaces publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.119.150601 – volume: 111 start-page: 7010 year: 1999 end-page: 7022 ident: CR1 article-title: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives publication-title: J Chem Phys doi: 10.1063/1.480097 – year: 2018 ident: CR11 article-title: Machine learning-based screening of complex molecules for polymer solar cells publication-title: J Chem Phys doi doi: 10.1063/1.5023563 – volume: 8 start-page: 14621 year: 2017 ident: CR17 article-title: To address surface reaction network complexity using scaling relations machine learning and DFT calculations publication-title: Nat Commun doi: 10.1038/ncomms14621 – volume: 111 start-page: 7010 year: 1999 ident: 2705_CR1 publication-title: J Chem Phys doi: 10.1063/1.480097 – ident: 2705_CR10 – volume: 8 start-page: 14621 year: 2017 ident: 2705_CR17 publication-title: Nat Commun doi: 10.1038/ncomms14621 – volume: 41 start-page: 7892 year: 1990 ident: 2705_CR19 publication-title: Phys Rev B doi: 10.1103/PhysRevB.41.7892 – year: 2018 ident: 2705_CR20 publication-title: Phys Rev Mater doi doi: 10.1103/PhysRevMaterials.2.083802 – volume: 113 start-page: 9901 year: 2000 ident: 2705_CR2 publication-title: J Chem Phys doi: 10.1063/1.1329672 – year: 2018 ident: 2705_CR11 publication-title: J Chem Phys doi doi: 10.1063/1.5023563 – volume: 6 start-page: 3528 year: 2015 ident: 2705_CR18 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b01660 – volume: 45 start-page: 71 year: 2000 ident: 2705_CR6 publication-title: Adv Catal doi: 10.1016/S0360-0564(02)45013-4 – volume: 7 start-page: 66006608 year: 2017 ident: 2705_CR16 publication-title: ACS Catal doi: 10.1021/acscatal.7b01648 – volume: 239 start-page: 501 year: 2006 ident: 2705_CR7 publication-title: J Catal doi: 10.1016/j.jcat.2006.02.016 – volume: 207 start-page: 310 year: 2016 ident: 2705_CR9 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2016.05.010 – volume: 9 start-page: 3404 year: 2013 ident: 2705_CR14 publication-title: J Chem Theory Comput doi: 10.1021/ct400195d – volume: 119 start-page: 150601 year: 2017 ident: 2705_CR15 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.119.150601 – volume: 19 start-page: 10978 year: 2017 ident: 2705_CR8 publication-title: Phys Chem Chem Phys doi: 10.1039/C7CP00375G – volume: 13 start-page: 20760 year: 2011 ident: 2705_CR5 publication-title: Phys Chem Chem Phys doi: 10.1039/c1cp20547a – volume: 7 start-page: 3931 year: 2016 ident: 2705_CR12 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b01254 – volume: 63 start-page: 1049 year: 1968 ident: 2705_CR4 publication-title: J Am Stat Assoc doi: 10.1039/TF9363201333 – volume: 113 start-page: 9978 year: 2000 ident: 2705_CR3 publication-title: J Chem Phys doi: 10.1063/1.1323224 – volume: 12 start-page: 2825 year: 2011 ident: 2705_CR21 publication-title: J Mach Learn Res – ident: 2705_CR13 doi: 10.1038/s41467-017-00839-3 |
| SSID | ssj0009719 |
| Score | 2.5634649 |
| Snippet | In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials... |
| SourceID | osti proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2347 |
| SubjectTerms | Catalysis Catalytic activity Chemical reactions Chemistry Chemistry and Materials Science Computer simulation Costs Design optimization Industrial Chemistry/Chemical Engineering INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Machine learning Organometallic Chemistry Parameters Physical Chemistry Solid surfaces |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_KtaA--C2enhJKwYd2YT-TzeN5KO1DRU4r9xaSbCKC3MntKf3zO7OX7XliC_qyL5ndTSYzmUky8xuAL4bzwhsrozzXBh85qhQv0ojn0hVCWHI6mmIT4uKiHI3kZUgKq9to9_ZKslmpnyW7oa3Gra-ke8e4iNBz_IjmriR1HF7dLKB2RVPOI6HDv0yko5Aq8_o3lsxRWJQ7E9SuJY_zxSVpY3vON97X601YD74m68-FYws-uPE2rAzaEm_bsPYMjXAHBpdTurWhOGjW4giwoZtnPrBTPaXidjWjk1um2c8mCtOxANB6y6iq2v0u_Do_ux58j0KNhcjmPJtFWeFkXMm0yoTwpYsNTpAU0vMi4cahbfdlqZMq9rpKneFCGx5XtIcshSd0t2wPOuPJ2O0Dy8vE8cQL7pzMZZIaW-nMe2HSXFRl4ruQtKxWNgCQUx2Me7WATiZmKWSWapilfnfh6993HubwG_-l_kwzqAjXYkyBM7f6sa7Vj6uh6hcSHU1yTrpwEoj8BH9vdchDwEEQFNYS5SFJgkJfhAB1LUUe2ZnCYaOFx9ZeKyAq6H2tyD_CFQ_3sF341grEovnfXT94G_khrKaNTFGwWw86s-mjO4JP9ml2V0-PG334A-BcASo priority: 102 providerName: Springer Nature |
| Title | Predicting Chemical Reaction Barriers with a Machine Learning Model |
| URI | https://link.springer.com/article/10.1007/s10562-019-02705-x https://www.proquest.com/docview/2406793998 https://www.osti.gov/servlets/purl/1546783 |
| Volume | 149 |
| WOSCitedRecordID | wos000474386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1572-879X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009719 issn: 1011-372X databaseCode: KB. dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-879X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009719 issn: 1011-372X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1572-879X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009719 issn: 1011-372X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RFAk48CggQktlISQOsGUfXnt9qpqoFQgRRSmg3Czba1dIVVKyKerPZ2bjJU2l9sJlL_Y-vDOeGdsz3wfwzgpRButUwrmxeOE4pUSZJ4IrX0rpKOhoySbkaFRNp2ocN9yamFbZ2cTWUNdzR3vkn8jzoC7h6uDw4ndCrFF0uhopNLZgm5DKeA-2B8ej8WQNuytbao-MNgILmU9j2UwsnkPfj0tpReeYaZlcbbimaKB7c5xpG9HnjQPT1g-dPPnfETyFxzECZUcrlXkG9_xsBx4MO-K3HXh0DaPwOQzHCzrLoexo1qELsIlf1UOwgVkQ5V3DaD-XGfatzc30LMK2njHiWjt_AT9Ojr8PPyeReSFxXBTLpCi9SmuV14WUofKpRbEpqYIoM2E9evxQVSar02Dq3FshjRVpTSvLSgbCfCteQm82n_lXwHiVeZEFKbxXXGW5dbUpQpA257KustCHrPvp2kVYcmLHONdrQGUSlEZB6VZQ-qoPH_7dc7EC5biz91uSpSa0ixml05yZy6bRX04n-qhUGH5SyNKH97FTmOPrnYnVCTgIAsja6LlLOqExQiGYXUf5SG6pcdjo97F1rxO-jtag0WvJ9-Fjpz7r5ts__fXdT9uFh3mrv5Tytge95eLSv4H77s_yV7PYj3NhH7a-Dg7wOjn9-RdLLw3d |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVLbA48CYtsCFgJxoBF5OHZ8qKp2adVV29VqKdLeTOLYVaVqt2y2UP4Uv5GZrMOySPTWA5dc4jycfOMZ2zPfB_CmECJ1hVEB53mBB44mJdI4EFzZVEpDQUctNiF7vWw4VP0l-NnUwlBaZTMm1gN1OTa0Rv6BPA9iCWcHu1dfA1KNot3VRkJjBotj--M7Ttmqne5H_L9v4_jw4KxzFHhVgcBwkUyDJLUqLFVcJlK6zIYFvpKSyok0EoVFb-ayLI_K0OVlbAsh80KEJc2aMumIzyzB-96DZZ5wiXa1vH_Q6w_mNL-ylhKJaOExkfHQl-n4Yj2MNXDqrmjfNEyDmwVX6B1Ca4yWvRDt_rVBW_u9w4f_2xd7BA98hM32ZibxGJbsaB1WOo2w3Tqs_cHB-AQ6_QntVVH2N2vYE9jAzuo92H4-IUm_itF6NcvZaZ17apmnpT1npCV3-RQ-30mPnkFrNB7Z58B4FlkROSmsVVxFcWHKPHFOFjGXZRa5NkTNT9bG066T-selnhNGEzA0AkPXwNA3bXj_-5qrGenIra1fE3Y0sXmMKF3oPL-uKt39NNB7qcLwmkKyNrzzjdwYH29yX32BnSACsIWWm4RBjREY0QgbyrcyU43dxrgGz241YNN-tKv0HGlt2G7gOj_971ffuP1ur2Dl6Oz0RJ90e8ebsBrXtkPpfVvQmk6u7Qu4b75NL6rJS2-HDL7cNZB_AWb7Zy8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLdQh4A9DBhDlA2IEBIPcNp9JpfHrVAxAVW1AepblOSSCWm6Tr0b4s_HvubWdgIkxMu9nO8jjhPbsf0zwCvDeeGNlVGea4OXHJcUL9KI59IVQlgyOrpmE2IyKWczOV2r4u-y3fuQ5LKmgVCa6vbwsvKHa4VvqLfRDZYUg4yLCK3IrZyaBpG_fvZtBbsrutYeCR0EZiKdhbKZ379jQzWFDXowx5W2YX3eCJh2emh8__9H8AB2gg3KjpZC8xBuuXoX7o761m-7sL2GUvgIRtMFRXMoP5r1-ALs1C0rItixXlDTu4bRiS7T7HOXnelYAG49Z9Rt7WIPvo7ffxl9iELvhcjmPGujrHAyrmRaZUL40sUGJ04K6XmRcONQ5_uy1EkVe12lznChDY8r8i1L4Qn1LXsMg3peuyfA8jJxPPGCOydzmaTGVjrzXpg0F1WZ-CEkPduVDcDk1B_jQq0glYlZCpmlOmapn0N4c_3M5RKW46_UL2k2FeFd1JRQc66vmkadnJ2qo0KiAUpGyxBeByI_x89bHeoTcBAEkbVBuU9SodBGIaBdSxlJtlU4bNT8ePegFxYV9oNGkd2EOyH6tkN42wvH6vaff_3pv5G_gDvTd2P16WTycR_upZ14UT7cAQzaxZV7Brftj_Z7s3jeLZNfVVQM8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Chemical+Reaction+Barriers+with+a+Machine+Learning+Model&rft.jtitle=Catalysis+letters&rft.au=Singh%2C+Aayush+R&rft.au=Rohr%2C+Brian+A&rft.au=Gauthier%2C+Joseph+A&rft.au=N%C3%B8rskov%2C+Jens+K&rft.date=2019-09-01&rft.pub=Springer&rft.issn=1011-372X&rft.volume=149&rft.issue=9&rft.spage=2347&rft_id=info:doi/10.1007%2Fs10562-019-02705-x&rft.externalDocID=A592261853 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon |