Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data

Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data Vol. 9; no. 1; pp. 1 - 20
Main Authors: Garouani, Moncef, Ahmad, Adeel, Bouneffa, Mourad, Hamlich, Mohamed, Bourguin, Gregory, Lewandowski, Arnaud
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 29.04.2022
Springer Nature B.V
Springer
SpringerOpen
Subjects:
ISSN:2196-1115, 2196-1115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes.
AbstractList Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes.
Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes.
Abstract Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes.
ArticleNumber 57
Author Ahmad, Adeel
Garouani, Moncef
Bouneffa, Mourad
Hamlich, Mohamed
Lewandowski, Arnaud
Bourguin, Gregory
Author_xml – sequence: 1
  givenname: Moncef
  surname: Garouani
  fullname: Garouani, Moncef
  email: moncef.garouani@etu.univ-littoral.fr
  organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale, CCPS Laboratory, ENSAM, University of Hassan II, Study and Research Center for Engineering and Management (CERIM), HESTIM
– sequence: 2
  givenname: Adeel
  surname: Ahmad
  fullname: Ahmad, Adeel
  organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale
– sequence: 3
  givenname: Mourad
  surname: Bouneffa
  fullname: Bouneffa, Mourad
  organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale
– sequence: 4
  givenname: Mohamed
  surname: Hamlich
  fullname: Hamlich, Mohamed
  organization: CCPS Laboratory, ENSAM, University of Hassan II
– sequence: 5
  givenname: Gregory
  surname: Bourguin
  fullname: Bourguin, Gregory
  organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale
– sequence: 6
  givenname: Arnaud
  surname: Lewandowski
  fullname: Lewandowski, Arnaud
  organization: UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, Univ. Littoral Côte d’Opale
BackLink https://hal.science/hal-03655423$$DView record in HAL
BookMark eNp9Uctu1TAUjFCRKKU_wCoSKxYBv-LE7KoKaKUrsaFr69g5SX1J7Ivt8BA_j-8NiMeiK9vjmfEcz9PqzAePVfWckleU9vJ1EqTlXUMYawiRlDXiUXXOqJINpbQ9-2v_pLpMaU8IobxopDivftwl56d6wQzNjBD98TSGWMOawwIZhxrmKUSX75dUJ5zRZhd8DX6obfCjm9YIR-RNgWr8dsDoFvQZ5nqMsODXED-d_Jwf1pSjKxfGTfUAGZ5Vj0eYE17-Wi-qu3dvP17fNLsP72-vr3aNFZLnhnPsDGGdACMGM6p-GFtrjC1T9CDJgEYZYTrJCFIJogXOGB1Zr4Bx03Ytv6huN98hwF4fSkCI33UAp09AiJOGmJ2dURsYSWsttbJXQhGh0IryiOJo-g4YFq-Xm9c9zP9Y3Vzt9BEjXLatYPwLLdwXG_cQw-cVU9b7sEZfRtVMtlL1hClVWP3GsjGkFHHU1uXTl-YIbtaU6GPLemtZl5b1qWUtipT9J_2d6EER30SpkP2E8U-qB1Q_AX_8vNo
CitedBy_id crossref_primary_10_1080_17483107_2024_2357685
crossref_primary_10_1016_j_jmsy_2024_11_002
crossref_primary_10_1186_s40537_023_00687_7
crossref_primary_10_3390_app14031078
crossref_primary_10_1016_j_jii_2023_100536
crossref_primary_10_3758_s13428_025_02684_5
crossref_primary_10_1016_j_engappai_2025_112035
crossref_primary_10_1088_1741_2552_ade1f9
crossref_primary_10_1007_s42979_024_02780_x
crossref_primary_10_3390_ai4040040
crossref_primary_10_7759_s44389_025_03667_5
crossref_primary_10_1007_s13748_023_00311_y
crossref_primary_10_1186_s13677_023_00542_3
Cites_doi 10.1109/4235.585893
10.1007/978-3-319-58967-1_5
10.1007/s10845-020-01712-9
10.1016/j.ejor.2006.12.004
10.1186/s40537-020-00340-7
10.1016/j.cam.2009.10.030
10.1186/s40537-019-0271-7
10.1109/tsm.2019.2941752
10.1016/j.engappai.2019.103289
10.1016/j.procir.2018.03.215
10.1002/cpe.4128
10.1007/s10845-020-01623-9
10.1080/21693277.2016.1192517
10.1007/978-3-030-05318-5_6
10.1007/s00170-022-08761-9
10.1007/978-1-4842-4470-8
10.1007/s10489-019-01516-2
10.1007/978-3-319-92901-9_6
10.1016/C2015-0-02071-8
10.1007/978-3-030-05318-5_4
10.1007/s10044-012-0280-z
10.1007/s10845-020-01667-x
10.1016/j.aei.2021.101253
10.1007/978-3-030-05318-5
10.1016/j.softx.2021.100919
10.1016/j.compind.2017.12.005
10.1007/s10845-013-0774-6
10.1016/j.aei.2021.101321
10.1186/s40537-021-00542-7
10.1186/s40537-019-0185-4
10.1016/j.aei.2019.01.007
10.1504/IJMR.2017.088399
10.1007/978-3-030-05318-5_8
10.1016/j.aei.2018.08.013
10.1007/978-3-030-69992-5_10
10.1007/s10845-019-01531-7
10.1016/j.strusafe.2020.102047
10.1145/2908812.2908918
10.1109/nfv-sdn53031.2021.9665051
10.1109/BigData.2017.8257923
10.1007/978-3-030-05318-5_10
10.5220/0010457107090716
10.1007/978-3-030-30000-5_42
10.1145/3269206.3269299
10.23919/SOFTCOM.2019.8903672
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
1XC
VOOES
DOA
DOI 10.1186/s40537-022-00612-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 20
ExternalDocumentID oai_doaj_org_article_baf05cc1c68949049ec48a693eb87a2e
oai:HAL:hal-03655423v1
10_1186_s40537_022_00612_4
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
7XB
8AL
8FK
JQ2
L.-
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c463t-33e7b0274ab4dbf98df5cbbc0018a60deb9b4b7620e16a45a3221f289a23b5753
IEDL.DBID K7-
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788853800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Tue Oct 14 19:01:48 EDT 2025
Sat Nov 29 15:00:21 EST 2025
Fri Nov 14 18:43:10 EST 2025
Sat Nov 29 06:20:03 EST 2025
Tue Nov 18 21:43:04 EST 2025
Fri Feb 21 02:45:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Decision support systems
Big industrial data
Algorithms selection
Meta-learning
Machine learning
Industry 4.0
AutoML
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-33e7b0274ab4dbf98df5cbbc0018a60deb9b4b7620e16a45a3221f289a23b5753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2528-441X
0000-0001-6507-5212
0000-0003-2505-1149
0000-0002-7512-4329
0000-0003-0132-3808
0000-0002-7399-075X
OpenAccessLink https://www.proquest.com/docview/2656980299?pq-origsite=%requestingapplication%
PQID 2656980299
PQPubID 2046140
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_baf05cc1c68949049ec48a693eb87a2e
hal_primary_oai_HAL_hal_03655423v1
proquest_journals_2656980299
crossref_citationtrail_10_1186_s40537_022_00612_4
crossref_primary_10_1186_s40537_022_00612_4
springer_journals_10_1186_s40537_022_00612_4
PublicationCentury 2000
PublicationDate 2022-04-29
PublicationDateYYYYMMDD 2022-04-29
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-29
  day: 29
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References Reif, Shafait, Goldstein, Breuel, Dengel (CR31) 2014; 17
Kotu, Deshpande (CR11) 2015
Ed-daoudy, Maalmi (CR3) 2019
CR35
CR34
CR33
Benkedjouh, Medjaher, Zerhouni, Rechak (CR46) 2015; 26
CR30
Asif, Zhang, Derrible, Indacochea, Ozevin, Ziebart (CR17) 2020
Razali, Shamsaimon, Ishak, Ramli, Amran, Sukardi (CR1) 2021
Ian, Eibe, Mark (CR37) 2017
Bisong (CR32) 2019
Olson, Moore (CR8) 2019
CR6
Kim, Cho, Lee, Han (CR51) 2017
Mazumder, Salman, Li (CR44) 2021; 89
Kotthoff, Thornton, Hoos, Hutter, Leyton-Brown (CR36) 2017; 18
Saravanamurugan, Thiyagu, Sakthivel, Nair (CR45) 2017; 12
CR47
CR43
CR42
CR41
Wolpert, Macready (CR5) 1997; 1
Cuartas, Ruiz, Ferreño, Setién, Arroyo, Gutiérrez-Solana (CR18) 2021; 32
Wang, Luo, Tang, Yang (CR19) 2021; 49
Lehmann, Huber, Horisberger, Scheiba, Sima, Stockinger (CR2) 2020
Xu, Dang, Munro (CR16) 2018; 38
Deng, Diao, Wu, Zhang, Ma, Zhong (CR48) 2019; 50
CR13
CR12
Villanueva Zacarias, Reimann, Mitschang (CR15) 2018
Ahmadvand, Goudarzi, Foroutan (CR39) 2019
Kim, Han, Lee (CR49) 2017
Zhou, Chase, Rodgers (CR21) 2019; 39
Ruiz-Sarmiento, Monroy, Moreno, Galindo, Bonelo, Gonzalez-Jimenez (CR4) 2020
Medina, Jean Carlo, Pablo, Diego, Sánchez, Mariela (CR22) 2020
Kotthoff, Thornton, Hoos, Hutter, Leyton-Brown (CR9) 2019
Wu (CR25) 2010; 233
Gao, Yu (CR20) 2021; 47
Bilalli, Abelló, Aluja-Banet, Munir, Wrembel (CR29) 2018
Garouani, Ahmad, Bouneffa, Hamlich (CR38) 2022; 17
Lechevalier, Narayanan, Rachuri, Foufou (CR14) 2018; 95
Usuga Cadavid, Lamouri, Grabot, Pellerin, Fortin (CR23) 2020; 31
Imoto, Nakai, Ike, Haruki, Sato (CR50) 2019; 32
CR28
Al-Mansoori, Abawajy, Chowdhury (CR40) 2021
Carbonneau, Laframboise, Vahidov (CR24) 2008; 184
Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (CR10) 2019
Hutter, Kotthoff, Vanschoren (CR7) 2019
Garouani, Ahmad, Bouneffa, Hamlich, Bourguin, Lewandowski (CR27) 2022
Wuest, Weimer, Irgens, Thoben (CR26) 2016; 4
Q Wu (612_CR25) 2010; 233
612_CR13
612_CR12
HW Ian (612_CR37) 2017
M Reif (612_CR31) 2014; 17
RS Olson (612_CR8) 2019
RK Mazumder (612_CR44) 2021; 89
DH Wolpert (612_CR5) 1997; 1
E Bisong (612_CR32) 2019
NAM Razali (612_CR1) 2021
JK Kim (612_CR51) 2017
M Feurer (612_CR10) 2019
M Garouani (612_CR38) 2022; 17
AG Villanueva Zacarias (612_CR15) 2018
V Kotu (612_CR11) 2015
612_CR6
612_CR47
612_CR42
612_CR41
H Ahmadvand (612_CR39) 2019
612_CR43
T Benkedjouh (612_CR46) 2015; 26
T Wuest (612_CR26) 2016; 4
B Bilalli (612_CR29) 2018
R Medina (612_CR22) 2020
S Saravanamurugan (612_CR45) 2017; 12
C Lehmann (612_CR2) 2020
D Lechevalier (612_CR14) 2018; 95
K Imoto (612_CR50) 2019; 32
F Hutter (612_CR7) 2019
L Kotthoff (612_CR9) 2019
JP Usuga Cadavid (612_CR23) 2020; 31
JK Kim (612_CR49) 2017
612_CR35
612_CR34
612_CR30
612_CR33
R Carbonneau (612_CR24) 2008; 184
L Kotthoff (612_CR36) 2017; 18
Y Gao (612_CR20) 2021; 47
M Garouani (612_CR27) 2022
M Cuartas (612_CR18) 2021; 32
K Asif (612_CR17) 2020
H Deng (612_CR48) 2019; 50
612_CR28
J-R Ruiz-Sarmiento (612_CR4) 2020
A Ed-daoudy (612_CR3) 2019
X-B Wang (612_CR19) 2021; 49
C Zhou (612_CR21) 2019; 39
A Al-Mansoori (612_CR40) 2021
Z Xu (612_CR16) 2018; 38
References_xml – volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  ident: CR5
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– start-page: 40
  year: 2017
  end-page: 47
  ident: CR51
  article-title: Feature selection techniques for improving rare class classification in semiconductor manufacturing process
  publication-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering
  doi: 10.1007/978-3-319-58967-1_5
– year: 2020
  ident: CR22
  article-title: Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01712-9
– volume: 184
  start-page: 1140
  year: 2008
  end-page: 1154
  ident: CR24
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.12.004
– year: 2020
  ident: CR2
  article-title: Big data architecture for intelligent maintenance: a focus on query processing and machine learning algorithms
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00340-7
– volume: 233
  start-page: 2481
  issue: 10
  year: 2010
  end-page: 2491
  ident: CR25
  article-title: Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system
  publication-title: JCAM
  doi: 10.1016/j.cam.2009.10.030
– year: 2019
  ident: CR3
  article-title: A new internet of things architecture for real-time prediction of various diseases using machine learning on big data environment
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0271-7
– ident: CR12
– volume: 32
  start-page: 455
  issue: 4
  year: 2019
  end-page: 459
  ident: CR50
  article-title: A CNN-based transfer learning method for defect classification in semiconductor manufacturing
  publication-title: IEEE Trans Semiconduct Manuf
  doi: 10.1109/tsm.2019.2941752
– year: 2020
  ident: CR4
  article-title: A predictive model for the maintenance of industrial machinery in the context of industry 4.0
  publication-title: Eng Appl AI
  doi: 10.1016/j.engappai.2019.103289
– ident: CR35
– year: 2018
  ident: CR15
  article-title: A framework to guide the selection and configuration of machine-learning-based data analytics solutions in manufacturing
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.215
– year: 2017
  ident: CR49
  article-title: Particle swarm optimization-deep belief network-based rare class prediction model for highly class imbalance problem
  publication-title: Concurr Comput Pract Exp
  doi: 10.1002/cpe.4128
– volume: 32
  start-page: 1739
  issue: 6
  year: 2021
  end-page: 1751
  ident: CR18
  article-title: Machine learning algorithms for the prediction of non-metallic inclusions in steel wires for tire reinforcement
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01623-9
– ident: CR42
– volume: 4
  start-page: 23
  issue: 1
  year: 2016
  end-page: 45
  ident: CR26
  article-title: Machine learning in manufacturing: advantages, challenges, and applications
  publication-title: Prod Manuf Res
  doi: 10.1080/21693277.2016.1192517
– start-page: 113
  year: 2019
  end-page: 134
  ident: CR10
  article-title: Auto-sklearn: efficient and robust automated machine learning
  publication-title: Automated machine learning: methods, systems, challenges
  doi: 10.1007/978-3-030-05318-5_6
– year: 2022
  ident: CR27
  article-title: Towards big industrial data mining through explainable automated machine learning
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-08761-9
– year: 2019
  ident: CR32
  publication-title: Building machine learning and deep learning models on google cloud platform
  doi: 10.1007/978-1-4842-4470-8
– volume: 50
  start-page: 29
  issue: 1
  year: 2019
  end-page: 41
  ident: CR48
  article-title: A high-speed d-CART online fault diagnosis algorithm for rotor systems
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01516-2
– start-page: 57
  year: 2018
  end-page: 65
  ident: CR29
  article-title: PRESISTANT: data pre-processing assistant
  publication-title: Information systems in the big data era
  doi: 10.1007/978-3-319-92901-9_6
– volume: 18
  start-page: 1
  issue: 25
  year: 2017
  end-page: 5
  ident: CR36
  article-title: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA
  publication-title: J Mach Learn Res
– year: 2017
  ident: CR37
  publication-title: Data mining: practical machine learning tools and techniques
  doi: 10.1016/C2015-0-02071-8
– start-page: 81
  year: 2019
  end-page: 95
  ident: CR9
  article-title: Auto-WEKA: automatic model selection and hyperparameter optimization in WEKA
  publication-title: Automated machine learning: methods, systems, challenges
  doi: 10.1007/978-3-030-05318-5_4
– volume: 17
  start-page: 83
  issue: 1
  year: 2014
  end-page: 96
  ident: CR31
  article-title: Automatic classifier selection for non-experts
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-012-0280-z
– year: 2020
  ident: CR17
  article-title: Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01667-x
– ident: CR43
– ident: CR47
– volume: 47
  year: 2021
  ident: CR20
  article-title: Intelligent fault diagnosis for rolling bearings based on graph shift regularization with directed graphs
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101253
– ident: CR30
– year: 2019
  ident: CR7
  publication-title: Automated machine learning
  doi: 10.1007/978-3-030-05318-5
– ident: CR33
– volume: 17
  year: 2022
  ident: CR38
  article-title: AMLBID: an auto-explained automated machine learning tool for big industrial data
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2021.100919
– volume: 95
  start-page: 54
  year: 2018
  end-page: 67
  ident: CR14
  article-title: A methodology for the semi-automatic generation of analytical models in manufacturing
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2017.12.005
– ident: CR6
– volume: 26
  start-page: 213
  issue: 2
  year: 2015
  end-page: 223
  ident: CR46
  article-title: Health assessment and life prediction of cutting tools based on support vector regression
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0774-6
– volume: 49
  year: 2021
  ident: CR19
  article-title: Automatic representation and detection of fault bearings in in-wheel motors under variable load conditions
  publication-title: AEI
  doi: 10.1016/j.aei.2021.101321
– year: 2021
  ident: CR1
  article-title: Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00542-7
– ident: CR13
– year: 2019
  ident: CR39
  article-title: Gapprox: using gallup approach for approximation in big data processing
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0185-4
– volume: 39
  start-page: 259
  year: 2019
  end-page: 268
  ident: CR21
  article-title: Degradation evaluation of lateral story stiffness using HLA-based deep learning networks
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2019.01.007
– volume: 12
  start-page: 405
  issue: 4
  year: 2017
  ident: CR45
  article-title: Chatter prediction in boring process using machine learning technique
  publication-title: IJMR
  doi: 10.1504/IJMR.2017.088399
– ident: CR34
– start-page: 151
  year: 2019
  end-page: 160
  ident: CR8
  article-title: TPOT: a tree-based pipeline optimization tool for automating machine learning
  publication-title: Automated machine learning: methods, systems, challenges
  doi: 10.1007/978-3-030-05318-5_8
– volume: 38
  start-page: 441
  year: 2018
  end-page: 457
  ident: CR16
  article-title: Knowledge-driven intelligent quality problem-solving system in the automotive industry
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2018.08.013
– start-page: 120
  year: 2021
  end-page: 136
  ident: CR40
  article-title: Cost-aware big data stream processing in cloud environment
  publication-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering
  doi: 10.1007/978-3-030-69992-5_10
– ident: CR28
– ident: CR41
– volume: 31
  start-page: 1531
  issue: 6
  year: 2020
  end-page: 1558
  ident: CR23
  article-title: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-019-01531-7
– volume: 89
  year: 2021
  ident: CR44
  article-title: Failure risk analysis of pipelines using data-driven machine learning algorithms
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2020.102047
– year: 2015
  ident: CR11
  publication-title: Predictive analytics and data mining: concepts and practice with RapidMiner
– year: 2018
  ident: 612_CR15
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.215
– ident: 612_CR35
  doi: 10.1145/2908812.2908918
– volume: 38
  start-page: 441
  year: 2018
  ident: 612_CR16
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2018.08.013
– volume: 50
  start-page: 29
  issue: 1
  year: 2019
  ident: 612_CR48
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01516-2
– volume: 89
  year: 2021
  ident: 612_CR44
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2020.102047
– start-page: 57
  volume-title: Information systems in the big data era
  year: 2018
  ident: 612_CR29
  doi: 10.1007/978-3-319-92901-9_6
– volume: 39
  start-page: 259
  year: 2019
  ident: 612_CR21
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2019.01.007
– ident: 612_CR12
– year: 2020
  ident: 612_CR4
  publication-title: Eng Appl AI
  doi: 10.1016/j.engappai.2019.103289
– ident: 612_CR41
  doi: 10.1109/nfv-sdn53031.2021.9665051
– start-page: 40
  volume-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering
  year: 2017
  ident: 612_CR51
  doi: 10.1007/978-3-319-58967-1_5
– year: 2020
  ident: 612_CR2
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00340-7
– volume: 26
  start-page: 213
  issue: 2
  year: 2015
  ident: 612_CR46
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0774-6
– year: 2022
  ident: 612_CR27
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-08761-9
– year: 2017
  ident: 612_CR49
  publication-title: Concurr Comput Pract Exp
  doi: 10.1002/cpe.4128
– year: 2020
  ident: 612_CR22
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01712-9
– year: 2020
  ident: 612_CR17
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01667-x
– volume: 18
  start-page: 1
  issue: 25
  year: 2017
  ident: 612_CR36
  publication-title: J Mach Learn Res
– ident: 612_CR13
– ident: 612_CR34
  doi: 10.1109/BigData.2017.8257923
– volume-title: Predictive analytics and data mining: concepts and practice with RapidMiner
  year: 2015
  ident: 612_CR11
– ident: 612_CR33
  doi: 10.1007/978-3-030-05318-5_10
– start-page: 151
  volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 612_CR8
  doi: 10.1007/978-3-030-05318-5_8
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2017
  ident: 612_CR37
  doi: 10.1016/C2015-0-02071-8
– start-page: 81
  volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 612_CR9
  doi: 10.1007/978-3-030-05318-5_4
– volume: 233
  start-page: 2481
  issue: 10
  year: 2010
  ident: 612_CR25
  publication-title: JCAM
  doi: 10.1016/j.cam.2009.10.030
– volume: 12
  start-page: 405
  issue: 4
  year: 2017
  ident: 612_CR45
  publication-title: IJMR
  doi: 10.1504/IJMR.2017.088399
– start-page: 113
  volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 612_CR10
  doi: 10.1007/978-3-030-05318-5_6
– ident: 612_CR6
  doi: 10.5220/0010457107090716
– ident: 612_CR28
– volume: 47
  year: 2021
  ident: 612_CR20
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101253
– volume: 32
  start-page: 455
  issue: 4
  year: 2019
  ident: 612_CR50
  publication-title: IEEE Trans Semiconduct Manuf
  doi: 10.1109/tsm.2019.2941752
– volume-title: Automated machine learning
  year: 2019
  ident: 612_CR7
  doi: 10.1007/978-3-030-05318-5
– volume: 95
  start-page: 54
  year: 2018
  ident: 612_CR14
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2017.12.005
– volume: 17
  start-page: 83
  issue: 1
  year: 2014
  ident: 612_CR31
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-012-0280-z
– year: 2021
  ident: 612_CR1
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00542-7
– start-page: 120
  volume-title: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering
  year: 2021
  ident: 612_CR40
  doi: 10.1007/978-3-030-69992-5_10
– ident: 612_CR42
  doi: 10.1007/978-3-030-30000-5_42
– volume: 31
  start-page: 1531
  issue: 6
  year: 2020
  ident: 612_CR23
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-019-01531-7
– volume: 32
  start-page: 1739
  issue: 6
  year: 2021
  ident: 612_CR18
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01623-9
– ident: 612_CR30
  doi: 10.1145/3269206.3269299
– year: 2019
  ident: 612_CR3
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0271-7
– volume: 4
  start-page: 23
  issue: 1
  year: 2016
  ident: 612_CR26
  publication-title: Prod Manuf Res
  doi: 10.1080/21693277.2016.1192517
– volume: 49
  year: 2021
  ident: 612_CR19
  publication-title: AEI
  doi: 10.1016/j.aei.2021.101321
– ident: 612_CR47
  doi: 10.23919/SOFTCOM.2019.8903672
– ident: 612_CR43
– volume: 17
  year: 2022
  ident: 612_CR38
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2021.100919
– year: 2019
  ident: 612_CR39
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0185-4
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 612_CR5
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume-title: Building machine learning and deep learning models on google cloud platform
  year: 2019
  ident: 612_CR32
  doi: 10.1007/978-1-4842-4470-8
– volume: 184
  start-page: 1140
  year: 2008
  ident: 612_CR24
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.12.004
SSID ssj0001340564
Score 2.4046774
Snippet Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial...
Abstract Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such...
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Algorithms selection
Automation
AutoML
Bayesian analysis
Big Data
Big industrial data
Communications Engineering
Computational Science and Engineering
Computer Science
Data analysis
Data mining
Data Mining and Knowledge Discovery
Data quality
Database Management
Empirical analysis
Evolutionary algorithms
Formalism
Impact analysis
Industry 4.0
Information retrieval
Information Storage and Retrieval
Machine learning
Manufacturing
Mathematical Applications in Computer Science
Meta-learning
Networks
Optimization
Prediction models
Predictions
Reinforcement
Specification
Task complexity
Usefulness
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2higMXvhGhBVmIG1hNbMexubUVVQ9VxQGk3izbsbeR2l20yfbSP8_YSZYtEnDh6jiO5ZnxvInH8wA-IKJWwSFy46gNVHApqFVlQ1NpqxojrlbLfFH4vLm4UJeX-usO1VfKCRvLA48Ld-hsLGvvKy-VFhrxbPBCWak5fqGxLKTdF1HPTjCV_65wBCJSzLdklDzsRapcQlPyenbrVNzzRLlgP_qXq5QOuYM1fzsezV7n9Ck8nuAiORqn-QwehOVzeDJTMZDJMl_AXT76JzdhsHQiglgQxKPEboYVgtLQEnu9WK274eqmJ30mv0GJELtsCUbEsVtsRlX4jE1kt-w_iXP6Vh6v21J9ENctSEowfQnfT798OzmjE68C9ULygXIeGpfCUetE66JWbay9cz4R9FlZtsFpJxzukmWopBW1RaOvIkZmlnGH8I6_gr3lahleA7FBVD6GyGJjRZTS1Uzb2lVVCCm_hhVQzWts_FR0PHFfXJscfChpRrkYlIvJcjGigI_bd36MJTf-2vs4iW7bM5XLzg2oRGZSIvMvJSrgPQr-3hhnR-cmtaGHR8TF-G1VwMGsF2Yy9N4wxMNalejUC_g068qvx3-e95v_Me99eMSyRgvK9AHsDetNeAsP_e3Q9et32SR-AtRcDaw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeYqUgizEDSziRxybW6moeqgqDiD1ZtmOnUZqd9Em2wt_vmOvs7QIkODq2FZifzP-Jp4HQm-BUavggLlxQAMRXApiVd2SlNqqAYur0zIHCp-0p6fq7Ex_KUFh4-ztPl9JZk2dxVrJD6NIqUdI8j7P5zIRd9G9hiqdcH1YYhzynxUOPaWYI2R-O_TWKZST9cPZcp5cIW_wzF-uRvOJc7T7f-_6CD0sDBMfbCDxGN0Jiydod67egIswP0U_srcAvgyTJaV2RI-BwmK7npbAY0OH7UW_XA3T-eWIx1wvBzYR20WHwYiOQ7_eoOcjNOGblQJwnD2-8nzDtjoIdkOPk0_qM_Tt6PPXw2NSSjEQLySfCOehdcmCtU50LmrVxcY751NNPyvrLjjthAPFWgcqrWgs6AkawZizjDtghPw52lksF-EFwjYI6mOILLZWRCldw7RtHKUhJJccViE6b43xJU95KpdxYbK9oqTZrK6B1TV5dY2o0LvtmO-bLB1_7f0p7fi2Z8qwnRuWq94UgQUSEevGe-ql0kKDHRW8gE_VHJDdWhYq9AbwcmuO44MTk9qAFABJY_yKVmh_hpMpumE0DCi0VjXwgAq9n-Hz8_Gf33vv37q_RA9YRqAgTO-jnWm1Dq_QfX81DePqdZaZa5TpEJI
  priority: 102
  providerName: Springer Nature
Title Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data
URI https://link.springer.com/article/10.1186/s40537-022-00612-4
https://www.proquest.com/docview/2656980299
https://hal.science/hal-03655423
https://doaj.org/article/baf05cc1c68949049ec48a693eb87a2e
Volume 9
WOSCitedRecordID wos000788853800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbYxoEL46cIjMpC3MBaYjtOwgVtVach1ipCIDYulu3YWaWtHU26CxJ_O89u0m5I7MLFUp3ESfU-P3_PeXkfQm-BUedWA3NjgAbCmeBE5XFGfGmrFCKuqhDhQ-GTbDLJT0-Lsttwa7q0yt4nBkddzY3fI9-nQDyKPAbv-fHqJ_GqUf7taiehsYV2EkoTj_PPGdnssTCgI4L338rkYr_hvn4J8SnsYXEn_NZ6FMr2wypz7pMibzDOv16ShrXnaPd_n_oRetixTnywgsljdM_OnqDdXtEBdxP8KfoVMgjwpW0V6fQkagy0FqtlOwduayusLmq4QXt-2eAmaOiAYbGaVRgCazetlytEfYAufFM9ALs-CyyMN10rhmA9rbHPU32Gvh2Nvg6PSSfPQAwXrCWM2Uz7qFZpXmlX5JVLjdbG6_wpEVdWF5prcLaxTYTiqQLfkTgI8BRlGlgie462Z_OZfYGwsjwxzjrqMsWdEDqlhUp1kljr03RohJLeSNJ0tcu9hMaFDDFMLuTKsBIMK4NhJY_Qu_U1V6vKHXeefehtvz7TV90OHfNFLbtJDMTCxakxiRF5wQuIrazh8FcLBmjPFLURegPIuTXG8cGJ9H1AFIC4UXadRGivh4rs_EUjNziJ0PsebJvD_37ul3eP9go9oAHsnNBiD223i6V9je6b63baLAZoK_t-NkA7h6NJ-QV-DSkfhE2JQZhH0I7joW-pPzr-PYK2TH_AFeWncXn2B0n1JSk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggSXlk-RUsBCcAKrieN4YySEyke1VbcrhIrUm2s7TrpSu1s22SLEf-I3MvYmuy0SvfXA1XGsOHkzfuOM5wG8REadO4PMLUU0UJ4KTnUe96gvbZVhxFVIEQ4KD3rDYX54KL-swO_uLIxPq-x8YnDUxcT6PfIthsRD5jF6z_dn36lXjfJ_VzsJjTks9tzPHxiy1e92P-H3fcXYzueDj33aqgpQy0Xa0DR1PeODMW14YUqZF2VmjbFenk6LuHBGGm7QR8QuEZpnGiGflBiXaJYaJDcpjnsDbnKMhHyt_n32dbmnkyL9Ebw7m5OLrZr7einUp8wHMkH5pfUvyATgqnbskzAvMNy_fsqGtW5n_X97S3dhrWXVZHtuBvdgxY3vw3qnWEFaB_YAfoUMCXLqGk1bvYyKIG0netZMkLu7guiTCifUHJ_WpA4aQQhcoscFsZNxOapmc4t5i03kojoCKbsstzDeaKGIQsyoIj4P9yF8u5ZX8AhWx5OxewxEO57Y0pWs7GleCmEyJnVmksQ5n4bEIkg6UCjb1mb3EiEnKsRouVBzICkEkgpAUjyC14t7zuaVSa7s_cFjbdHTVxUPDZNppVonhcSpjDNrEytyySXGjs5ynKpM0Zp7mrkIXiBSL43R3x4o34ZECIkpS8-TCDY7aKrWH9ZqicsI3nTgXl7-93NvXD3ac7jdP9gfqMHucO8J3GHB0DhlchNWm-nMPYVb9rwZ1dNnwVIJHF036P8A1Rp4Ow
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIMSF8ilSCliIG1hNbMeJuZXCqojVqgeQerNsx04jtdlqk-2FP9-xkyxbBEiIq2NHjj3jeRPPzEPoLSDq0hlAbgykgXAmONFlWpBQ2ioHj6uSIiYKz4vFojw9lSdbWfwx2n26khxyGkKVprY_uKz8oOKlOOh4KENCQiR6tNGE30Z3wo1UcL-OxnyH-JeFQU_Bp2yZ3w69YZFi4X6wM2chLHILc_5yTRqtz2z3_-f9ED0YkSc-HETlEbrl2sdod2J1wKOSP0E_YhQBvnC9JiOnRI0B2mK97peAb12F9Xm9XDX92UWHu8ijA5uLdVthmI1v6vUgVR-gCW8zCGA_RYLF9zUb1hBsmhqHWNWn6Pvs87ejYzJSNBDLBesJY64wwbPVhlfGy7LyuTXGBq4_LdLKGWm4gQM3dZnQPNdwfmQenDxNmQGkyJ6hnXbZuucIa8cz652nvtDcC2FyKnVussy5EKpDE5RN26TsWL880Gicq-jHlEINq6tgdVVcXcUT9G4z5nKo3vHX3h_D7m96hsrbsWG5qtWoyAAufJpbm1lRSi7Bv3KWw6dKBhJfaOoS9AZk58Y7jg_nKrQBWADwRtlVlqD9SbTUeGZ0igK0lmUK-CBB7ydR-vn4z_Pe-7fur9G9k08zNf-y-PoC3adRGDmhch_t9Ku1e4nu2qu-6VavoipdAwkFHFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+meta-learning+for+automated+algorithms+selection+and+configuration%3A+an+experimental+framework+for+industrial+big+data&rft.jtitle=Journal+of+big+data&rft.au=Garouani%2C+Moncef&rft.au=Ahmad%2C+Adeel&rft.au=Bouneffa%2C+Mourad&rft.au=Hamlich%2C+Mohamed&rft.date=2022-04-29&rft.issn=2196-1115&rft.eissn=2196-1115&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-022-00612-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40537_022_00612_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon