The expression of GLP‐1 receptor mRNA and protein allows the effect of GLP‐1 on glucose metabolism in the human hypothalamus and brainstem
In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several b...
Gespeichert in:
| Veröffentlicht in: | Journal of neurochemistry Jg. 92; H. 4; S. 798 - 806 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Science Ltd
01.02.2005
Blackwell |
| Schlagworte: | |
| ISSN: | 0022-3042, 1471-4159 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several brain areas. In addition, GLP‐1R, glucose transporter isoform (GLUT‐2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP‐1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross‐linking assays. Specific binding of 125I‐GLP‐1(7–36) amide to the GLP‐1R was detected in several brain areas and was inhibited by unlabelled GLP‐1(7–36) amide, exendin‐4 and exendin (9–39). A further aim of this work was to evaluate cerebral‐glucose metabolism in control subjects by positron emission tomography (PET), using 2‐[F‐18] deoxy‐d‐glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP‐1(7–36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG‐6‐phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT‐2‐ and GK‐containing cells. |
|---|---|
| AbstractList | In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain.
In situ
hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several brain areas. In addition, GLP‐1R, glucose transporter isoform (GLUT‐2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP‐1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross‐linking assays. Specific binding of
125
I‐GLP‐1(7–36) amide to the GLP‐1R was detected in several brain areas and was inhibited by unlabelled GLP‐1(7–36) amide, exendin‐4 and exendin (9–39). A further aim of this work was to evaluate cerebral‐glucose metabolism in control subjects by positron emission tomography (PET), using 2‐[F‐18] deoxy‐
d
‐glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP‐1(7–36) amide significantly reduced (
p <
0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG‐6‐phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT‐2‐ and GK‐containing cells. In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several brain areas. In addition, GLP‐1R, glucose transporter isoform (GLUT‐2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP‐1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross‐linking assays. Specific binding of 125I‐GLP‐1(7–36) amide to the GLP‐1R was detected in several brain areas and was inhibited by unlabelled GLP‐1(7–36) amide, exendin‐4 and exendin (9–39). A further aim of this work was to evaluate cerebral‐glucose metabolism in control subjects by positron emission tomography (PET), using 2‐[F‐18] deoxy‐d‐glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP‐1(7–36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG‐6‐phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT‐2‐ and GK‐containing cells. In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells. |
| Author | Alvarez, Elvira Chowen, Julie A. Roncero, Isabel Desco, Manuel Maldonado, Antonio De Cáceres, Javier Blázquez, Enrique Gispert, Juan D. Pozo, Miguel Angel Sanz, Carmen Martínez, M. Dolores García‐Cuartero, Beatriz Vázquez, Patricia |
| Author_xml | – sequence: 1 givenname: Elvira surname: Alvarez fullname: Alvarez, Elvira – sequence: 2 givenname: M. Dolores surname: Martínez fullname: Martínez, M. Dolores – sequence: 3 givenname: Isabel surname: Roncero fullname: Roncero, Isabel – sequence: 4 givenname: Julie A. surname: Chowen fullname: Chowen, Julie A. – sequence: 5 givenname: Beatriz surname: García‐Cuartero fullname: García‐Cuartero, Beatriz – sequence: 6 givenname: Juan D. surname: Gispert fullname: Gispert, Juan D. – sequence: 7 givenname: Carmen surname: Sanz fullname: Sanz, Carmen – sequence: 8 givenname: Patricia surname: Vázquez fullname: Vázquez, Patricia – sequence: 9 givenname: Antonio surname: Maldonado fullname: Maldonado, Antonio – sequence: 10 givenname: Javier surname: De Cáceres fullname: De Cáceres, Javier – sequence: 11 givenname: Manuel surname: Desco fullname: Desco, Manuel – sequence: 12 givenname: Miguel Angel surname: Pozo fullname: Pozo, Miguel Angel – sequence: 13 givenname: Enrique surname: Blázquez fullname: Blázquez, Enrique |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16475249$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15686481$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUGP1CAYholZ486u_gXDRW-tQCltD5psJuuqmazGrGdCmQ-nE1oq0OzMzV9g_I3-EunOuBovygUSnuclH-8ZOhncAAhhSnKa1ottTnlFM07LJmeE8JywhvJ89wAt7i9O0IIQxrKCcHaKzkLYEkIFF_QROqWlqAWv6QJ9u9kAht3oIYTODdgZfLX68OPrd4o9aBij87j_eH2B1bDGo3cRugEra91twHFWjQEd_9RSyGc7aRcA9xBV62wXepysGd9MvRrwZj-6uFFW9VO4C2696oYQoX-MHhplAzw57ufo0-vLm-WbbPX-6u3yYpVpLgqeNZqDEIXmddtyzgQ0pCxM1VRrZYBXrAACxboG4IwwJSpFSWUUZ7yqScNKU5yj54fcNNKXCUKUfRc0WKsGcFOQoioaLmqawKdHcGp7WMvRd73ye_nrBxPw7AiooJU1Xg26C785wauS8SZxrw6c9i4ED0bqLqqY_jym4a2kRM7Vyq2cG5Rzg3KuVt5VK3cpoP4r4P6Nf6svD-ptZ2H_3558d72cT8VP9468TQ |
| CODEN | JONRA9 |
| CitedBy_id | crossref_primary_10_1111_fcp_12329 crossref_primary_10_6065_apem_2448320_160 crossref_primary_10_1007_s11428_022_00935_z crossref_primary_10_1016_j_neuropharm_2014_10_007 crossref_primary_10_1016_j_jchemneu_2012_06_002 crossref_primary_10_1111_ejn_15873 crossref_primary_10_1007_s40618_024_02320_7 crossref_primary_10_1016_j_amjmed_2009_03_014 crossref_primary_10_1016_j_ejphar_2008_03_025 crossref_primary_10_1186_s10020_021_00279_2 crossref_primary_10_1038_s41575_019_0157_3 crossref_primary_10_1523_JNEUROSCI_2107_12_2012 crossref_primary_10_1155_jnme_5571686 crossref_primary_10_3389_fimmu_2023_1148209 crossref_primary_10_1016_j_peptides_2024_171243 crossref_primary_10_1038_ijo_2012_208 crossref_primary_10_2527_jas_2012_6022 crossref_primary_10_1007_s11428_023_01037_0 crossref_primary_10_1002_path_5056 crossref_primary_10_3389_fnins_2017_00493 crossref_primary_10_1371_journal_pone_0058797 crossref_primary_10_1016_j_expneurol_2016_11_005 crossref_primary_10_1016_j_neuropharm_2018_02_027 crossref_primary_10_1042_BCJ20180853 crossref_primary_10_1096_fj_202500220RR crossref_primary_10_2337_db07_0193 crossref_primary_10_2337_db07_1162 crossref_primary_10_3390_biomedicines9040383 crossref_primary_10_1038_s41380_025_03261_0 crossref_primary_10_1111_dom_12119 crossref_primary_10_1017_S0954422417000099 crossref_primary_10_1016_j_pneurobio_2014_02_005 crossref_primary_10_3390_cells12232768 crossref_primary_10_1016_j_pneurobio_2016_10_001 crossref_primary_10_1111_j_1467_789X_2009_00707_x crossref_primary_10_3389_fendo_2022_1033479 crossref_primary_10_1016_j_metabol_2007_08_005 crossref_primary_10_3390_ijms18091861 crossref_primary_10_1586_14779072_2015_1054810 crossref_primary_10_3390_cells11132023 crossref_primary_10_1016_j_cmet_2020_05_001 crossref_primary_10_1515_med_2023_0849 crossref_primary_10_1016_j_bbr_2012_09_021 crossref_primary_10_1016_j_bbi_2018_03_013 crossref_primary_10_3390_ijms20174092 crossref_primary_10_1007_s00210_020_01867_5 crossref_primary_10_3390_nu12071962 crossref_primary_10_1016_j_lfs_2020_118645 crossref_primary_10_3390_ijms20051050 crossref_primary_10_1016_S2213_8587_25_00166_4 crossref_primary_10_1038_s41598_022_17190_3 crossref_primary_10_1177_0269881115625496 crossref_primary_10_1016_j_ejphar_2020_173695 crossref_primary_10_1016_j_mce_2025_112627 crossref_primary_10_1002_pdi_2234 crossref_primary_10_1016_j_brainres_2015_12_052 crossref_primary_10_3389_fnins_2023_1225875 crossref_primary_10_1007_s00429_014_0714_z crossref_primary_10_1016_j_jns_2019_05_016 crossref_primary_10_1016_j_regpep_2010_11_006 crossref_primary_10_1016_j_dsx_2020_06_021 crossref_primary_10_1097_MOL_0000000000000254 crossref_primary_10_1007_s11154_014_9290_z crossref_primary_10_1038_s42255_022_00549_1 crossref_primary_10_1038_s41467_024_51076_4 crossref_primary_10_1016_j_ntt_2021_106984 crossref_primary_10_1111_jne_12528 crossref_primary_10_1016_j_peptides_2013_07_022 crossref_primary_10_2337_db14_1718 crossref_primary_10_1111_j_1463_1326_2010_01259_x crossref_primary_10_1016_j_bbadis_2013_01_008 crossref_primary_10_4103_1673_5374_320965 crossref_primary_10_1186_s10194_021_01302_x crossref_primary_10_1210_endrev_bnab008 crossref_primary_10_1016_j_jad_2016_09_056 crossref_primary_10_1177_0269881118756061 crossref_primary_10_1210_en_2014_1166 crossref_primary_10_3390_nu12113304 crossref_primary_10_1016_j_yfrne_2021_100914 crossref_primary_10_1017_S109285292400244X crossref_primary_10_3390_ijms24043384 crossref_primary_10_1016_j_jad_2015_06_006 crossref_primary_10_1016_j_neuroscience_2015_06_007 crossref_primary_10_1038_s41419_017_0217_y crossref_primary_10_1016_j_neuropharm_2017_12_031 crossref_primary_10_1080_07391102_2022_2078409 crossref_primary_10_1111_bph_15485 crossref_primary_10_1016_j_tem_2017_12_001 crossref_primary_10_1016_j_ijbiomac_2023_129067 crossref_primary_10_1016_j_pharmthera_2022_108277 crossref_primary_10_1016_j_neuroimage_2006_12_035 crossref_primary_10_1111_j_1476_5381_2011_01537_x crossref_primary_10_1016_j_peptides_2022_170736 crossref_primary_10_1016_j_peptides_2018_02_003 crossref_primary_10_1002_cne_24905 crossref_primary_10_1002_j_2040_4603_2020_tb00105_x crossref_primary_10_1055_a_1498_7098 crossref_primary_10_1016_j_tem_2016_10_001 crossref_primary_10_3390_cancers14194651 crossref_primary_10_1186_s12933_021_01417_0 crossref_primary_10_1016_j_metabol_2017_08_010 crossref_primary_10_1074_jbc_M704896200 crossref_primary_10_1016_j_neures_2021_05_003 crossref_primary_10_1124_mol_111_074757 crossref_primary_10_1016_j_phrs_2022_106550 crossref_primary_10_1111_j_1365_2265_2012_04368_x crossref_primary_10_1371_journal_pone_0158205 crossref_primary_10_1016_j_neuropharm_2018_01_048 crossref_primary_10_1038_nrcardio_2011_211 crossref_primary_10_1016_j_schres_2024_09_008 crossref_primary_10_1007_s40501_022_00281_3 crossref_primary_10_1111_acps_12711 crossref_primary_10_1111_bph_12313 crossref_primary_10_3389_fphys_2020_00555 crossref_primary_10_1080_19490976_2024_2385117 crossref_primary_10_1016_j_mce_2022_111572 crossref_primary_10_1530_JOE_13_0414 crossref_primary_10_1152_physrev_00031_2014 crossref_primary_10_1016_j_neubiorev_2019_03_018 crossref_primary_10_3390_ijms232415945 crossref_primary_10_3390_biomedicines10081989 crossref_primary_10_1111_j_1365_2826_2009_01919_x crossref_primary_10_1007_s40263_018_0601_x crossref_primary_10_1016_j_jconrel_2023_04_021 crossref_primary_10_1007_s12181_023_00604_5 crossref_primary_10_1016_j_jneumeth_2016_02_002 crossref_primary_10_1016_j_pnpbp_2021_110303 crossref_primary_10_1016_j_obpill_2024_100104 crossref_primary_10_1523_JNEUROSCI_2180_18_2019 crossref_primary_10_1016_j_euroneuro_2017_08_433 crossref_primary_10_1080_13543784_2021_1951702 crossref_primary_10_3390_jcm12134379 crossref_primary_10_3233_JAD_143090 crossref_primary_10_1586_17446651_2015_972370 crossref_primary_10_1016_j_jmb_2022_167927 crossref_primary_10_1016_j_neuropharm_2017_09_023 crossref_primary_10_1111_fcp_12192 crossref_primary_10_1038_s41366_021_00851_0 crossref_primary_10_1177_2042018821989238 crossref_primary_10_3390_ijms23179583 crossref_primary_10_3389_fphys_2019_00457 crossref_primary_10_3390_antiox10122028 crossref_primary_10_1097_WNR_0b013e32832fbf14 crossref_primary_10_3390_nu13082552 crossref_primary_10_1111_j_1476_5381_2012_01971_x crossref_primary_10_1016_j_brainres_2024_149176 crossref_primary_10_3389_fnmol_2022_908948 crossref_primary_10_1016_j_neurol_2023_08_011 crossref_primary_10_1155_2022_2900628 crossref_primary_10_3389_fpsyt_2023_1153648 crossref_primary_10_1038_sj_tpj_6500346 crossref_primary_10_3390_ijms232314899 crossref_primary_10_1016_j_jalz_2013_12_011 crossref_primary_10_1371_journal_pone_0032008 crossref_primary_10_1002_jcph_2487 crossref_primary_10_1016_j_molmet_2023_101738 crossref_primary_10_3390_pharmaceutics13020263 crossref_primary_10_1210_endrev_bnad033 crossref_primary_10_1016_j_biocel_2005_07_011 crossref_primary_10_1016_j_bbr_2019_111932 crossref_primary_10_3233_JPD_171068 crossref_primary_10_1074_jbc_R113_506782 crossref_primary_10_1523_JNEUROSCI_4703_13_2014 crossref_primary_10_1080_14728222_2022_2079492 crossref_primary_10_1007_s12035_012_8239_z crossref_primary_10_1210_en_2008_0180 crossref_primary_10_1038_clpt_2010_85 crossref_primary_10_1038_tp_2015_68 crossref_primary_10_4137_CPath_S667 crossref_primary_10_7554_eLife_86628 crossref_primary_10_7554_eLife_86628_3 crossref_primary_10_1016_j_ejim_2009_05_010 crossref_primary_10_1038_s41574_021_00520_2 crossref_primary_10_1111_bcpt_12240 crossref_primary_10_1016_j_brainres_2016_05_038 crossref_primary_10_1016_j_molmet_2019_09_010 crossref_primary_10_1016_j_ejphar_2010_10_008 crossref_primary_10_1007_s12264_019_00446_w crossref_primary_10_1016_j_ejphar_2018_04_023 crossref_primary_10_3389_fphar_2023_1205207 crossref_primary_10_1002_alz_12474 crossref_primary_10_1093_humupd_dmt033 crossref_primary_10_1097_01_mco_0000232908_84483_e0 crossref_primary_10_3390_biomedicines9070800 crossref_primary_10_3389_fendo_2021_721198 crossref_primary_10_1016_j_yfrne_2023_101081 crossref_primary_10_3389_fendo_2022_873301 crossref_primary_10_1016_j_bcp_2020_114187 crossref_primary_10_1016_j_lfs_2023_121546 crossref_primary_10_1038_ijo_2015_172 crossref_primary_10_1161_ATVBAHA_114_304873 crossref_primary_10_1016_j_drudis_2016_01_013 crossref_primary_10_1016_j_phrs_2015_10_008 crossref_primary_10_1007_s11428_022_00903_7 crossref_primary_10_1016_j_neubiorev_2022_104896 crossref_primary_10_1016_j_phrs_2020_105018 crossref_primary_10_1152_physrev_00034_2006 crossref_primary_10_1007_s10072_021_05328_6 |
| Cites_doi | 10.1210/endo.133.6.7902269 10.1016/0014-5793(94)01430-9 10.1164/ajrccm.163.4.9912132 10.1046/j.0022-3042.2001.00677.x 10.1677/joe.0.1160357 10.1016/S0021-9258(17)41910-7 10.1016/S0006-8993(99)02327-6 10.1146/annurev.bi.52.070183.001111 10.1152/ajpendo.1999.277.5.E784 10.1210/en.139.5.2363 10.1046/j.1471-4159.2003.02269.x 10.1016/S0021-9258(18)67324-7 10.1016/S0021-9258(19)52451-6 10.1210/en.132.1.75 10.1016/0014-5793(88)81063-9 10.1007/BF00373626 10.1038/222282a0 10.1074/jbc.274.52.37125 10.1073/pnas.81.14.4368 10.1210/edrv-13-3-536 10.2337/diab.39.6.647 10.1007/BF01540341 10.1016/0014-5793(90)80173-G 10.1046/j.1471-4159.1996.66030920.x 10.2337/diab.45.6.832 10.1073/pnas.97.16.9226 10.1016/0361-9230(92)90068-9 10.1046/j.1471-4159.1996.67051982.x 10.1016/S0140-6736(87)91194-9 10.1038/379069a0 10.1046/j.1471-4159.1995.64010299.x 10.1152/ajpendo.1994.266.3.E459 10.1002/hbm.460020402 10.1172/JCI115012 10.1096/fasebj.8.6.8168691 10.1056/NEJM199205143262003 10.1073/pnas.85.15.5434 |
| ContentType | Journal Article |
| Copyright | 2006 INIST-CNRS |
| Copyright_xml | – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1111/j.1471-4159.2004.02914.x |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1471-4159 |
| EndPage | 806 |
| ExternalDocumentID | 15686481 16475249 10_1111_j_1471_4159_2004_02914_x JNC2914 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X IQODW CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c4634-9c4e663c48bb4426e9053f797dafe4723e0e3d8ee4202a67a107fa424780925f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226706600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3042 |
| IngestDate | Sun Nov 09 11:24:09 EST 2025 Wed Feb 19 01:43:26 EST 2025 Mon Jul 21 09:14:52 EDT 2025 Sat Nov 29 03:33:31 EST 2025 Tue Nov 18 21:24:06 EST 2025 Wed Jan 22 17:01:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Human Phosphates Statistical analysis Enzyme Transferases GLP-1 receptor Central nervous system Glucose Hypothalamus Gene expression Metabolism Statistical study Protein biological effects Encephalon human brain Glucokinase GLUT-1 glucose transporter glucagon-like peptide-1 receptor glucose sensing Positron Emission tomography |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4634-9c4e663c48bb4426e9053f797dafe4723e0e3d8ee4202a67a107fa424780925f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15686481 |
| PQID | 67394681 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_67394681 pubmed_primary_15686481 pascalfrancis_primary_16475249 crossref_citationtrail_10_1111_j_1471_4159_2004_02914_x crossref_primary_10_1111_j_1471_4159_2004_02914_x wiley_primary_10_1111_j_1471_4159_2004_02914_x_JNC2914 |
| PublicationCentury | 2000 |
| PublicationDate | February 2005 |
| PublicationDateYYYYMMDD | 2005-02-01 |
| PublicationDate_xml | – month: 02 year: 2005 text: February 2005 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
| PublicationTitle | Journal of neurochemistry |
| PublicationTitleAlternate | J Neurochem |
| PublicationYear | 2005 |
| Publisher | Blackwell Science Ltd Blackwell |
| Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell |
| References | 2004; 88 1987; 2 1984; 81 2001; 163 1990; 39 2000; 856 1992; 326 1974 1995; 358 1983; 52 1992; 13 1988; 241 1998; 139 2002; 80 1995; 2 1990; 262 1969; 222 1994; 266 1995; 64 1990; 415 1989; 34 1994; 269 1991; 85 1984; 8 1986; 261 2000; 97 1986; 27 1951; 193 1999; 274 1992; 29 1988; 85 1999; 277 1996; 379 1993; 132 1988; 116 1996; 67 1996; 45 1996; 66 1993; 133 1988 e_1_2_19_29_1 e_1_2_19_26_1 e_1_2_19_27_1 e_1_2_19_20_1 e_1_2_19_21_1 Talairach J. (e_1_2_19_35_1) 1988 e_1_2_19_41_1 Van Schaftingen E. (e_1_2_19_39_1) 1984; 8 e_1_2_19_40_1 e_1_2_19_24_1 e_1_2_19_25_1 e_1_2_19_22_1 Orskov C. (e_1_2_19_28_1) 1996; 45 e_1_2_19_8_1 Hamacher K. (e_1_2_19_15_1) 1986; 27 e_1_2_19_7_1 e_1_2_19_6_1 e_1_2_19_5_1 e_1_2_19_4_1 e_1_2_19_3_1 e_1_2_19_2_1 Chowen J. A. (e_1_2_19_9_1) 1993; 133 e_1_2_19_16_1 e_1_2_19_18_1 Mojsov S. (e_1_2_19_23_1) 1986; 261 e_1_2_19_37_1 e_1_2_19_17_1 e_1_2_19_38_1 e_1_2_19_19_1 e_1_2_19_31_1 e_1_2_19_32_1 e_1_2_19_30_1 e_1_2_19_12_1 e_1_2_19_11_1 e_1_2_19_36_1 e_1_2_19_14_1 e_1_2_19_33_1 e_1_2_19_13_1 e_1_2_19_34_1 Faloona G. R. (e_1_2_19_10_1) 1974 |
| References_xml | – volume: 139 start-page: 2363 year: 1998 end-page: 2368 article-title: Glucagon‐like peptide‐1 (7–36) amide increases pulmonary surfactant secretion through a cyclic adenosine 3′, 5′‐monophosphate‐dependent protein kinase mechanism in rat type II pneumocytes publication-title: Endocrinology – volume: 13 start-page: 536 year: 1992 end-page: 565 article-title: Receptor‐effector coupling by G proteins: Implication for normal and abnormal signal transduction publication-title: Endocr. Rev. – volume: 39 start-page: 647 year: 1990 end-page: 652 article-title: Perspectives in diabetes: glucokinase as glucose sensor and metabolic signal generator pancreatic, β‐cells and hepatocytes publication-title: Diabetes – volume: 261 start-page: 11 880 year: 1986 end-page: 11 889 article-title: Preproglucagon gene expression in pancreas and intestine diversifies at level of posttranslational processing publication-title: J. Biol. Chem. – volume: 133 start-page: 2792 year: 1993 end-page: 2280 article-title: Differential effects of the neonatal and adult sex steroid environments on the organization and activation of hypothalamic growth hormone‐releasing hormone and somatostatin neurons publication-title: Endocrinology – volume: 415 start-page: 479 year: 1990 end-page: 483 article-title: Glucose‐induced excitation of hypothalamic neurons is mediated by ATP‐sensitive K channels publication-title: Pflügers Arch. – volume: 358 start-page: 219 year: 1995 end-page: 224 article-title: Tissue‐specific expression of the human receptor for glucagon‐like peptide‐1: brain, heart and pancreatic forms have the same deduced amino acid sequences publication-title: FEBS Lett. – volume: 274 start-page: 37 125 year: 1999 end-page: 37 130 article-title: Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase publication-title: J. Biol. Chem. – volume: 193 start-page: 265 year: 1951 end-page: 275 article-title: Protein measurement with the Folin phenol reagent publication-title: J. Biol. Chem. – volume: 29 start-page: 359 year: 1992 end-page: 361 article-title: Selective release of glutamine and glutamic acid produced by perfusion of glucagon‐like peptide‐1 (7–36) amide in the basal ganglia of the conscious rat publication-title: Brain Res. Bull. – volume: 85 start-page: 415 year: 1991 end-page: 423 article-title: Proglucagon products in plasma of non‐insulin‐dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine publication-title: J. Clin. Invest. – volume: 163 start-page: 840 year: 2001 end-page: 846 article-title: Glucagon‐like peptide‐1 (7–36) amide stimulates surfactant secretion in human type II pneumocytes publication-title: Am. J. Respir. Crit. Care Med. – volume: 379 start-page: 69 year: 1996 end-page: 72 article-title: A role for glucagon‐like peptide‐1 in the central regulation of feeding publication-title: Nature – volume: 856 start-page: 37 year: 2000 end-page: 47 article-title: Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose publication-title: Brain Res. – volume: 88 start-page: 1203 year: 2004 end-page: 1210 article-title: Expression of glucose transporter isoform GLUT‐2 and glucokinase genes in human brain publication-title: J. Neurochem. – volume: 269 start-page: 3641 year: 1994 end-page: 3654 article-title: Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut publication-title: J. Biol. Chem. – volume: 34 start-page: 703 year: 1989 end-page: 707 article-title: GLP‐1 (glucagon‐like peptide‐1) and truncated GLP‐1 fragments of human proglucagon inhibit gastric acid secretion in humans publication-title: Dig. Diseases Sci. – volume: 266 start-page: E459 year: 1994 end-page: E466 article-title: Changes in arterial blood pressure and heart rate induced by glucagon‐like peptide‐1 (7–36) amide in rats publication-title: Am. J. Physiol. – volume: 52 start-page: 159 year: 1983 end-page: 186 article-title: Adenylate cyclase‐coupled beta‐adrenergic receptors: structure and mechanisms of activation and desensitization publication-title: Annu. Rev. Biochem. – volume: 326 start-page: 1316 year: 1992 end-page: 1322 article-title: Antidiabetogenic effect of glucagon‐like peptide‐1 (7–36) amide in normal subjects and patients with diabetes mellitus publication-title: N. Engl. J. Med. – volume: 262 start-page: 139 year: 1990 end-page: 141 article-title: Characterization of high affinity receptors for truncated glucagon‐like peptide‐1 in rat gastric glands publication-title: FEBS Lett. – volume: 97 start-page: 9226 year: 2000 end-page: 9233 article-title: Positron emission tomography provides molecular imaging of biological processes publication-title: Proc. Natl Acad. Sci. USA – volume: 66 start-page: 920 year: 1996 end-page: 927 article-title: Expression of the glucagon‐like peptide‐1 receptor gene in rat brain publication-title: J. Neurochem. – volume: 85 start-page: 5434 year: 1988 end-page: 5438 article-title: Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transport‐like protein publication-title: Proc. Natl Acad. Sci. USA – volume: 64 start-page: 299 year: 1995 end-page: 306 article-title: Structural characterization by affinity cross‐linking of glucagon‐like peptide‐1 (7–36) amide receptor in rat brain publication-title: J. Neurochem. – volume: 222 start-page: 282 year: 1969 end-page: 284 article-title: Glucose and osmosensitive neurons of the rat hypothalamus publication-title: Nature – start-page: 310 year: 1974 end-page: 330 – year: 1988 – volume: 277 start-page: E784 year: 1999 end-page: E791 article-title: Neural contribution to the effect of glucagon‐like peptide‐1 (7–36) amide on arterial blood pressure in rats publication-title: Am. J. Physiol. – volume: 132 start-page: 75 year: 1993 end-page: 79 article-title: Presence and characterization of glucagon‐like peptide‐1 (7–36) amide receptors in solubilized membranes of rat adipose tissue publication-title: Endocrinology – volume: 2 start-page: 189 year: 1995 end-page: 210 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapping – volume: 45 start-page: 832 year: 1996 end-page: 835 article-title: Glucagon‐like peptide‐1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon‐like peptide‐1 publication-title: Diabetes – volume: 80 start-page: 45 year: 2002 end-page: 53 article-title: Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain publication-title: J. Neurochem. – volume: 116 start-page: 357 year: 1988 end-page: 362 article-title: Receptors for glucagon‐like peptide‐1 (7–36) amide on rat insulinoma‐derived cells publication-title: J. Endocrinol. – volume: 8 start-page: 414 year: 1984 end-page: 419 article-title: Short‐term control of glucokinase activity: role of a regulatory protein publication-title: FASEB J. – volume: 27 start-page: 235 year: 1986 end-page: 238 article-title: Efficient stereospecific synthesis of non‐carried‐added 2‐[18 F]flouro‐deoxy‐d‐glucose using aminopolyether‐supported nucleophilic substitution publication-title: J. Nucl. Med. – volume: 241 start-page: 209 year: 1988 end-page: 212 article-title: Identification and characterization of glucagon‐like peptide‐1 (7–36) amide‐binding sites in the brain and lung publication-title: FEBS Lett. – volume: 2 start-page: 1300 year: 1987 end-page: 1304 article-title: Glucagon‐like peptide‐1 (7–36): a physiological incretin in man publication-title: Lancet – volume: 67 start-page: 1982 year: 1996 end-page: 1991 article-title: Colocalization of glucagon‐like peptide‐1 (GLP‐1) receptors, glucose transporter GLUT‐2, and glucokinase mRNAs in rat hypothalamic cells: Evidence for a role of GLP‐1 receptor agonists as an inhibitory signal for food and water intake publication-title: J. Neurochem. – volume: 81 start-page: 4368 year: 1984 end-page: 4437 article-title: Identification of glucagon receptors in rat brain publication-title: Proc. Natl Acad. Sci. USA – volume: 133 start-page: 2792 year: 1993 ident: e_1_2_19_9_1 article-title: Differential effects of the neonatal and adult sex steroid environments on the organization and activation of hypothalamic growth hormone‐releasing hormone and somatostatin neurons publication-title: Endocrinology doi: 10.1210/endo.133.6.7902269 – ident: e_1_2_19_41_1 doi: 10.1016/0014-5793(94)01430-9 – ident: e_1_2_19_40_1 doi: 10.1164/ajrccm.163.4.9912132 – ident: e_1_2_19_3_1 doi: 10.1046/j.0022-3042.2001.00677.x – ident: e_1_2_19_13_1 doi: 10.1677/joe.0.1160357 – volume: 27 start-page: 235 year: 1986 ident: e_1_2_19_15_1 article-title: Efficient stereospecific synthesis of non‐carried‐added 2‐[18 F]flouro‐deoxy‐d‐glucose using aminopolyether‐supported nucleophilic substitution publication-title: J. Nucl. Med. – ident: e_1_2_19_17_1 doi: 10.1016/S0021-9258(17)41910-7 – ident: e_1_2_19_30_1 doi: 10.1016/S0006-8993(99)02327-6 – ident: e_1_2_19_20_1 doi: 10.1146/annurev.bi.52.070183.001111 – ident: e_1_2_19_6_1 doi: 10.1152/ajpendo.1999.277.5.E784 – ident: e_1_2_19_7_1 doi: 10.1210/en.139.5.2363 – ident: e_1_2_19_31_1 doi: 10.1046/j.1471-4159.2003.02269.x – volume: 261 start-page: 11 880 year: 1986 ident: e_1_2_19_23_1 article-title: Preproglucagon gene expression in pancreas and intestine diversifies at level of posttranslational processing publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)67324-7 – ident: e_1_2_19_21_1 doi: 10.1016/S0021-9258(19)52451-6 – ident: e_1_2_19_38_1 doi: 10.1210/en.132.1.75 – ident: e_1_2_19_18_1 doi: 10.1016/0014-5793(88)81063-9 – ident: e_1_2_19_4_1 doi: 10.1007/BF00373626 – ident: e_1_2_19_26_1 doi: 10.1038/222282a0 – ident: e_1_2_19_33_1 doi: 10.1074/jbc.274.52.37125 – ident: e_1_2_19_16_1 doi: 10.1073/pnas.81.14.4368 – start-page: 310 volume-title: Methods of Hormone Radioimmunoassay year: 1974 ident: e_1_2_19_10_1 – ident: e_1_2_19_34_1 doi: 10.1210/edrv-13-3-536 – ident: e_1_2_19_22_1 doi: 10.2337/diab.39.6.647 – ident: e_1_2_19_32_1 doi: 10.1007/BF01540341 – ident: e_1_2_19_37_1 doi: 10.1016/0014-5793(90)80173-G – ident: e_1_2_19_2_1 doi: 10.1046/j.1471-4159.1996.66030920.x – volume: 45 start-page: 832 year: 1996 ident: e_1_2_19_28_1 article-title: Glucagon‐like peptide‐1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon‐like peptide‐1 publication-title: Diabetes doi: 10.2337/diab.45.6.832 – ident: e_1_2_19_29_1 doi: 10.1073/pnas.97.16.9226 – ident: e_1_2_19_24_1 doi: 10.1016/0361-9230(92)90068-9 – ident: e_1_2_19_25_1 doi: 10.1046/j.1471-4159.1996.67051982.x – ident: e_1_2_19_19_1 doi: 10.1016/S0140-6736(87)91194-9 – ident: e_1_2_19_36_1 doi: 10.1038/379069a0 – ident: e_1_2_19_8_1 doi: 10.1046/j.1471-4159.1995.64010299.x – ident: e_1_2_19_5_1 doi: 10.1152/ajpendo.1994.266.3.E459 – ident: e_1_2_19_11_1 doi: 10.1002/hbm.460020402 – ident: e_1_2_19_27_1 doi: 10.1172/JCI115012 – volume-title: A Co‐Planar Stereotactic Atlas of the Human Brain year: 1988 ident: e_1_2_19_35_1 – volume: 8 start-page: 414 year: 1984 ident: e_1_2_19_39_1 article-title: Short‐term control of glucokinase activity: role of a regulatory protein publication-title: FASEB J. doi: 10.1096/fasebj.8.6.8168691 – ident: e_1_2_19_14_1 doi: 10.1056/NEJM199205143262003 – ident: e_1_2_19_12_1 doi: 10.1073/pnas.85.15.5434 |
| SSID | ssj0016461 |
| Score | 2.2937462 |
| Snippet | In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological... In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological... |
| SourceID | proquest pubmed pascalfrancis crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 798 |
| SubjectTerms | Adult Aged Aged, 80 and over Biological and medical sciences biological effects Brain Stem - metabolism Cell receptors Cell structures and functions Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female Fundamental and applied biological sciences. Psychology gene expression Glucagon - metabolism Glucagon - physiology Glucagon-Like Peptide 1 Glucagon-Like Peptide-1 Receptor Glucose - metabolism glucose sensing human brain Humans Hypothalamus - metabolism Male Medical sciences Middle Aged Molecular and cellular biology Monoamines receptors (catecholamine, serotonine, histamine, acetylcholine) Neurology Peptide Fragments - metabolism Peptide Fragments - physiology Protein Binding - physiology Protein Precursors - metabolism Protein Precursors - physiology Receptors, Glucagon - biosynthesis Receptors, Glucagon - genetics RNA, Messenger - biosynthesis |
| Title | The expression of GLP‐1 receptor mRNA and protein allows the effect of GLP‐1 on glucose metabolism in the human hypothalamus and brainstem |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2004.02914.x https://www.ncbi.nlm.nih.gov/pubmed/15686481 https://www.proquest.com/docview/67394681 |
| Volume | 92 |
| WOSCitedRecordID | wos000226706600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1471-4159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016461 issn: 0022-3042 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1471-4159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016461 issn: 0022-3042 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF7apNBA6SNpUvfh7qH0piBpx_s4GrfugyBCaKhvYrXapYZYNpGdJrf-gpDf2F_S2ZXsxCWHUHqTkGaRNN_sfKOdnSHknTDcIlO2EWcpi9BD20hyY6ICuQNjRpqk1KHZhMgyORqpwzb_ye-FaepDrH64ecsI87U3cF3Ufxm5wPgH_XEI8_bjVCWwj3xy0--xwkBs88PR8PhgtabAgSer2uGI1fW8nlvHWnNWj2a6xu_mmoYXtzHSdYIbPNTwyf98t6fkcctTab8B1jNyz1bbZKdfYYw-uaDvacgcDb_kt8nDwbJr3A65RNxRe96m11Z06uing8Pfv64SinOrnWGITydHWZ_qqqShSMS4on7x_2dN51405JfcFMNB2rx6OrFzxOzJuJ5QlPK3hxaD9MfFDAGnEdyLOgxc-MYXvkT1c3I8_Pht8Dlqez5EBjiDSBmwSIIMyKIAZA9W4SzhhBKldhZEymxsWSmthTRONRcaw1enIQUhY5X2HNslG9W0si8ILV0i_TZfUKUBAVpa5C6lY7ErCq7iokPEUrm5aQui-74cJ_nNwEgkuVeDb9cJeVBDft4hyUpy1hQFuYNMdw0_14IcRA-D4A55uwRUjjrz6za6stNF7VPvFHCZdMheg7Nr2R6XHPwVHuB056fJv2YDf_TyXwVfka1QxDbkr78mG_PThX1DHpiz-bg-7ZL7YiS7rQHi2fcv2R8Ycy3y |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CHdKQEJcNWLlsfkC8ZUpi15fHqlAGlGiaNmlvkePYotKaVks7tjd-AeI38ks4dtJuRXuYEG-RkmMlOZ_t79jH5wN4Kwy3yJRtxGlKI5yhbSS5MVGB3IFSI01S6iA2IbJMnp6qw1YOyJ-FaepDrBbcfM8I47Xv4H5B-q9eLjAAwgk5xHn7caoSto-EcoNxKmQHNt4fDU9Gq00FzniyKh6OYF1P7Lm1rbXZ6uFM1_jjXKN4cRslXWe4YYoaPv6vH_cEHrVMlfQbaD2Fe7bagu1-hVH65Iq8IyF3NCzKb8HmYKkbtw0_EXnEXrYJthWZOvJxdPj7x6-E4OhqZxjkk8lR1ie6KkkoEzGuiN_-_16TuTcNGSY3zbCRNrOeTOwcUXs2ricErfzjQWSQfLuaIeQ0wntRh4YLL33hi1Q_g5Phh-PBQdSqPkQG3cYiZZhFGmSYLAqG_MEqHCecUKLUzjKRUhtbWkprWRqnmguNAazTLGVCxirtOfocOtW0sjtASpdIf9CXqdIwwbS0yF5KR2NXFFzFRRfE0ru5aUuie2WOs_xmaCSS3LvBC3ayPLghv-xCsrKcNWVB7mCzuwaga0PORA_D4C7sLRGVo8_8zo2u7HRR--Q7xbhMuvCiAdq1bY9LzvwdHvB057fJP2cDf_XyXw33YPPg-OsoH33KvryCB6Gkbchmfw2d-fnCvoH75mI-rs932374B_s2L-s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQQVAJ8dFS2AKtD4hbqnzM2s5xtbBQqKIVAtFb5DhjsVI3GzW70N74BYjfyC_p2Mluu6iHCnGLlIyVZJ7tN_Z4HmOvpBFITBkDkcRJQDM0BkoYExTEHZLEKBOV2otNyCxTx8fpuJMDcmdh2voQqwU31zP8eO06ONal_auXSwqAaEL2cd5BGKcRHBChvA1Ey11-19fDbLWlIEBEq9LhBNX1tJ5rW1qbq-7XuqHfZlu9i-sI6Tq_9RPU6OF__bRH7EHHU_mgBdZjdgurLbY9qChGn57z19xnjvol-S12b7hUjdtmvwh3HM-69NqKzyx_dzT-8_N3xGlsxZpCfD79lA24rkrui0RMKu42_380fO5MfX7JVTNqpMur51OcE2ZPJs2Uk5V73EsM8m_nNQFOE7gXjW-4cMIXrkT1E_Zl9Pbz8H3QaT4EBkQCQWoAiQQZUEUBxB4wpVHCylSW2iLIOMEQk1IhQhzGWkhN4avVEINUYRr3bbLDNqpZhc8YL22k3DFfSEsDErRC4i6lTUJbFCINix6TS-_mpiuI7nQ5TvKrgZGMcucGJ9cJuXdDftZj0cqybouC3MBmbw1Al4YCZJ-C4B7bXyIqJ5-5fRtd4WzRuNS7FISKeuxpC7RL275QAtwd4fF047fJP2RDd7X7r4b77O74zSg_Osw-Pmebvp6tT2V_wTbmpwt8ye6Y7_NJc7rnO-EFi38uQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+expression+of+GLP-1+receptor+mRNA+and+protein+allows+the+effect+of+GLP-1+on+glucose+metabolism+in+the+human+hypothalamus+and+brainstem&rft.jtitle=Journal+of+neurochemistry&rft.au=ALVAREZ%2C+Elvira&rft.au=MARTINEZ%2C+M.+Dolores&rft.au=DESCO%2C+Manuel&rft.au=POZO%2C+Miguel+Angel&rft.date=2005-02-01&rft.pub=Blackwell&rft.issn=0022-3042&rft.volume=92&rft.issue=4&rft.spage=798&rft.epage=806&rft_id=info:doi/10.1111%2Fj.1471-4159.2004.02914.x&rft.externalDBID=n%2Fa&rft.externalDocID=16475249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |