Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data
Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predi...
Saved in:
| Published in: | Journal of big data Vol. 9; no. 1; pp. 1 - 20 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
29.04.2022
Springer Nature B.V Springer SpringerOpen |
| Subjects: | |
| ISSN: | 2196-1115, 2196-1115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes. |
|---|---|
| AbstractList | Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes. Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes. Abstract Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes. |
| ArticleNumber | 57 |
| Author | Ahmad, Adeel Garouani, Moncef Bouneffa, Mourad Hamlich, Mohamed Lewandowski, Arnaud Bourguin, Gregory |
| Author_xml | – sequence: 1 givenname: Moncef surname: Garouani fullname: Garouani, Moncef email: moncef.garouani@etu.univ-littoral.fr organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale, CCPS Laboratory, ENSAM, University of Hassan II, Study and Research Center for Engineering and Management (CERIM), HESTIM – sequence: 2 givenname: Adeel surname: Ahmad fullname: Ahmad, Adeel organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale – sequence: 3 givenname: Mourad surname: Bouneffa fullname: Bouneffa, Mourad organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale – sequence: 4 givenname: Mohamed surname: Hamlich fullname: Hamlich, Mohamed organization: CCPS Laboratory, ENSAM, University of Hassan II – sequence: 5 givenname: Gregory surname: Bourguin fullname: Bourguin, Gregory organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale – sequence: 6 givenname: Arnaud surname: Lewandowski fullname: Lewandowski, Arnaud organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale |
| BackLink | https://hal.science/hal-03655423$$DView record in HAL |
| BookMark | eNp9Uctu1TAUjFCRKKU_wCoSKxYBv-LE7KoKaKUrsaFr69g5SX1J7Ivt8BA_j-8NiMeiK9vjmfEcz9PqzAePVfWckleU9vJ1EqTlXUMYawiRlDXiUXXOqJINpbQ9-2v_pLpMaU8IobxopDivftwl56d6wQzNjBD98TSGWMOawwIZhxrmKUSX75dUJ5zRZhd8DX6obfCjm9YIR-RNgWr8dsDoFvQZ5nqMsODXED-d_Jwf1pSjKxfGTfUAGZ5Vj0eYE17-Wi-qu3dvP17fNLsP72-vr3aNFZLnhnPsDGGdACMGM6p-GFtrjC1T9CDJgEYZYTrJCFIJogXOGB1Zr4Bx03Ytv6huN98hwF4fSkCI33UAp09AiJOGmJ2dURsYSWsttbJXQhGh0IryiOJo-g4YFq-Xm9c9zP9Y3Vzt9BEjXLatYPwLLdwXG_cQw-cVU9b7sEZfRtVMtlL1hClVWP3GsjGkFHHU1uXTl-YIbtaU6GPLemtZl5b1qWUtipT9J_2d6EER30SpkP2E8U-qB1Q_AX_8vNo |
| CitedBy_id | crossref_primary_10_1080_17483107_2024_2357685 crossref_primary_10_1016_j_jmsy_2024_11_002 crossref_primary_10_1186_s40537_023_00687_7 crossref_primary_10_3390_app14031078 crossref_primary_10_1016_j_jii_2023_100536 crossref_primary_10_3758_s13428_025_02684_5 crossref_primary_10_1016_j_engappai_2025_112035 crossref_primary_10_1088_1741_2552_ade1f9 crossref_primary_10_1007_s42979_024_02780_x crossref_primary_10_3390_ai4040040 crossref_primary_10_7759_s44389_025_03667_5 crossref_primary_10_1007_s13748_023_00311_y crossref_primary_10_1186_s13677_023_00542_3 |
| Cites_doi | 10.1109/4235.585893 10.1007/978-3-319-58967-1_5 10.1007/s10845-020-01712-9 10.1016/j.ejor.2006.12.004 10.1186/s40537-020-00340-7 10.1016/j.cam.2009.10.030 10.1186/s40537-019-0271-7 10.1109/tsm.2019.2941752 10.1016/j.engappai.2019.103289 10.1016/j.procir.2018.03.215 10.1002/cpe.4128 10.1007/s10845-020-01623-9 10.1080/21693277.2016.1192517 10.1007/978-3-030-05318-5_6 10.1007/s00170-022-08761-9 10.1007/978-1-4842-4470-8 10.1007/s10489-019-01516-2 10.1007/978-3-319-92901-9_6 10.1016/C2015-0-02071-8 10.1007/978-3-030-05318-5_4 10.1007/s10044-012-0280-z 10.1007/s10845-020-01667-x 10.1016/j.aei.2021.101253 10.1007/978-3-030-05318-5 10.1016/j.softx.2021.100919 10.1016/j.compind.2017.12.005 10.1007/s10845-013-0774-6 10.1016/j.aei.2021.101321 10.1186/s40537-021-00542-7 10.1186/s40537-019-0185-4 10.1016/j.aei.2019.01.007 10.1504/IJMR.2017.088399 10.1007/978-3-030-05318-5_8 10.1016/j.aei.2018.08.013 10.1007/978-3-030-69992-5_10 10.1007/s10845-019-01531-7 10.1016/j.strusafe.2020.102047 10.1145/2908812.2908918 10.1109/nfv-sdn53031.2021.9665051 10.1109/BigData.2017.8257923 10.1007/978-3-030-05318-5_10 10.5220/0010457107090716 10.1007/978-3-030-30000-5_42 10.1145/3269206.3269299 10.23919/SOFTCOM.2019.8903672 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U 1XC VOOES DOA |
| DOI | 10.1186/s40537-022-00612-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_baf05cc1c68949049ec48a693eb87a2e oai:HAL:hal-03655423v1 10_1186_s40537_022_00612_4 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM 7XB 8AL 8FK JQ2 L.- PHGZT PKEHL POGQB PQEST PQGLB PQUKI PRINS PRQQA Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c463t-33e7b0274ab4dbf98df5cbbc0018a60deb9b4b7620e16a45a3221f289a23b5753 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788853800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Tue Oct 14 19:01:48 EDT 2025 Sat Nov 29 15:00:21 EST 2025 Fri Nov 14 18:43:10 EST 2025 Sat Nov 29 06:20:03 EST 2025 Tue Nov 18 21:43:04 EST 2025 Fri Feb 21 02:45:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Decision support systems Big industrial data Algorithms selection Meta-learning Machine learning Industry 4.0 AutoML |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c463t-33e7b0274ab4dbf98df5cbbc0018a60deb9b4b7620e16a45a3221f289a23b5753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2528-441X 0000-0001-6507-5212 0000-0003-2505-1149 0000-0002-7512-4329 0000-0003-0132-3808 0000-0002-7399-075X |
| OpenAccessLink | https://www.proquest.com/docview/2656980299?pq-origsite=%requestingapplication% |
| PQID | 2656980299 |
| PQPubID | 2046140 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_baf05cc1c68949049ec48a693eb87a2e hal_primary_oai_HAL_hal_03655423v1 proquest_journals_2656980299 crossref_citationtrail_10_1186_s40537_022_00612_4 crossref_primary_10_1186_s40537_022_00612_4 springer_journals_10_1186_s40537_022_00612_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-29 |
| PublicationDateYYYYMMDD | 2022-04-29 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V Springer SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
| References | Reif, Shafait, Goldstein, Breuel, Dengel (CR31) 2014; 17 Kotu, Deshpande (CR11) 2015 Ed-daoudy, Maalmi (CR3) 2019 CR35 CR34 CR33 Benkedjouh, Medjaher, Zerhouni, Rechak (CR46) 2015; 26 CR30 Asif, Zhang, Derrible, Indacochea, Ozevin, Ziebart (CR17) 2020 Razali, Shamsaimon, Ishak, Ramli, Amran, Sukardi (CR1) 2021 Ian, Eibe, Mark (CR37) 2017 Bisong (CR32) 2019 Olson, Moore (CR8) 2019 CR6 Kim, Cho, Lee, Han (CR51) 2017 Mazumder, Salman, Li (CR44) 2021; 89 Kotthoff, Thornton, Hoos, Hutter, Leyton-Brown (CR36) 2017; 18 Saravanamurugan, Thiyagu, Sakthivel, Nair (CR45) 2017; 12 CR47 CR43 CR42 CR41 Wolpert, Macready (CR5) 1997; 1 Cuartas, Ruiz, Ferreño, Setién, Arroyo, Gutiérrez-Solana (CR18) 2021; 32 Wang, Luo, Tang, Yang (CR19) 2021; 49 Lehmann, Huber, Horisberger, Scheiba, Sima, Stockinger (CR2) 2020 Xu, Dang, Munro (CR16) 2018; 38 Deng, Diao, Wu, Zhang, Ma, Zhong (CR48) 2019; 50 CR13 CR12 Villanueva Zacarias, Reimann, Mitschang (CR15) 2018 Ahmadvand, Goudarzi, Foroutan (CR39) 2019 Kim, Han, Lee (CR49) 2017 Zhou, Chase, Rodgers (CR21) 2019; 39 Ruiz-Sarmiento, Monroy, Moreno, Galindo, Bonelo, Gonzalez-Jimenez (CR4) 2020 Medina, Jean Carlo, Pablo, Diego, Sánchez, Mariela (CR22) 2020 Kotthoff, Thornton, Hoos, Hutter, Leyton-Brown (CR9) 2019 Wu (CR25) 2010; 233 Gao, Yu (CR20) 2021; 47 Bilalli, Abelló, Aluja-Banet, Munir, Wrembel (CR29) 2018 Garouani, Ahmad, Bouneffa, Hamlich (CR38) 2022; 17 Lechevalier, Narayanan, Rachuri, Foufou (CR14) 2018; 95 Usuga Cadavid, Lamouri, Grabot, Pellerin, Fortin (CR23) 2020; 31 Imoto, Nakai, Ike, Haruki, Sato (CR50) 2019; 32 CR28 Al-Mansoori, Abawajy, Chowdhury (CR40) 2021 Carbonneau, Laframboise, Vahidov (CR24) 2008; 184 Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (CR10) 2019 Hutter, Kotthoff, Vanschoren (CR7) 2019 Garouani, Ahmad, Bouneffa, Hamlich, Bourguin, Lewandowski (CR27) 2022 Wuest, Weimer, Irgens, Thoben (CR26) 2016; 4 Q Wu (612_CR25) 2010; 233 612_CR13 612_CR12 HW Ian (612_CR37) 2017 M Reif (612_CR31) 2014; 17 RS Olson (612_CR8) 2019 RK Mazumder (612_CR44) 2021; 89 DH Wolpert (612_CR5) 1997; 1 E Bisong (612_CR32) 2019 NAM Razali (612_CR1) 2021 JK Kim (612_CR51) 2017 M Feurer (612_CR10) 2019 M Garouani (612_CR38) 2022; 17 AG Villanueva Zacarias (612_CR15) 2018 V Kotu (612_CR11) 2015 612_CR6 612_CR47 612_CR42 612_CR41 H Ahmadvand (612_CR39) 2019 612_CR43 T Benkedjouh (612_CR46) 2015; 26 T Wuest (612_CR26) 2016; 4 B Bilalli (612_CR29) 2018 R Medina (612_CR22) 2020 S Saravanamurugan (612_CR45) 2017; 12 C Lehmann (612_CR2) 2020 D Lechevalier (612_CR14) 2018; 95 K Imoto (612_CR50) 2019; 32 F Hutter (612_CR7) 2019 L Kotthoff (612_CR9) 2019 JP Usuga Cadavid (612_CR23) 2020; 31 JK Kim (612_CR49) 2017 612_CR35 612_CR34 612_CR30 612_CR33 R Carbonneau (612_CR24) 2008; 184 L Kotthoff (612_CR36) 2017; 18 Y Gao (612_CR20) 2021; 47 M Garouani (612_CR27) 2022 M Cuartas (612_CR18) 2021; 32 K Asif (612_CR17) 2020 H Deng (612_CR48) 2019; 50 612_CR28 J-R Ruiz-Sarmiento (612_CR4) 2020 A Ed-daoudy (612_CR3) 2019 X-B Wang (612_CR19) 2021; 49 C Zhou (612_CR21) 2019; 39 A Al-Mansoori (612_CR40) 2021 Z Xu (612_CR16) 2018; 38 |
| References_xml | – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR5 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – start-page: 40 year: 2017 end-page: 47 ident: CR51 article-title: Feature selection techniques for improving rare class classification in semiconductor manufacturing process publication-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering doi: 10.1007/978-3-319-58967-1_5 – year: 2020 ident: CR22 article-title: Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM publication-title: J Intell Manuf doi: 10.1007/s10845-020-01712-9 – volume: 184 start-page: 1140 year: 2008 end-page: 1154 ident: CR24 article-title: Application of machine learning techniques for supply chain demand forecasting publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.12.004 – year: 2020 ident: CR2 article-title: Big data architecture for intelligent maintenance: a focus on query processing and machine learning algorithms publication-title: J Big Data doi: 10.1186/s40537-020-00340-7 – volume: 233 start-page: 2481 issue: 10 year: 2010 end-page: 2491 ident: CR25 article-title: Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system publication-title: JCAM doi: 10.1016/j.cam.2009.10.030 – year: 2019 ident: CR3 article-title: A new internet of things architecture for real-time prediction of various diseases using machine learning on big data environment publication-title: J Big Data doi: 10.1186/s40537-019-0271-7 – ident: CR12 – volume: 32 start-page: 455 issue: 4 year: 2019 end-page: 459 ident: CR50 article-title: A CNN-based transfer learning method for defect classification in semiconductor manufacturing publication-title: IEEE Trans Semiconduct Manuf doi: 10.1109/tsm.2019.2941752 – year: 2020 ident: CR4 article-title: A predictive model for the maintenance of industrial machinery in the context of industry 4.0 publication-title: Eng Appl AI doi: 10.1016/j.engappai.2019.103289 – ident: CR35 – year: 2018 ident: CR15 article-title: A framework to guide the selection and configuration of machine-learning-based data analytics solutions in manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.215 – year: 2017 ident: CR49 article-title: Particle swarm optimization-deep belief network-based rare class prediction model for highly class imbalance problem publication-title: Concurr Comput Pract Exp doi: 10.1002/cpe.4128 – volume: 32 start-page: 1739 issue: 6 year: 2021 end-page: 1751 ident: CR18 article-title: Machine learning algorithms for the prediction of non-metallic inclusions in steel wires for tire reinforcement publication-title: J Intell Manuf doi: 10.1007/s10845-020-01623-9 – ident: CR42 – volume: 4 start-page: 23 issue: 1 year: 2016 end-page: 45 ident: CR26 article-title: Machine learning in manufacturing: advantages, challenges, and applications publication-title: Prod Manuf Res doi: 10.1080/21693277.2016.1192517 – start-page: 113 year: 2019 end-page: 134 ident: CR10 article-title: Auto-sklearn: efficient and robust automated machine learning publication-title: Automated machine learning: methods, systems, challenges doi: 10.1007/978-3-030-05318-5_6 – year: 2022 ident: CR27 article-title: Towards big industrial data mining through explainable automated machine learning publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-08761-9 – year: 2019 ident: CR32 publication-title: Building machine learning and deep learning models on google cloud platform doi: 10.1007/978-1-4842-4470-8 – volume: 50 start-page: 29 issue: 1 year: 2019 end-page: 41 ident: CR48 article-title: A high-speed d-CART online fault diagnosis algorithm for rotor systems publication-title: Appl Intell doi: 10.1007/s10489-019-01516-2 – start-page: 57 year: 2018 end-page: 65 ident: CR29 article-title: PRESISTANT: data pre-processing assistant publication-title: Information systems in the big data era doi: 10.1007/978-3-319-92901-9_6 – volume: 18 start-page: 1 issue: 25 year: 2017 end-page: 5 ident: CR36 article-title: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA publication-title: J Mach Learn Res – year: 2017 ident: CR37 publication-title: Data mining: practical machine learning tools and techniques doi: 10.1016/C2015-0-02071-8 – start-page: 81 year: 2019 end-page: 95 ident: CR9 article-title: Auto-WEKA: automatic model selection and hyperparameter optimization in WEKA publication-title: Automated machine learning: methods, systems, challenges doi: 10.1007/978-3-030-05318-5_4 – volume: 17 start-page: 83 issue: 1 year: 2014 end-page: 96 ident: CR31 article-title: Automatic classifier selection for non-experts publication-title: Pattern Anal Appl doi: 10.1007/s10044-012-0280-z – year: 2020 ident: CR17 article-title: Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs publication-title: J Intell Manuf doi: 10.1007/s10845-020-01667-x – ident: CR43 – ident: CR47 – volume: 47 year: 2021 ident: CR20 article-title: Intelligent fault diagnosis for rolling bearings based on graph shift regularization with directed graphs publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101253 – ident: CR30 – year: 2019 ident: CR7 publication-title: Automated machine learning doi: 10.1007/978-3-030-05318-5 – ident: CR33 – volume: 17 year: 2022 ident: CR38 article-title: AMLBID: an auto-explained automated machine learning tool for big industrial data publication-title: SoftwareX doi: 10.1016/j.softx.2021.100919 – volume: 95 start-page: 54 year: 2018 end-page: 67 ident: CR14 article-title: A methodology for the semi-automatic generation of analytical models in manufacturing publication-title: Comput Ind doi: 10.1016/j.compind.2017.12.005 – ident: CR6 – volume: 26 start-page: 213 issue: 2 year: 2015 end-page: 223 ident: CR46 article-title: Health assessment and life prediction of cutting tools based on support vector regression publication-title: J Intell Manuf doi: 10.1007/s10845-013-0774-6 – volume: 49 year: 2021 ident: CR19 article-title: Automatic representation and detection of fault bearings in in-wheel motors under variable load conditions publication-title: AEI doi: 10.1016/j.aei.2021.101321 – year: 2021 ident: CR1 article-title: Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning publication-title: J Big Data doi: 10.1186/s40537-021-00542-7 – ident: CR13 – year: 2019 ident: CR39 article-title: Gapprox: using gallup approach for approximation in big data processing publication-title: J Big Data doi: 10.1186/s40537-019-0185-4 – volume: 39 start-page: 259 year: 2019 end-page: 268 ident: CR21 article-title: Degradation evaluation of lateral story stiffness using HLA-based deep learning networks publication-title: Adv Eng Inform doi: 10.1016/j.aei.2019.01.007 – volume: 12 start-page: 405 issue: 4 year: 2017 ident: CR45 article-title: Chatter prediction in boring process using machine learning technique publication-title: IJMR doi: 10.1504/IJMR.2017.088399 – ident: CR34 – start-page: 151 year: 2019 end-page: 160 ident: CR8 article-title: TPOT: a tree-based pipeline optimization tool for automating machine learning publication-title: Automated machine learning: methods, systems, challenges doi: 10.1007/978-3-030-05318-5_8 – volume: 38 start-page: 441 year: 2018 end-page: 457 ident: CR16 article-title: Knowledge-driven intelligent quality problem-solving system in the automotive industry publication-title: Adv Eng Inform doi: 10.1016/j.aei.2018.08.013 – start-page: 120 year: 2021 end-page: 136 ident: CR40 article-title: Cost-aware big data stream processing in cloud environment publication-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering doi: 10.1007/978-3-030-69992-5_10 – ident: CR28 – ident: CR41 – volume: 31 start-page: 1531 issue: 6 year: 2020 end-page: 1558 ident: CR23 article-title: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0 publication-title: J Intell Manuf doi: 10.1007/s10845-019-01531-7 – volume: 89 year: 2021 ident: CR44 article-title: Failure risk analysis of pipelines using data-driven machine learning algorithms publication-title: Struct Saf doi: 10.1016/j.strusafe.2020.102047 – year: 2015 ident: CR11 publication-title: Predictive analytics and data mining: concepts and practice with RapidMiner – year: 2018 ident: 612_CR15 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.215 – ident: 612_CR35 doi: 10.1145/2908812.2908918 – volume: 38 start-page: 441 year: 2018 ident: 612_CR16 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2018.08.013 – volume: 50 start-page: 29 issue: 1 year: 2019 ident: 612_CR48 publication-title: Appl Intell doi: 10.1007/s10489-019-01516-2 – volume: 89 year: 2021 ident: 612_CR44 publication-title: Struct Saf doi: 10.1016/j.strusafe.2020.102047 – start-page: 57 volume-title: Information systems in the big data era year: 2018 ident: 612_CR29 doi: 10.1007/978-3-319-92901-9_6 – volume: 39 start-page: 259 year: 2019 ident: 612_CR21 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2019.01.007 – ident: 612_CR12 – year: 2020 ident: 612_CR4 publication-title: Eng Appl AI doi: 10.1016/j.engappai.2019.103289 – ident: 612_CR41 doi: 10.1109/nfv-sdn53031.2021.9665051 – start-page: 40 volume-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering year: 2017 ident: 612_CR51 doi: 10.1007/978-3-319-58967-1_5 – year: 2020 ident: 612_CR2 publication-title: J Big Data doi: 10.1186/s40537-020-00340-7 – volume: 26 start-page: 213 issue: 2 year: 2015 ident: 612_CR46 publication-title: J Intell Manuf doi: 10.1007/s10845-013-0774-6 – year: 2022 ident: 612_CR27 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-08761-9 – year: 2017 ident: 612_CR49 publication-title: Concurr Comput Pract Exp doi: 10.1002/cpe.4128 – year: 2020 ident: 612_CR22 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01712-9 – year: 2020 ident: 612_CR17 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01667-x – volume: 18 start-page: 1 issue: 25 year: 2017 ident: 612_CR36 publication-title: J Mach Learn Res – ident: 612_CR13 – ident: 612_CR34 doi: 10.1109/BigData.2017.8257923 – volume-title: Predictive analytics and data mining: concepts and practice with RapidMiner year: 2015 ident: 612_CR11 – ident: 612_CR33 doi: 10.1007/978-3-030-05318-5_10 – start-page: 151 volume-title: Automated machine learning: methods, systems, challenges year: 2019 ident: 612_CR8 doi: 10.1007/978-3-030-05318-5_8 – volume-title: Data mining: practical machine learning tools and techniques year: 2017 ident: 612_CR37 doi: 10.1016/C2015-0-02071-8 – start-page: 81 volume-title: Automated machine learning: methods, systems, challenges year: 2019 ident: 612_CR9 doi: 10.1007/978-3-030-05318-5_4 – volume: 233 start-page: 2481 issue: 10 year: 2010 ident: 612_CR25 publication-title: JCAM doi: 10.1016/j.cam.2009.10.030 – volume: 12 start-page: 405 issue: 4 year: 2017 ident: 612_CR45 publication-title: IJMR doi: 10.1504/IJMR.2017.088399 – start-page: 113 volume-title: Automated machine learning: methods, systems, challenges year: 2019 ident: 612_CR10 doi: 10.1007/978-3-030-05318-5_6 – ident: 612_CR6 doi: 10.5220/0010457107090716 – ident: 612_CR28 – volume: 47 year: 2021 ident: 612_CR20 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101253 – volume: 32 start-page: 455 issue: 4 year: 2019 ident: 612_CR50 publication-title: IEEE Trans Semiconduct Manuf doi: 10.1109/tsm.2019.2941752 – volume-title: Automated machine learning year: 2019 ident: 612_CR7 doi: 10.1007/978-3-030-05318-5 – volume: 95 start-page: 54 year: 2018 ident: 612_CR14 publication-title: Comput Ind doi: 10.1016/j.compind.2017.12.005 – volume: 17 start-page: 83 issue: 1 year: 2014 ident: 612_CR31 publication-title: Pattern Anal Appl doi: 10.1007/s10044-012-0280-z – year: 2021 ident: 612_CR1 publication-title: J Big Data doi: 10.1186/s40537-021-00542-7 – start-page: 120 volume-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering year: 2021 ident: 612_CR40 doi: 10.1007/978-3-030-69992-5_10 – ident: 612_CR42 doi: 10.1007/978-3-030-30000-5_42 – volume: 31 start-page: 1531 issue: 6 year: 2020 ident: 612_CR23 publication-title: J Intell Manuf doi: 10.1007/s10845-019-01531-7 – volume: 32 start-page: 1739 issue: 6 year: 2021 ident: 612_CR18 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01623-9 – ident: 612_CR30 doi: 10.1145/3269206.3269299 – year: 2019 ident: 612_CR3 publication-title: J Big Data doi: 10.1186/s40537-019-0271-7 – volume: 4 start-page: 23 issue: 1 year: 2016 ident: 612_CR26 publication-title: Prod Manuf Res doi: 10.1080/21693277.2016.1192517 – volume: 49 year: 2021 ident: 612_CR19 publication-title: AEI doi: 10.1016/j.aei.2021.101321 – ident: 612_CR47 doi: 10.23919/SOFTCOM.2019.8903672 – ident: 612_CR43 – volume: 17 year: 2022 ident: 612_CR38 publication-title: SoftwareX doi: 10.1016/j.softx.2021.100919 – year: 2019 ident: 612_CR39 publication-title: J Big Data doi: 10.1186/s40537-019-0185-4 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 612_CR5 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume-title: Building machine learning and deep learning models on google cloud platform year: 2019 ident: 612_CR32 doi: 10.1007/978-1-4842-4470-8 – volume: 184 start-page: 1140 year: 2008 ident: 612_CR24 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.12.004 |
| SSID | ssj0001340564 |
| Score | 2.4046774 |
| Snippet | Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial... Abstract Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such... |
| SourceID | doaj hal proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Algorithms selection Automation AutoML Bayesian analysis Big Data Big industrial data Communications Engineering Computational Science and Engineering Computer Science Data analysis Data mining Data Mining and Knowledge Discovery Data quality Database Management Empirical analysis Evolutionary algorithms Formalism Impact analysis Industry 4.0 Information retrieval Information Storage and Retrieval Machine learning Manufacturing Mathematical Applications in Computer Science Meta-learning Networks Optimization Prediction models Predictions Reinforcement Specification Task complexity Usefulness |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2higMXvhGhBVmIG1hNbMexubUVVQ9VxQGk3izbsbeR2l20yfbSP8_YSZYtEnDh6jiO5ZnxvInH8wA-IKJWwSFy46gNVHApqFVlQ1NpqxojrlbLfFH4vLm4UJeX-usO1VfKCRvLA48Ld-hsLGvvKy-VFhrxbPBCWak5fqGxLKTdF1HPTjCV_65wBCJSzLdklDzsRapcQlPyenbrVNzzRLlgP_qXq5QOuYM1fzsezV7n9Ck8nuAiORqn-QwehOVzeDJTMZDJMl_AXT76JzdhsHQiglgQxKPEboYVgtLQEnu9WK274eqmJ30mv0GJELtsCUbEsVtsRlX4jE1kt-w_iXP6Vh6v21J9ENctSEowfQnfT798OzmjE68C9ULygXIeGpfCUetE66JWbay9cz4R9FlZtsFpJxzukmWopBW1RaOvIkZmlnGH8I6_gr3lahleA7FBVD6GyGJjRZTS1Uzb2lVVCCm_hhVQzWts_FR0PHFfXJscfChpRrkYlIvJcjGigI_bd36MJTf-2vs4iW7bM5XLzg2oRGZSIvMvJSrgPQr-3hhnR-cmtaGHR8TF-G1VwMGsF2Yy9N4wxMNalejUC_g068qvx3-e95v_Me99eMSyRgvK9AHsDetNeAsP_e3Q9et32SR-AtRcDaw priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeYqUgizEDSziRxybW6moeqgqDiD1ZtmOnUZqd9Em2wt_vmOvs7QIkODq2FZifzP-Jp4HQm-BUavggLlxQAMRXApiVd2SlNqqAYur0zIHCp-0p6fq7Ex_KUFh4-ztPl9JZk2dxVrJD6NIqUdI8j7P5zIRd9G9hiqdcH1YYhzynxUOPaWYI2R-O_TWKZST9cPZcp5cIW_wzF-uRvOJc7T7f-_6CD0sDBMfbCDxGN0Jiydod67egIswP0U_srcAvgyTJaV2RI-BwmK7npbAY0OH7UW_XA3T-eWIx1wvBzYR20WHwYiOQ7_eoOcjNOGblQJwnD2-8nzDtjoIdkOPk0_qM_Tt6PPXw2NSSjEQLySfCOehdcmCtU50LmrVxcY751NNPyvrLjjthAPFWgcqrWgs6AkawZizjDtghPw52lksF-EFwjYI6mOILLZWRCldw7RtHKUhJJccViE6b43xJU95KpdxYbK9oqTZrK6B1TV5dY2o0LvtmO-bLB1_7f0p7fi2Z8qwnRuWq94UgQUSEevGe-ql0kKDHRW8gE_VHJDdWhYq9AbwcmuO44MTk9qAFABJY_yKVmh_hpMpumE0DCi0VjXwgAq9n-Hz8_Gf33vv37q_RA9YRqAgTO-jnWm1Dq_QfX81DePqdZaZa5TpEJI priority: 102 providerName: Springer Nature |
| Title | Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data |
| URI | https://link.springer.com/article/10.1186/s40537-022-00612-4 https://www.proquest.com/docview/2656980299 https://hal.science/hal-03655423 https://doaj.org/article/baf05cc1c68949049ec48a693eb87a2e |
| Volume | 9 |
| WOSCitedRecordID | wos000788853800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbYxoEL46cIjMpC3MBaYjtOwgVtVach1ipCIDYulu3YWaWtHU26CxJ_O89u0m5I7MLFUp3ESfU-P3_PeXkfQm-BUedWA3NjgAbCmeBE5XFGfGmrFCKuqhDhQ-GTbDLJT0-Lsttwa7q0yt4nBkddzY3fI9-nQDyKPAbv-fHqJ_GqUf7taiehsYV2EkoTj_PPGdnssTCgI4L338rkYr_hvn4J8SnsYXEn_NZ6FMr2wypz7pMibzDOv16ShrXnaPd_n_oRetixTnywgsljdM_OnqDdXtEBdxP8KfoVMgjwpW0V6fQkagy0FqtlOwduayusLmq4QXt-2eAmaOiAYbGaVRgCazetlytEfYAufFM9ALs-CyyMN10rhmA9rbHPU32Gvh2Nvg6PSSfPQAwXrCWM2Uz7qFZpXmlX5JVLjdbG6_wpEVdWF5prcLaxTYTiqQLfkTgI8BRlGlgie462Z_OZfYGwsjwxzjrqMsWdEDqlhUp1kljr03RohJLeSNJ0tcu9hMaFDDFMLuTKsBIMK4NhJY_Qu_U1V6vKHXeefehtvz7TV90OHfNFLbtJDMTCxakxiRF5wQuIrazh8FcLBmjPFLURegPIuTXG8cGJ9H1AFIC4UXadRGivh4rs_EUjNziJ0PsebJvD_37ul3eP9go9oAHsnNBiD223i6V9je6b63baLAZoK_t-NkA7h6NJ-QV-DSkfhE2JQZhH0I7joW-pPzr-PYK2TH_AFeWncXn2B0n1JSk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggSXlk-RUsBCcAKrieN4YySEyke1VbcrhIrUm2s7TrpSu1s22SLEf-I3MvYmuy0SvfXA1XGsOHkzfuOM5wG8REadO4PMLUU0UJ4KTnUe96gvbZVhxFVIEQ4KD3rDYX54KL-swO_uLIxPq-x8YnDUxcT6PfIthsRD5jF6z_dn36lXjfJ_VzsJjTks9tzPHxiy1e92P-H3fcXYzueDj33aqgpQy0Xa0DR1PeODMW14YUqZF2VmjbFenk6LuHBGGm7QR8QuEZpnGiGflBiXaJYaJDcpjnsDbnKMhHyt_n32dbmnkyL9Ebw7m5OLrZr7einUp8wHMkH5pfUvyATgqnbskzAvMNy_fsqGtW5n_X97S3dhrWXVZHtuBvdgxY3vw3qnWEFaB_YAfoUMCXLqGk1bvYyKIG0netZMkLu7guiTCifUHJ_WpA4aQQhcoscFsZNxOapmc4t5i03kojoCKbsstzDeaKGIQsyoIj4P9yF8u5ZX8AhWx5OxewxEO57Y0pWs7GleCmEyJnVmksQ5n4bEIkg6UCjb1mb3EiEnKsRouVBzICkEkgpAUjyC14t7zuaVSa7s_cFjbdHTVxUPDZNppVonhcSpjDNrEytyySXGjs5ynKpM0Zp7mrkIXiBSL43R3x4o34ZECIkpS8-TCDY7aKrWH9ZqicsI3nTgXl7-93NvXD3ac7jdP9gfqMHucO8J3GHB0DhlchNWm-nMPYVb9rwZ1dNnwVIJHF036P8A1Rp4Ow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIMSF8ilSCliIG1hNbMeJuZXCqojVqgeQerNsx04jtdlqk-2FP9-xkyxbBEiIq2NHjj3jeRPPzEPoLSDq0hlAbgykgXAmONFlWpBQ2ioHj6uSIiYKz4vFojw9lSdbWfwx2n26khxyGkKVprY_uKz8oOKlOOh4KENCQiR6tNGE30Z3wo1UcL-OxnyH-JeFQU_Bp2yZ3w69YZFi4X6wM2chLHILc_5yTRqtz2z3_-f9ED0YkSc-HETlEbrl2sdod2J1wKOSP0E_YhQBvnC9JiOnRI0B2mK97peAb12F9Xm9XDX92UWHu8ijA5uLdVthmI1v6vUgVR-gCW8zCGA_RYLF9zUb1hBsmhqHWNWn6Pvs87ejYzJSNBDLBesJY64wwbPVhlfGy7LyuTXGBq4_LdLKGWm4gQM3dZnQPNdwfmQenDxNmQGkyJ6hnXbZuucIa8cz652nvtDcC2FyKnVussy5EKpDE5RN26TsWL880Gicq-jHlEINq6tgdVVcXcUT9G4z5nKo3vHX3h_D7m96hsrbsWG5qtWoyAAufJpbm1lRSi7Bv3KWw6dKBhJfaOoS9AZk58Y7jg_nKrQBWADwRtlVlqD9SbTUeGZ0igK0lmUK-CBB7ydR-vn4z_Pe-7fur9G9k08zNf-y-PoC3adRGDmhch_t9Ku1e4nu2qu-6VavoipdAwkFHFs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+meta-learning+for+automated+algorithms+selection+and+configuration%3A+an+experimental+framework+for+industrial+big+data&rft.jtitle=Journal+of+big+data&rft.au=Garouani%2C+Moncef&rft.au=Ahmad%2C+Adeel&rft.au=Bouneffa%2C+Mourad&rft.au=Hamlich%2C+Mohamed&rft.date=2022-04-29&rft.issn=2196-1115&rft.eissn=2196-1115&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-022-00612-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40537_022_00612_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |