Predicting Chemical Reaction Barriers with a Machine Learning Model

In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have beg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters Jg. 149; H. 9; S. 2347 - 2354
Hauptverfasser: Singh, Aayush R., Rohr, Brian A., Gauthier, Joseph A., Nørskov, Jens K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2019
Springer
Springer Nature B.V
Schlagworte:
ISSN:1011-372X, 1572-879X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. Graphical Abstract
AbstractList In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. Here in our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity.
In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst's affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity.
In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. Graphical Abstract
In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experimental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning approach to predict the most expensive and most important parameter in a catalyst's affinity for a reaction: the reaction barrier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a marked improvement towards the goal of computational prediction of catalytic activity. Graphical
Audience Academic
Author Gauthier, Joseph A.
Singh, Aayush R.
Rohr, Brian A.
Nørskov, Jens K.
Author_xml – sequence: 1
  givenname: Aayush R.
  surname: Singh
  fullname: Singh, Aayush R.
  organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis
– sequence: 2
  givenname: Brian A.
  surname: Rohr
  fullname: Rohr, Brian A.
  organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis
– sequence: 3
  givenname: Joseph A.
  surname: Gauthier
  fullname: Gauthier, Joseph A.
  organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis
– sequence: 4
  givenname: Jens K.
  surname: Nørskov
  fullname: Nørskov, Jens K.
  email: norskov@stanford.edu
  organization: Department of Chemical Engineering, SUNCAT Center for Interface Science and Catalysis, Stanford University, SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, Department of Physics, Denmark Technical University
BackLink https://www.osti.gov/servlets/purl/1546783$$D View this record in Osti.gov
BookMark eNp9kU9PHCEYh0ljk6rtF-hpUk8eRoEZ_h1106rJmja2TbwRlnnZxYygwKbbby_jmDT2YDhA3jwPvLy_A7QXYgCEPhN8QjAWp5lgxmmLiWoxFZi1u3donzBBWynU7V49Y0LaTtDbD-gg5zuMsRJE7aPFjwSDt8WHdbPYwL23ZmxuwNRKDM25SclDys0fXzaNaa6N3fgAzRJMCpNyHQcYP6L3zowZPr3sh-j3t6-_Fpft8vvF1eJs2dqed6XtGCg8KDp0QjgJeMWEUEI5zghfAaPESWnIgJ0ZKKy4MCuOB9L3XApHWK-6Q_Rlvjfm4nW2voDd2BgC2KIrwYXsKnQ0Qw8pPm4hF30XtynUvjTtMReqU0pW6mSm1mYE7YOLJRlb1zCNoM7W-Vo_Y4pSTiSbrj1-JVSmwK6szTZnffXz5jUrZ9ammHMCp2urZhpofcSPmmA9habn0HQNTT-HpndVpf-pD8nfm_T3bambpVzhsIb078tvWE-MFak-
CitedBy_id crossref_primary_10_3390_ijms25073860
crossref_primary_10_1016_j_proci_2020_09_019
crossref_primary_10_1002_advs_202106043
crossref_primary_10_1002_minf_202200275
crossref_primary_10_1016_j_jallcom_2024_175546
crossref_primary_10_1021_acs_joc_5c01229
crossref_primary_10_1016_j_apcatb_2024_124070
crossref_primary_10_1002_qua_70036
crossref_primary_10_21926_cr_2502005
crossref_primary_10_1038_s41524_025_01691_6
crossref_primary_10_1007_s00894_020_04438_w
crossref_primary_10_1021_acs_jpca_5c00675
crossref_primary_10_1088_2515_7655_ab2060
crossref_primary_10_1016_j_cej_2025_163947
crossref_primary_10_1016_j_ces_2022_118146
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1016_j_poly_2024_117336
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1002_adts_202100414
crossref_primary_10_1039_D0ME00134A
crossref_primary_10_1016_j_cej_2021_131639
crossref_primary_10_1016_j_commatsci_2021_110390
crossref_primary_10_1002_cctc_202201108
crossref_primary_10_1039_D3SC03922F
crossref_primary_10_1088_2632_2153_acee42
crossref_primary_10_1016_j_apcatb_2020_119866
crossref_primary_10_1021_jacs_4c01524
crossref_primary_10_1515_znb_2022_0070
crossref_primary_10_1002_chem_202200062
crossref_primary_10_1088_2632_2153_aba822
crossref_primary_10_1038_s41570_025_00740_4
crossref_primary_10_1002_wcms_1604
crossref_primary_10_1016_j_cclet_2024_110454
crossref_primary_10_1016_j_nanoen_2023_108695
crossref_primary_10_1039_D0SC03552A
crossref_primary_10_1021_acscatal_5c02818
crossref_primary_10_1016_j_cej_2020_125469
crossref_primary_10_1039_D2SC02925A
crossref_primary_10_1002_cphc_202300933
crossref_primary_10_1007_s11244_020_01283_2
crossref_primary_10_1038_s41467_023_44629_6
crossref_primary_10_1016_j_ceramint_2020_08_121
crossref_primary_10_1007_s00214_024_03124_x
crossref_primary_10_1039_D0SC00445F
crossref_primary_10_1021_acs_jpcc_3c07398
crossref_primary_10_1002_adma_202005484
crossref_primary_10_1039_D2CY00284A
crossref_primary_10_1002_aic_16663
crossref_primary_10_1002_wcms_1593
Cites_doi 10.1021/ct400195d
10.1016/S0360-0564(02)45013-4
10.1103/PhysRevMaterials.2.083802
10.1016/j.jcat.2006.02.016
10.1039/C7CP00375G
10.1063/1.1329672
10.1039/TF9363201333
10.1039/c1cp20547a
10.1021/acs.jpclett.5b01660
10.1016/j.cpc.2016.05.010
10.1103/PhysRevB.41.7892
10.1021/acs.jpclett.6b01254
10.1021/acscatal.7b01648
10.1063/1.1323224
10.1103/PhysRevLett.119.150601
10.1063/1.480097
10.1063/1.5023563
10.1038/ncomms14621
10.1038/s41467-017-00839-3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOI 10.1007/s10562-019-02705-x
DatabaseName CrossRef
Science (Gale In Context)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList

ProQuest Materials Science Collection


Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-879X
EndPage 2354
ExternalDocumentID 1546783
A592261853
10_1007_s10562_019_02705_x
GrantInformation_xml – fundername: Basic Energy Sciences
  funderid: http://dx.doi.org/10.13039/100006151
– fundername: Villum Fonden
  grantid: 9455
  funderid: http://dx.doi.org/10.13039/100008398
GroupedDBID -4Y
-58
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29B
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZMTXR
~EX
~KM
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
HZ~
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCG
SCLPG
T16
TEORI
W4F
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAFGU
AAPBV
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OIOZB
OTOTI
SQXTU
UNUBA
ID FETCH-LOGICAL-c463t-35e90d92d377f8e0b577979f6516be521f88a1d0fad2eb67ab60d144687f15493
IEDL.DBID BENPR
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1011-372X
IngestDate Mon Jul 03 03:58:41 EDT 2023
Sat Nov 08 14:32:11 EST 2025
Sat Nov 29 10:16:05 EST 2025
Wed Nov 26 10:01:05 EST 2025
Sat Nov 29 04:09:05 EST 2025
Tue Nov 18 20:40:01 EST 2025
Fri Feb 21 02:41:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Kinetic modeling
Density functional theory
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-35e90d92d377f8e0b577979f6516be521f88a1d0fad2eb67ab60d144687f15493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515
OpenAccessLink https://www.osti.gov/servlets/purl/1546783
PQID 2406793998
PQPubID 2043868
PageCount 8
ParticipantIDs osti_scitechconnect_1546783
proquest_journals_2406793998
gale_infotracacademiconefile_A592261853
gale_incontextgauss_ISR_A592261853
crossref_citationtrail_10_1007_s10562_019_02705_x
crossref_primary_10_1007_s10562_019_02705_x
springer_journals_10_1007_s10562_019_02705_x
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
– name: United States
PublicationTitle Catalysis letters
PublicationTitleAbbrev Catal Lett
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Ma, Li, Achenie, Xin (CR18) 2015; 6
Khorshidi, Peterson (CR9) 2016; 207
Wang, Petzold, Tripkovic (CR5) 2011; 13
Andersson, Bligaard, Kustov (CR7) 2006; 239
Schneider, Dai, Topper (CR15) 2017; 119
Ulissi, Medford, Bligaard (CR17) 2017; 8
CR13
Vanderbilt (CR19) 1990; 41
Henkelman, Jónsson (CR1) 1999; 111
Ulissi, Singh, Tsai, Nørskov (CR12) 2016; 7
Peterson, Christensen, Khorshidi (CR8) 2017; 19
CR10
Hansen, Montavon, Biegler (CR14) 2013; 9
Hammer, Nørskov (CR6) 2000; 45
Henkelman, Jónsson (CR3) 2000; 113
Samuelson, Thorp, Kassouf (CR4) 1968; 63
Ouyang, Curtarolo, Ahmetcik (CR20) 2018
Henkelman, Uberuaga, Jónsson (CR2) 2000; 113
Ulissi, Tang, Xiao (CR16) 2017; 7
Pedregosa, Varoquaux, Gramfort (CR21) 2011; 12
Jørgensen, Mesta, Shil (CR11) 2018
MP Andersson (2705_CR7) 2006; 239
PB Jørgensen (2705_CR11) 2018
AA Peterson (2705_CR8) 2017; 19
E Schneider (2705_CR15) 2017; 119
ZW Ulissi (2705_CR17) 2017; 8
F Pedregosa (2705_CR21) 2011; 12
G Henkelman (2705_CR1) 1999; 111
G Henkelman (2705_CR2) 2000; 113
B Hammer (2705_CR6) 2000; 45
S Wang (2705_CR5) 2011; 13
P Samuelson (2705_CR4) 1968; 63
2705_CR13
X Ma (2705_CR18) 2015; 6
K Hansen (2705_CR14) 2013; 9
2705_CR10
R Ouyang (2705_CR20) 2018
G Henkelman (2705_CR3) 2000; 113
A Khorshidi (2705_CR9) 2016; 207
ZW Ulissi (2705_CR12) 2016; 7
ZW Ulissi (2705_CR16) 2017; 7
D Vanderbilt (2705_CR19) 1990; 41
References_xml – volume: 9
  start-page: 3404
  year: 2013
  end-page: 3419
  ident: CR14
  article-title: Assessment and validation of machine learning methods for predicting molecular atomization energies
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400195d
– volume: 45
  start-page: 71
  year: 2000
  end-page: 129
  ident: CR6
  article-title: Theoretical surface science and catalysis—calculations and concepts
  publication-title: Adv Catal
  doi: 10.1016/S0360-0564(02)45013-4
– year: 2018
  ident: CR20
  article-title: SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates
  publication-title: Phys Rev Mater doi
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 239
  start-page: 501
  year: 2006
  end-page: 506
  ident: CR7
  article-title: Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts
  publication-title: J Catal
  doi: 10.1016/j.jcat.2006.02.016
– volume: 19
  start-page: 10978
  year: 2017
  end-page: 10985
  ident: CR8
  article-title: Addressing uncertainty in atomistic machine learning
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C7CP00375G
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR2
  article-title: Climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J Chem Phys
  doi: 10.1063/1.1329672
– volume: 63
  start-page: 1049
  year: 1968
  ident: CR4
  article-title: Beat the Market: A Scientific Stock Market System
  publication-title: J Am Stat Assoc
  doi: 10.1039/TF9363201333
– volume: 13
  start-page: 20760
  year: 2011
  ident: CR5
  article-title: Universal transition state scaling relations for (de)hydrogenation over transition metals
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c1cp20547a
– ident: CR13
– ident: CR10
– volume: 6
  start-page: 3528
  year: 2015
  end-page: 3533
  ident: CR18
  article-title: Machine-learning-augmented chemisorption model for CO electroreduction catalyst screening
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b01660
– volume: 207
  start-page: 310
  year: 2016
  end-page: 324
  ident: CR9
  article-title: Amp: A modular approach to machine learning in atomistic simulations
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2016.05.010
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: CR19
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.41.7892
– volume: 7
  start-page: 3931
  year: 2016
  end-page: 3935
  ident: CR12
  article-title: Automated discovery and construction of surface phase diagrams using machine learning
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b01254
– volume: 7
  start-page: 66006608
  year: 2017
  ident: CR16
  article-title: Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO reduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b01648
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR21
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 113
  start-page: 9978
  year: 2000
  end-page: 9985
  ident: CR3
  article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
  publication-title: J Chem Phys
  doi: 10.1063/1.1323224
– volume: 119
  start-page: 150601
  year: 2017
  ident: CR15
  article-title: Stochastic neural network approach for learning high-dimensional free energy surfaces
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.119.150601
– volume: 111
  start-page: 7010
  year: 1999
  end-page: 7022
  ident: CR1
  article-title: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
  publication-title: J Chem Phys
  doi: 10.1063/1.480097
– year: 2018
  ident: CR11
  article-title: Machine learning-based screening of complex molecules for polymer solar cells
  publication-title: J Chem Phys doi
  doi: 10.1063/1.5023563
– volume: 8
  start-page: 14621
  year: 2017
  ident: CR17
  article-title: To address surface reaction network complexity using scaling relations machine learning and DFT calculations
  publication-title: Nat Commun
  doi: 10.1038/ncomms14621
– volume: 111
  start-page: 7010
  year: 1999
  ident: 2705_CR1
  publication-title: J Chem Phys
  doi: 10.1063/1.480097
– ident: 2705_CR10
– volume: 8
  start-page: 14621
  year: 2017
  ident: 2705_CR17
  publication-title: Nat Commun
  doi: 10.1038/ncomms14621
– volume: 41
  start-page: 7892
  year: 1990
  ident: 2705_CR19
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.41.7892
– year: 2018
  ident: 2705_CR20
  publication-title: Phys Rev Mater doi
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 113
  start-page: 9901
  year: 2000
  ident: 2705_CR2
  publication-title: J Chem Phys
  doi: 10.1063/1.1329672
– year: 2018
  ident: 2705_CR11
  publication-title: J Chem Phys doi
  doi: 10.1063/1.5023563
– volume: 6
  start-page: 3528
  year: 2015
  ident: 2705_CR18
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b01660
– volume: 45
  start-page: 71
  year: 2000
  ident: 2705_CR6
  publication-title: Adv Catal
  doi: 10.1016/S0360-0564(02)45013-4
– volume: 7
  start-page: 66006608
  year: 2017
  ident: 2705_CR16
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b01648
– volume: 239
  start-page: 501
  year: 2006
  ident: 2705_CR7
  publication-title: J Catal
  doi: 10.1016/j.jcat.2006.02.016
– volume: 207
  start-page: 310
  year: 2016
  ident: 2705_CR9
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2016.05.010
– volume: 9
  start-page: 3404
  year: 2013
  ident: 2705_CR14
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400195d
– volume: 119
  start-page: 150601
  year: 2017
  ident: 2705_CR15
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.119.150601
– volume: 19
  start-page: 10978
  year: 2017
  ident: 2705_CR8
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C7CP00375G
– volume: 13
  start-page: 20760
  year: 2011
  ident: 2705_CR5
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c1cp20547a
– volume: 7
  start-page: 3931
  year: 2016
  ident: 2705_CR12
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b01254
– volume: 63
  start-page: 1049
  year: 1968
  ident: 2705_CR4
  publication-title: J Am Stat Assoc
  doi: 10.1039/TF9363201333
– volume: 113
  start-page: 9978
  year: 2000
  ident: 2705_CR3
  publication-title: J Chem Phys
  doi: 10.1063/1.1323224
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2705_CR21
  publication-title: J Mach Learn Res
– ident: 2705_CR13
  doi: 10.1038/s41467-017-00839-3
SSID ssj0009719
Score 2.5634649
Snippet In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite this, most discoveries of materials...
SourceID osti
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2347
SubjectTerms Catalysis
Catalytic activity
Chemical reactions
Chemistry
Chemistry and Materials Science
Computer simulation
Costs
Design optimization
Industrial Chemistry/Chemical Engineering
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Machine learning
Organometallic Chemistry
Parameters
Physical Chemistry
Solid surfaces
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kCuqDH1NxfhFE8EELTbs27aMOhz44xvxgbyFJUxFkk3WKf753XeqcqKDPTdt83OV-l9z9DuCIN7UJc3JTfU5HN1x7KrYKNV4H1kaIoDNdFpsQnU7S76ddlxRWVNHu1ZVkuVN_SnZDW42ub0r3jn7kIXKcR3OXkDr2bu6nVLuiLOfB6fAvFEHfpcp8_40Zc-Q25doQtWsGcX65JC1tT3v1f71egxWHNdnZRDjWYc4O6rDYqkq81WH5ExvhBrS6I7q1oThoVvEIsJ6dZD6wczWi4nYFo5Nbpth1GYVpmSNofWBUVe1pE-7aF7etS8_VWPBMMw7HXhjZ1M_SIAuFyBPr60iIVKR5HPFY41rxPEkUz_xcZYHVsVAaV498yETkxO4WbkFtMBzYbWCBDjjBl8AahAmmmWRGafTV49RqE2d-A3g11dI4AnKqg_Ekp9TJNFkSJ0uWkyXfGnDy8c7zhH7j19aHtIKSeC0GFDjzoF6KQl7d9ORZlCLQJHDSgGPXKB_i741yeQg4CKLCmmm5S5IgEYsQoa6hyCMzljhstPD4dK8SEOn0vpCEj3DHQx-2AaeVQEwf_9z1nb8134WloJQpCnbbg9p49GL3YcG8jh-L0UGpD--Q3AG1
  priority: 102
  providerName: Springer Nature
Title Predicting Chemical Reaction Barriers with a Machine Learning Model
URI https://link.springer.com/article/10.1007/s10562-019-02705-x
https://www.proquest.com/docview/2406793998
https://www.osti.gov/servlets/purl/1546783
Volume 149
WOSCitedRecordID wos000474386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1572-879X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009719
  issn: 1011-372X
  databaseCode: KB.
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-879X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009719
  issn: 1011-372X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-879X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009719
  issn: 1011-372X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BQQIOvBHlJWu10h4gECdNnJxWtAKBEFVVFtSbZTtOhYRaaAri5zOTOnS70nLhkkuchz1jz8Pj7wP4yRvahDmFqT6n1A3XnoqtwhmvA2sj9KAzXZJNiHY76fXSjku4Fa6ssloTy4U6GxrKkZ-R5UFdwujg9_OLR6xRtLvqKDTmYYGQyho1WGhetDvdKeyuKKk9OCUCQxH03LEZd3gObT-G0intY_qR9z5jmtwCXRviTJvxPv_ZMC3t0OXad3uwDqvOA2XnE5XZgDk72ISlVkX8tgkrf2EUbkGrM6K9HKqOZhW6AOvayXkI1lQjorwrGOVzmWK3ZW2mZQ62tc-Ia-1pG-4vL_60rjzHvOCZRhyOvTCyqZ-lQRYKkSfW15EQqUjzOOKxRgnyPEkUz_xcZYHVsVAaZUqRZSJywnwLd6A2GA7sLrBAB5ycmsAaHADTSDKjNEbwcWq1iTO_DrwadGkcLDmxYzzJKaAyCUqioGQpKPleh-PPZ54noBxftv5BspSEdjGgcpq-ei0KeX3XledRiu4nuSx1-OUa5UP8vFHudAJ2ggCyZlruk05I9FAIZtdQPZIZS-w22n28e1AJX7rVoJBTydfhpFKf6e3___re12_bh-Wg1F8qeTuA2nj0ag9h0byNH4vRkZsLRzB_0zzFa_fu4QMFQQ5o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDmnbAz8GiG4DLATigUXEzg8nD9O0lU2rtlVVGVLfjO0406SpHU0H45_ib-QudShFYm974DlOYiff2d_Zd98BvOGxsVFJbmrIaeuGm0CnTqPFG-Fcggy6MHWxCdnrZcNh3l-Cn00uDIVVNnNiPVEXY0t75B9o5UEsoXewe_U1oKpRdLralNCYweLY_fiOLlu10_2I__etEIcHZ52jwFcVCGycRtMgSlweFrkoIinLzIUmkTKXeZkmPDXYO15mmeZFWOpCOJNKbbC_5DVlsiQ9swifew-W4yiWaFfL-we9_mAu8yvrUiKcNh4jKYY-Tccn6yHXQNc9p3PTMAluFpZCvyC0xmjZC2z3rwPaet07fPi_fbFH8MAzbLY3M4nHsORG67DSaQrbrcPaHxqMT6DTn9BZFUV_s0Y9gQ3cLN-D7esJlfSrGO1XM81O69hTx7ws7TmjWnKXT-HznYzoGbRG45F7DkwYwYm0CWfxg9s4K6w2zkRp7oxNi7ANvPnJynrZdar-canmgtEEDIXAUDUw1E0b3v--52omOnJr69eEHUVqHiMKFzrX11Wlup8Gai_JkV4TJWvDO9-oHOPrrfbZFzgIEgBbaLlJGFTIwEhG2FK8lZ0qHDbyGry61YBN-dmuUnOktWG7gev88r-7vnH7017BytHZ6Yk66faON2FV1LZD4X1b0JpOrt0LuG-_TS-qyUtvhwy-3DWQfwHDTme6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NBY3xAIwPrcCGNU3aA4uIkyZOHqFbBQKqCrapb5btOAgJpVWTTvvzuUsd2qINadqzLx-2z77f2Xe_A_jEO9qEObmpPqejG649FVuFK14H1kaIoDNdF5sQ_X4yHKaDhSz-Otq9uZKc5TQQS1NRnYyz_GQh8Q3tNrrBKd1B-pGHKHKlQ0WDyF-__Tmn3RV1aQ9OB4GhCIYubebP71gyTW6Dbo1wpS2hz2cXprUd6m3-fw-2YMNhUHY6U5q38MoW27DWbUq_bcP6AkvhDnQHE7rNofho1vALsBs7y4hgZ2pCRe9KRie6TLHrOjrTMkfceseo2trDLvzoffvePfdc7QXPdOKw8sLIpn6WBlkoRJ5YX0dCpCLN44jHGueQ50mieObnKgusjoXSOKvkWyYiJ9a3cA9axaiw74AFOuAEawJrED6YTpIZpdGHj1OrTZz5beDNsEvjiMmpPsaDnFMq02BJHCxZD5b83Ybjp2fGM1qOF6U_0mxK4rsoKKDmTk3LUl7c3sjTKEUASqClDZ-dUD7Czxvl8hOwE0SRtSR5QFohEaMQ0a6hiCRTSew2Wn5sPWyURbr9oJSEm3AnRN-2DV8a5Zg3__3X9_9N_AheD7725NVF__IA3gS1elE83CG0qsnUvodV86u6Lycf6mXyCBdtDX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Chemical+Reaction+Barriers+with+a+Machine+Learning+Model&rft.jtitle=Catalysis+letters&rft.au=Singh%2C+Aayush+R&rft.au=Rohr%2C+Brian+A&rft.au=Gauthier%2C+Joseph+A&rft.au=N%C3%B8rskov%2C+Jens+K&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1011-372X&rft.eissn=1572-879X&rft.volume=149&rft.issue=9&rft.spage=2347&rft.epage=2354&rft_id=info:doi/10.1007%2Fs10562-019-02705-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon