The expression of GLP‐1 receptor mRNA and protein allows the effect of GLP‐1 on glucose metabolism in the human hypothalamus and brainstem

In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry Jg. 92; H. 4; S. 798 - 806
Hauptverfasser: Alvarez, Elvira, Martínez, M. Dolores, Roncero, Isabel, Chowen, Julie A., García‐Cuartero, Beatriz, Gispert, Juan D., Sanz, Carmen, Vázquez, Patricia, Maldonado, Antonio, De Cáceres, Javier, Desco, Manuel, Pozo, Miguel Angel, Blázquez, Enrique
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Science Ltd 01.02.2005
Blackwell
Schlagworte:
ISSN:0022-3042, 1471-4159
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several brain areas. In addition, GLP‐1R, glucose transporter isoform (GLUT‐2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP‐1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross‐linking assays. Specific binding of 125I‐GLP‐1(7–36) amide to the GLP‐1R was detected in several brain areas and was inhibited by unlabelled GLP‐1(7–36) amide, exendin‐4 and exendin (9–39). A further aim of this work was to evaluate cerebral‐glucose metabolism in control subjects by positron emission tomography (PET), using 2‐[F‐18] deoxy‐d‐glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP‐1(7–36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG‐6‐phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT‐2‐ and GK‐containing cells.
AbstractList In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several brain areas. In addition, GLP‐1R, glucose transporter isoform (GLUT‐2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP‐1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross‐linking assays. Specific binding of 125 I‐GLP‐1(7–36) amide to the GLP‐1R was detected in several brain areas and was inhibited by unlabelled GLP‐1(7–36) amide, exendin‐4 and exendin (9–39). A further aim of this work was to evaluate cerebral‐glucose metabolism in control subjects by positron emission tomography (PET), using 2‐[F‐18] deoxy‐ d ‐glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP‐1(7–36) amide significantly reduced ( p <  0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG‐6‐phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT‐2‐ and GK‐containing cells.
In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP‐1 receptor mRNA in several brain areas. In addition, GLP‐1R, glucose transporter isoform (GLUT‐2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP‐1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross‐linking assays. Specific binding of 125I‐GLP‐1(7–36) amide to the GLP‐1R was detected in several brain areas and was inhibited by unlabelled GLP‐1(7–36) amide, exendin‐4 and exendin (9–39). A further aim of this work was to evaluate cerebral‐glucose metabolism in control subjects by positron emission tomography (PET), using 2‐[F‐18] deoxy‐d‐glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP‐1(7–36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG‐6‐phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT‐2‐ and GK‐containing cells.
In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.
Author Alvarez, Elvira
Chowen, Julie A.
Roncero, Isabel
Desco, Manuel
Maldonado, Antonio
De Cáceres, Javier
Blázquez, Enrique
Gispert, Juan D.
Pozo, Miguel Angel
Sanz, Carmen
Martínez, M. Dolores
García‐Cuartero, Beatriz
Vázquez, Patricia
Author_xml – sequence: 1
  givenname: Elvira
  surname: Alvarez
  fullname: Alvarez, Elvira
– sequence: 2
  givenname: M. Dolores
  surname: Martínez
  fullname: Martínez, M. Dolores
– sequence: 3
  givenname: Isabel
  surname: Roncero
  fullname: Roncero, Isabel
– sequence: 4
  givenname: Julie A.
  surname: Chowen
  fullname: Chowen, Julie A.
– sequence: 5
  givenname: Beatriz
  surname: García‐Cuartero
  fullname: García‐Cuartero, Beatriz
– sequence: 6
  givenname: Juan D.
  surname: Gispert
  fullname: Gispert, Juan D.
– sequence: 7
  givenname: Carmen
  surname: Sanz
  fullname: Sanz, Carmen
– sequence: 8
  givenname: Patricia
  surname: Vázquez
  fullname: Vázquez, Patricia
– sequence: 9
  givenname: Antonio
  surname: Maldonado
  fullname: Maldonado, Antonio
– sequence: 10
  givenname: Javier
  surname: De Cáceres
  fullname: De Cáceres, Javier
– sequence: 11
  givenname: Manuel
  surname: Desco
  fullname: Desco, Manuel
– sequence: 12
  givenname: Miguel Angel
  surname: Pozo
  fullname: Pozo, Miguel Angel
– sequence: 13
  givenname: Enrique
  surname: Blázquez
  fullname: Blázquez, Enrique
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16475249$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15686481$$D View this record in MEDLINE/PubMed
BookMark eNqNkUGP1CAYholZ486u_gXDRW-tQCltD5psJuuqmazGrGdCmQ-nE1oq0OzMzV9g_I3-EunOuBovygUSnuclH-8ZOhncAAhhSnKa1ottTnlFM07LJmeE8JywhvJ89wAt7i9O0IIQxrKCcHaKzkLYEkIFF_QROqWlqAWv6QJ9u9kAht3oIYTODdgZfLX68OPrd4o9aBij87j_eH2B1bDGo3cRugEra91twHFWjQEd_9RSyGc7aRcA9xBV62wXepysGd9MvRrwZj-6uFFW9VO4C2696oYQoX-MHhplAzw57ufo0-vLm-WbbPX-6u3yYpVpLgqeNZqDEIXmddtyzgQ0pCxM1VRrZYBXrAACxboG4IwwJSpFSWUUZ7yqScNKU5yj54fcNNKXCUKUfRc0WKsGcFOQoioaLmqawKdHcGp7WMvRd73ye_nrBxPw7AiooJU1Xg26C785wauS8SZxrw6c9i4ED0bqLqqY_jym4a2kRM7Vyq2cG5Rzg3KuVt5VK3cpoP4r4P6Nf6svD-ptZ2H_3558d72cT8VP9468TQ
CODEN JONRA9
CitedBy_id crossref_primary_10_1111_fcp_12329
crossref_primary_10_6065_apem_2448320_160
crossref_primary_10_1007_s11428_022_00935_z
crossref_primary_10_1016_j_neuropharm_2014_10_007
crossref_primary_10_1016_j_jchemneu_2012_06_002
crossref_primary_10_1111_ejn_15873
crossref_primary_10_1007_s40618_024_02320_7
crossref_primary_10_1016_j_amjmed_2009_03_014
crossref_primary_10_1016_j_ejphar_2008_03_025
crossref_primary_10_1186_s10020_021_00279_2
crossref_primary_10_1038_s41575_019_0157_3
crossref_primary_10_1523_JNEUROSCI_2107_12_2012
crossref_primary_10_1155_jnme_5571686
crossref_primary_10_3389_fimmu_2023_1148209
crossref_primary_10_1016_j_peptides_2024_171243
crossref_primary_10_1038_ijo_2012_208
crossref_primary_10_2527_jas_2012_6022
crossref_primary_10_1007_s11428_023_01037_0
crossref_primary_10_1002_path_5056
crossref_primary_10_3389_fnins_2017_00493
crossref_primary_10_1371_journal_pone_0058797
crossref_primary_10_1016_j_expneurol_2016_11_005
crossref_primary_10_1016_j_neuropharm_2018_02_027
crossref_primary_10_1042_BCJ20180853
crossref_primary_10_1096_fj_202500220RR
crossref_primary_10_2337_db07_0193
crossref_primary_10_2337_db07_1162
crossref_primary_10_3390_biomedicines9040383
crossref_primary_10_1038_s41380_025_03261_0
crossref_primary_10_1111_dom_12119
crossref_primary_10_1017_S0954422417000099
crossref_primary_10_1016_j_pneurobio_2014_02_005
crossref_primary_10_3390_cells12232768
crossref_primary_10_1016_j_pneurobio_2016_10_001
crossref_primary_10_1111_j_1467_789X_2009_00707_x
crossref_primary_10_3389_fendo_2022_1033479
crossref_primary_10_1016_j_metabol_2007_08_005
crossref_primary_10_3390_ijms18091861
crossref_primary_10_1586_14779072_2015_1054810
crossref_primary_10_3390_cells11132023
crossref_primary_10_1016_j_cmet_2020_05_001
crossref_primary_10_1515_med_2023_0849
crossref_primary_10_1016_j_bbr_2012_09_021
crossref_primary_10_1016_j_bbi_2018_03_013
crossref_primary_10_3390_ijms20174092
crossref_primary_10_1007_s00210_020_01867_5
crossref_primary_10_3390_nu12071962
crossref_primary_10_1016_j_lfs_2020_118645
crossref_primary_10_3390_ijms20051050
crossref_primary_10_1016_S2213_8587_25_00166_4
crossref_primary_10_1038_s41598_022_17190_3
crossref_primary_10_1177_0269881115625496
crossref_primary_10_1016_j_ejphar_2020_173695
crossref_primary_10_1016_j_mce_2025_112627
crossref_primary_10_1002_pdi_2234
crossref_primary_10_1016_j_brainres_2015_12_052
crossref_primary_10_3389_fnins_2023_1225875
crossref_primary_10_1007_s00429_014_0714_z
crossref_primary_10_1016_j_jns_2019_05_016
crossref_primary_10_1016_j_regpep_2010_11_006
crossref_primary_10_1016_j_dsx_2020_06_021
crossref_primary_10_1097_MOL_0000000000000254
crossref_primary_10_1007_s11154_014_9290_z
crossref_primary_10_1038_s42255_022_00549_1
crossref_primary_10_1038_s41467_024_51076_4
crossref_primary_10_1016_j_ntt_2021_106984
crossref_primary_10_1111_jne_12528
crossref_primary_10_1016_j_peptides_2013_07_022
crossref_primary_10_2337_db14_1718
crossref_primary_10_1111_j_1463_1326_2010_01259_x
crossref_primary_10_1016_j_bbadis_2013_01_008
crossref_primary_10_4103_1673_5374_320965
crossref_primary_10_1186_s10194_021_01302_x
crossref_primary_10_1210_endrev_bnab008
crossref_primary_10_1016_j_jad_2016_09_056
crossref_primary_10_1177_0269881118756061
crossref_primary_10_1210_en_2014_1166
crossref_primary_10_3390_nu12113304
crossref_primary_10_1016_j_yfrne_2021_100914
crossref_primary_10_1017_S109285292400244X
crossref_primary_10_3390_ijms24043384
crossref_primary_10_1016_j_jad_2015_06_006
crossref_primary_10_1016_j_neuroscience_2015_06_007
crossref_primary_10_1038_s41419_017_0217_y
crossref_primary_10_1016_j_neuropharm_2017_12_031
crossref_primary_10_1080_07391102_2022_2078409
crossref_primary_10_1111_bph_15485
crossref_primary_10_1016_j_tem_2017_12_001
crossref_primary_10_1016_j_ijbiomac_2023_129067
crossref_primary_10_1016_j_pharmthera_2022_108277
crossref_primary_10_1016_j_neuroimage_2006_12_035
crossref_primary_10_1111_j_1476_5381_2011_01537_x
crossref_primary_10_1016_j_peptides_2022_170736
crossref_primary_10_1016_j_peptides_2018_02_003
crossref_primary_10_1002_cne_24905
crossref_primary_10_1002_j_2040_4603_2020_tb00105_x
crossref_primary_10_1055_a_1498_7098
crossref_primary_10_1016_j_tem_2016_10_001
crossref_primary_10_3390_cancers14194651
crossref_primary_10_1186_s12933_021_01417_0
crossref_primary_10_1016_j_metabol_2017_08_010
crossref_primary_10_1074_jbc_M704896200
crossref_primary_10_1016_j_neures_2021_05_003
crossref_primary_10_1124_mol_111_074757
crossref_primary_10_1016_j_phrs_2022_106550
crossref_primary_10_1111_j_1365_2265_2012_04368_x
crossref_primary_10_1371_journal_pone_0158205
crossref_primary_10_1016_j_neuropharm_2018_01_048
crossref_primary_10_1038_nrcardio_2011_211
crossref_primary_10_1016_j_schres_2024_09_008
crossref_primary_10_1007_s40501_022_00281_3
crossref_primary_10_1111_acps_12711
crossref_primary_10_1111_bph_12313
crossref_primary_10_3389_fphys_2020_00555
crossref_primary_10_1080_19490976_2024_2385117
crossref_primary_10_1016_j_mce_2022_111572
crossref_primary_10_1530_JOE_13_0414
crossref_primary_10_1152_physrev_00031_2014
crossref_primary_10_1016_j_neubiorev_2019_03_018
crossref_primary_10_3390_ijms232415945
crossref_primary_10_3390_biomedicines10081989
crossref_primary_10_1111_j_1365_2826_2009_01919_x
crossref_primary_10_1007_s40263_018_0601_x
crossref_primary_10_1016_j_jconrel_2023_04_021
crossref_primary_10_1007_s12181_023_00604_5
crossref_primary_10_1016_j_jneumeth_2016_02_002
crossref_primary_10_1016_j_pnpbp_2021_110303
crossref_primary_10_1016_j_obpill_2024_100104
crossref_primary_10_1523_JNEUROSCI_2180_18_2019
crossref_primary_10_1016_j_euroneuro_2017_08_433
crossref_primary_10_1080_13543784_2021_1951702
crossref_primary_10_3390_jcm12134379
crossref_primary_10_3233_JAD_143090
crossref_primary_10_1586_17446651_2015_972370
crossref_primary_10_1016_j_jmb_2022_167927
crossref_primary_10_1016_j_neuropharm_2017_09_023
crossref_primary_10_1111_fcp_12192
crossref_primary_10_1038_s41366_021_00851_0
crossref_primary_10_1177_2042018821989238
crossref_primary_10_3390_ijms23179583
crossref_primary_10_3389_fphys_2019_00457
crossref_primary_10_3390_antiox10122028
crossref_primary_10_1097_WNR_0b013e32832fbf14
crossref_primary_10_3390_nu13082552
crossref_primary_10_1111_j_1476_5381_2012_01971_x
crossref_primary_10_1016_j_brainres_2024_149176
crossref_primary_10_3389_fnmol_2022_908948
crossref_primary_10_1016_j_neurol_2023_08_011
crossref_primary_10_1155_2022_2900628
crossref_primary_10_3389_fpsyt_2023_1153648
crossref_primary_10_1038_sj_tpj_6500346
crossref_primary_10_3390_ijms232314899
crossref_primary_10_1016_j_jalz_2013_12_011
crossref_primary_10_1371_journal_pone_0032008
crossref_primary_10_1002_jcph_2487
crossref_primary_10_1016_j_molmet_2023_101738
crossref_primary_10_3390_pharmaceutics13020263
crossref_primary_10_1210_endrev_bnad033
crossref_primary_10_1016_j_biocel_2005_07_011
crossref_primary_10_1016_j_bbr_2019_111932
crossref_primary_10_3233_JPD_171068
crossref_primary_10_1074_jbc_R113_506782
crossref_primary_10_1523_JNEUROSCI_4703_13_2014
crossref_primary_10_1080_14728222_2022_2079492
crossref_primary_10_1007_s12035_012_8239_z
crossref_primary_10_1210_en_2008_0180
crossref_primary_10_1038_clpt_2010_85
crossref_primary_10_1038_tp_2015_68
crossref_primary_10_4137_CPath_S667
crossref_primary_10_7554_eLife_86628
crossref_primary_10_7554_eLife_86628_3
crossref_primary_10_1016_j_ejim_2009_05_010
crossref_primary_10_1038_s41574_021_00520_2
crossref_primary_10_1111_bcpt_12240
crossref_primary_10_1016_j_brainres_2016_05_038
crossref_primary_10_1016_j_molmet_2019_09_010
crossref_primary_10_1016_j_ejphar_2010_10_008
crossref_primary_10_1007_s12264_019_00446_w
crossref_primary_10_1016_j_ejphar_2018_04_023
crossref_primary_10_3389_fphar_2023_1205207
crossref_primary_10_1002_alz_12474
crossref_primary_10_1093_humupd_dmt033
crossref_primary_10_1097_01_mco_0000232908_84483_e0
crossref_primary_10_3390_biomedicines9070800
crossref_primary_10_3389_fendo_2021_721198
crossref_primary_10_1016_j_yfrne_2023_101081
crossref_primary_10_3389_fendo_2022_873301
crossref_primary_10_1016_j_bcp_2020_114187
crossref_primary_10_1016_j_lfs_2023_121546
crossref_primary_10_1038_ijo_2015_172
crossref_primary_10_1161_ATVBAHA_114_304873
crossref_primary_10_1016_j_drudis_2016_01_013
crossref_primary_10_1016_j_phrs_2015_10_008
crossref_primary_10_1007_s11428_022_00903_7
crossref_primary_10_1016_j_neubiorev_2022_104896
crossref_primary_10_1016_j_phrs_2020_105018
crossref_primary_10_1152_physrev_00034_2006
crossref_primary_10_1007_s10072_021_05328_6
Cites_doi 10.1210/endo.133.6.7902269
10.1016/0014-5793(94)01430-9
10.1164/ajrccm.163.4.9912132
10.1046/j.0022-3042.2001.00677.x
10.1677/joe.0.1160357
10.1016/S0021-9258(17)41910-7
10.1016/S0006-8993(99)02327-6
10.1146/annurev.bi.52.070183.001111
10.1152/ajpendo.1999.277.5.E784
10.1210/en.139.5.2363
10.1046/j.1471-4159.2003.02269.x
10.1016/S0021-9258(18)67324-7
10.1016/S0021-9258(19)52451-6
10.1210/en.132.1.75
10.1016/0014-5793(88)81063-9
10.1007/BF00373626
10.1038/222282a0
10.1074/jbc.274.52.37125
10.1073/pnas.81.14.4368
10.1210/edrv-13-3-536
10.2337/diab.39.6.647
10.1007/BF01540341
10.1016/0014-5793(90)80173-G
10.1046/j.1471-4159.1996.66030920.x
10.2337/diab.45.6.832
10.1073/pnas.97.16.9226
10.1016/0361-9230(92)90068-9
10.1046/j.1471-4159.1996.67051982.x
10.1016/S0140-6736(87)91194-9
10.1038/379069a0
10.1046/j.1471-4159.1995.64010299.x
10.1152/ajpendo.1994.266.3.E459
10.1002/hbm.460020402
10.1172/JCI115012
10.1096/fasebj.8.6.8168691
10.1056/NEJM199205143262003
10.1073/pnas.85.15.5434
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1471-4159.2004.02914.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 806
ExternalDocumentID 15686481
16475249
10_1111_j_1471_4159_2004_02914_x
JNC2914
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c4634-9c4e663c48bb4426e9053f797dafe4723e0e3d8ee4202a67a107fa424780925f3
IEDL.DBID DRFUL
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226706600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3042
IngestDate Sun Nov 09 11:24:09 EST 2025
Wed Feb 19 01:43:26 EST 2025
Mon Jul 21 09:14:52 EDT 2025
Sat Nov 29 03:33:31 EST 2025
Tue Nov 18 21:24:06 EST 2025
Wed Jan 22 17:01:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Phosphates
Statistical analysis
Enzyme
Transferases
GLP-1 receptor
Central nervous system
Glucose
Hypothalamus
Gene expression
Metabolism
Statistical study
Protein
biological effects
Encephalon
human brain
Glucokinase
GLUT-1 glucose transporter
glucagon-like peptide-1 receptor
glucose sensing
Positron
Emission tomography
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4634-9c4e663c48bb4426e9053f797dafe4723e0e3d8ee4202a67a107fa424780925f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15686481
PQID 67394681
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_67394681
pubmed_primary_15686481
pascalfrancis_primary_16475249
crossref_citationtrail_10_1111_j_1471_4159_2004_02914_x
crossref_primary_10_1111_j_1471_4159_2004_02914_x
wiley_primary_10_1111_j_1471_4159_2004_02914_x_JNC2914
PublicationCentury 2000
PublicationDate February 2005
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: February 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2005
Publisher Blackwell Science Ltd
Blackwell
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell
References 2004; 88
1987; 2
1984; 81
2001; 163
1990; 39
2000; 856
1992; 326
1974
1995; 358
1983; 52
1992; 13
1988; 241
1998; 139
2002; 80
1995; 2
1990; 262
1969; 222
1994; 266
1995; 64
1990; 415
1989; 34
1994; 269
1991; 85
1984; 8
1986; 261
2000; 97
1986; 27
1951; 193
1999; 274
1992; 29
1988; 85
1999; 277
1996; 379
1993; 132
1988; 116
1996; 67
1996; 45
1996; 66
1993; 133
1988
e_1_2_19_29_1
e_1_2_19_26_1
e_1_2_19_27_1
e_1_2_19_20_1
e_1_2_19_21_1
Talairach J. (e_1_2_19_35_1) 1988
e_1_2_19_41_1
Van Schaftingen E. (e_1_2_19_39_1) 1984; 8
e_1_2_19_40_1
e_1_2_19_24_1
e_1_2_19_25_1
e_1_2_19_22_1
Orskov C. (e_1_2_19_28_1) 1996; 45
e_1_2_19_8_1
Hamacher K. (e_1_2_19_15_1) 1986; 27
e_1_2_19_7_1
e_1_2_19_6_1
e_1_2_19_5_1
e_1_2_19_4_1
e_1_2_19_3_1
e_1_2_19_2_1
Chowen J. A. (e_1_2_19_9_1) 1993; 133
e_1_2_19_16_1
e_1_2_19_18_1
Mojsov S. (e_1_2_19_23_1) 1986; 261
e_1_2_19_37_1
e_1_2_19_17_1
e_1_2_19_38_1
e_1_2_19_19_1
e_1_2_19_31_1
e_1_2_19_32_1
e_1_2_19_30_1
e_1_2_19_12_1
e_1_2_19_11_1
e_1_2_19_36_1
e_1_2_19_14_1
e_1_2_19_33_1
e_1_2_19_13_1
e_1_2_19_34_1
Faloona G. R. (e_1_2_19_10_1) 1974
References_xml – volume: 139
  start-page: 2363
  year: 1998
  end-page: 2368
  article-title: Glucagon‐like peptide‐1 (7–36) amide increases pulmonary surfactant secretion through a cyclic adenosine 3′, 5′‐monophosphate‐dependent protein kinase mechanism in rat type II pneumocytes
  publication-title: Endocrinology
– volume: 13
  start-page: 536
  year: 1992
  end-page: 565
  article-title: Receptor‐effector coupling by G proteins: Implication for normal and abnormal signal transduction
  publication-title: Endocr. Rev.
– volume: 39
  start-page: 647
  year: 1990
  end-page: 652
  article-title: Perspectives in diabetes: glucokinase as glucose sensor and metabolic signal generator pancreatic, β‐cells and hepatocytes
  publication-title: Diabetes
– volume: 261
  start-page: 11 880
  year: 1986
  end-page: 11 889
  article-title: Preproglucagon gene expression in pancreas and intestine diversifies at level of posttranslational processing
  publication-title: J. Biol. Chem.
– volume: 133
  start-page: 2792
  year: 1993
  end-page: 2280
  article-title: Differential effects of the neonatal and adult sex steroid environments on the organization and activation of hypothalamic growth hormone‐releasing hormone and somatostatin neurons
  publication-title: Endocrinology
– volume: 415
  start-page: 479
  year: 1990
  end-page: 483
  article-title: Glucose‐induced excitation of hypothalamic neurons is mediated by ATP‐sensitive K channels
  publication-title: Pflügers Arch.
– volume: 358
  start-page: 219
  year: 1995
  end-page: 224
  article-title: Tissue‐specific expression of the human receptor for glucagon‐like peptide‐1: brain, heart and pancreatic forms have the same deduced amino acid sequences
  publication-title: FEBS Lett.
– volume: 274
  start-page: 37 125
  year: 1999
  end-page: 37 130
  article-title: Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase
  publication-title: J. Biol. Chem.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 359
  year: 1992
  end-page: 361
  article-title: Selective release of glutamine and glutamic acid produced by perfusion of glucagon‐like peptide‐1 (7–36) amide in the basal ganglia of the conscious rat
  publication-title: Brain Res. Bull.
– volume: 85
  start-page: 415
  year: 1991
  end-page: 423
  article-title: Proglucagon products in plasma of non‐insulin‐dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine
  publication-title: J. Clin. Invest.
– volume: 163
  start-page: 840
  year: 2001
  end-page: 846
  article-title: Glucagon‐like peptide‐1 (7–36) amide stimulates surfactant secretion in human type II pneumocytes
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 379
  start-page: 69
  year: 1996
  end-page: 72
  article-title: A role for glucagon‐like peptide‐1 in the central regulation of feeding
  publication-title: Nature
– volume: 856
  start-page: 37
  year: 2000
  end-page: 47
  article-title: Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose
  publication-title: Brain Res.
– volume: 88
  start-page: 1203
  year: 2004
  end-page: 1210
  article-title: Expression of glucose transporter isoform GLUT‐2 and glucokinase genes in human brain
  publication-title: J. Neurochem.
– volume: 269
  start-page: 3641
  year: 1994
  end-page: 3654
  article-title: Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 703
  year: 1989
  end-page: 707
  article-title: GLP‐1 (glucagon‐like peptide‐1) and truncated GLP‐1 fragments of human proglucagon inhibit gastric acid secretion in humans
  publication-title: Dig. Diseases Sci.
– volume: 266
  start-page: E459
  year: 1994
  end-page: E466
  article-title: Changes in arterial blood pressure and heart rate induced by glucagon‐like peptide‐1 (7–36) amide in rats
  publication-title: Am. J. Physiol.
– volume: 52
  start-page: 159
  year: 1983
  end-page: 186
  article-title: Adenylate cyclase‐coupled beta‐adrenergic receptors: structure and mechanisms of activation and desensitization
  publication-title: Annu. Rev. Biochem.
– volume: 326
  start-page: 1316
  year: 1992
  end-page: 1322
  article-title: Antidiabetogenic effect of glucagon‐like peptide‐1 (7–36) amide in normal subjects and patients with diabetes mellitus
  publication-title: N. Engl. J. Med.
– volume: 262
  start-page: 139
  year: 1990
  end-page: 141
  article-title: Characterization of high affinity receptors for truncated glucagon‐like peptide‐1 in rat gastric glands
  publication-title: FEBS Lett.
– volume: 97
  start-page: 9226
  year: 2000
  end-page: 9233
  article-title: Positron emission tomography provides molecular imaging of biological processes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 66
  start-page: 920
  year: 1996
  end-page: 927
  article-title: Expression of the glucagon‐like peptide‐1 receptor gene in rat brain
  publication-title: J. Neurochem.
– volume: 85
  start-page: 5434
  year: 1988
  end-page: 5438
  article-title: Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transport‐like protein
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 64
  start-page: 299
  year: 1995
  end-page: 306
  article-title: Structural characterization by affinity cross‐linking of glucagon‐like peptide‐1 (7–36) amide receptor in rat brain
  publication-title: J. Neurochem.
– volume: 222
  start-page: 282
  year: 1969
  end-page: 284
  article-title: Glucose and osmosensitive neurons of the rat hypothalamus
  publication-title: Nature
– start-page: 310
  year: 1974
  end-page: 330
– year: 1988
– volume: 277
  start-page: E784
  year: 1999
  end-page: E791
  article-title: Neural contribution to the effect of glucagon‐like peptide‐1 (7–36) amide on arterial blood pressure in rats
  publication-title: Am. J. Physiol.
– volume: 132
  start-page: 75
  year: 1993
  end-page: 79
  article-title: Presence and characterization of glucagon‐like peptide‐1 (7–36) amide receptors in solubilized membranes of rat adipose tissue
  publication-title: Endocrinology
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapping
– volume: 45
  start-page: 832
  year: 1996
  end-page: 835
  article-title: Glucagon‐like peptide‐1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon‐like peptide‐1
  publication-title: Diabetes
– volume: 80
  start-page: 45
  year: 2002
  end-page: 53
  article-title: Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain
  publication-title: J. Neurochem.
– volume: 116
  start-page: 357
  year: 1988
  end-page: 362
  article-title: Receptors for glucagon‐like peptide‐1 (7–36) amide on rat insulinoma‐derived cells
  publication-title: J. Endocrinol.
– volume: 8
  start-page: 414
  year: 1984
  end-page: 419
  article-title: Short‐term control of glucokinase activity: role of a regulatory protein
  publication-title: FASEB J.
– volume: 27
  start-page: 235
  year: 1986
  end-page: 238
  article-title: Efficient stereospecific synthesis of non‐carried‐added 2‐[18 F]flouro‐deoxy‐d‐glucose using aminopolyether‐supported nucleophilic substitution
  publication-title: J. Nucl. Med.
– volume: 241
  start-page: 209
  year: 1988
  end-page: 212
  article-title: Identification and characterization of glucagon‐like peptide‐1 (7–36) amide‐binding sites in the brain and lung
  publication-title: FEBS Lett.
– volume: 2
  start-page: 1300
  year: 1987
  end-page: 1304
  article-title: Glucagon‐like peptide‐1 (7–36): a physiological incretin in man
  publication-title: Lancet
– volume: 67
  start-page: 1982
  year: 1996
  end-page: 1991
  article-title: Colocalization of glucagon‐like peptide‐1 (GLP‐1) receptors, glucose transporter GLUT‐2, and glucokinase mRNAs in rat hypothalamic cells: Evidence for a role of GLP‐1 receptor agonists as an inhibitory signal for food and water intake
  publication-title: J. Neurochem.
– volume: 81
  start-page: 4368
  year: 1984
  end-page: 4437
  article-title: Identification of glucagon receptors in rat brain
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 133
  start-page: 2792
  year: 1993
  ident: e_1_2_19_9_1
  article-title: Differential effects of the neonatal and adult sex steroid environments on the organization and activation of hypothalamic growth hormone‐releasing hormone and somatostatin neurons
  publication-title: Endocrinology
  doi: 10.1210/endo.133.6.7902269
– ident: e_1_2_19_41_1
  doi: 10.1016/0014-5793(94)01430-9
– ident: e_1_2_19_40_1
  doi: 10.1164/ajrccm.163.4.9912132
– ident: e_1_2_19_3_1
  doi: 10.1046/j.0022-3042.2001.00677.x
– ident: e_1_2_19_13_1
  doi: 10.1677/joe.0.1160357
– volume: 27
  start-page: 235
  year: 1986
  ident: e_1_2_19_15_1
  article-title: Efficient stereospecific synthesis of non‐carried‐added 2‐[18 F]flouro‐deoxy‐d‐glucose using aminopolyether‐supported nucleophilic substitution
  publication-title: J. Nucl. Med.
– ident: e_1_2_19_17_1
  doi: 10.1016/S0021-9258(17)41910-7
– ident: e_1_2_19_30_1
  doi: 10.1016/S0006-8993(99)02327-6
– ident: e_1_2_19_20_1
  doi: 10.1146/annurev.bi.52.070183.001111
– ident: e_1_2_19_6_1
  doi: 10.1152/ajpendo.1999.277.5.E784
– ident: e_1_2_19_7_1
  doi: 10.1210/en.139.5.2363
– ident: e_1_2_19_31_1
  doi: 10.1046/j.1471-4159.2003.02269.x
– volume: 261
  start-page: 11 880
  year: 1986
  ident: e_1_2_19_23_1
  article-title: Preproglucagon gene expression in pancreas and intestine diversifies at level of posttranslational processing
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)67324-7
– ident: e_1_2_19_21_1
  doi: 10.1016/S0021-9258(19)52451-6
– ident: e_1_2_19_38_1
  doi: 10.1210/en.132.1.75
– ident: e_1_2_19_18_1
  doi: 10.1016/0014-5793(88)81063-9
– ident: e_1_2_19_4_1
  doi: 10.1007/BF00373626
– ident: e_1_2_19_26_1
  doi: 10.1038/222282a0
– ident: e_1_2_19_33_1
  doi: 10.1074/jbc.274.52.37125
– ident: e_1_2_19_16_1
  doi: 10.1073/pnas.81.14.4368
– start-page: 310
  volume-title: Methods of Hormone Radioimmunoassay
  year: 1974
  ident: e_1_2_19_10_1
– ident: e_1_2_19_34_1
  doi: 10.1210/edrv-13-3-536
– ident: e_1_2_19_22_1
  doi: 10.2337/diab.39.6.647
– ident: e_1_2_19_32_1
  doi: 10.1007/BF01540341
– ident: e_1_2_19_37_1
  doi: 10.1016/0014-5793(90)80173-G
– ident: e_1_2_19_2_1
  doi: 10.1046/j.1471-4159.1996.66030920.x
– volume: 45
  start-page: 832
  year: 1996
  ident: e_1_2_19_28_1
  article-title: Glucagon‐like peptide‐1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon‐like peptide‐1
  publication-title: Diabetes
  doi: 10.2337/diab.45.6.832
– ident: e_1_2_19_29_1
  doi: 10.1073/pnas.97.16.9226
– ident: e_1_2_19_24_1
  doi: 10.1016/0361-9230(92)90068-9
– ident: e_1_2_19_25_1
  doi: 10.1046/j.1471-4159.1996.67051982.x
– ident: e_1_2_19_19_1
  doi: 10.1016/S0140-6736(87)91194-9
– ident: e_1_2_19_36_1
  doi: 10.1038/379069a0
– ident: e_1_2_19_8_1
  doi: 10.1046/j.1471-4159.1995.64010299.x
– ident: e_1_2_19_5_1
  doi: 10.1152/ajpendo.1994.266.3.E459
– ident: e_1_2_19_11_1
  doi: 10.1002/hbm.460020402
– ident: e_1_2_19_27_1
  doi: 10.1172/JCI115012
– volume-title: A Co‐Planar Stereotactic Atlas of the Human Brain
  year: 1988
  ident: e_1_2_19_35_1
– volume: 8
  start-page: 414
  year: 1984
  ident: e_1_2_19_39_1
  article-title: Short‐term control of glucokinase activity: role of a regulatory protein
  publication-title: FASEB J.
  doi: 10.1096/fasebj.8.6.8168691
– ident: e_1_2_19_14_1
  doi: 10.1056/NEJM199205143262003
– ident: e_1_2_19_12_1
  doi: 10.1073/pnas.85.15.5434
SSID ssj0016461
Score 2.2937462
Snippet In the present work, several experimental approaches were used to determine the presence of the glucagon‐like peptide‐1 receptor (GLP‐1R) and the biological...
In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 798
SubjectTerms Adult
Aged
Aged, 80 and over
Biological and medical sciences
biological effects
Brain Stem - metabolism
Cell receptors
Cell structures and functions
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
Fundamental and applied biological sciences. Psychology
gene expression
Glucagon - metabolism
Glucagon - physiology
Glucagon-Like Peptide 1
Glucagon-Like Peptide-1 Receptor
Glucose - metabolism
glucose sensing
human brain
Humans
Hypothalamus - metabolism
Male
Medical sciences
Middle Aged
Molecular and cellular biology
Monoamines receptors (catecholamine, serotonine, histamine, acetylcholine)
Neurology
Peptide Fragments - metabolism
Peptide Fragments - physiology
Protein Binding - physiology
Protein Precursors - metabolism
Protein Precursors - physiology
Receptors, Glucagon - biosynthesis
Receptors, Glucagon - genetics
RNA, Messenger - biosynthesis
Title The expression of GLP‐1 receptor mRNA and protein allows the effect of GLP‐1 on glucose metabolism in the human hypothalamus and brainstem
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2004.02914.x
https://www.ncbi.nlm.nih.gov/pubmed/15686481
https://www.proquest.com/docview/67394681
Volume 92
WOSCitedRecordID wos000226706600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1471-4159
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016461
  issn: 0022-3042
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1471-4159
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016461
  issn: 0022-3042
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF7apNBA6SNpUvfh7qH0piBpx_s4GrfugyBCaKhvYrXapYZYNpGdJrf-gpDf2F_S2ZXsxCWHUHqTkGaRNN_sfKOdnSHknTDcIlO2EWcpi9BD20hyY6ICuQNjRpqk1KHZhMgyORqpwzb_ye-FaepDrH64ecsI87U3cF3Ufxm5wPgH_XEI8_bjVCWwj3xy0--xwkBs88PR8PhgtabAgSer2uGI1fW8nlvHWnNWj2a6xu_mmoYXtzHSdYIbPNTwyf98t6fkcctTab8B1jNyz1bbZKdfYYw-uaDvacgcDb_kt8nDwbJr3A65RNxRe96m11Z06uing8Pfv64SinOrnWGITydHWZ_qqqShSMS4on7x_2dN51405JfcFMNB2rx6OrFzxOzJuJ5QlPK3hxaD9MfFDAGnEdyLOgxc-MYXvkT1c3I8_Pht8Dlqez5EBjiDSBmwSIIMyKIAZA9W4SzhhBKldhZEymxsWSmthTRONRcaw1enIQUhY5X2HNslG9W0si8ILV0i_TZfUKUBAVpa5C6lY7ErCq7iokPEUrm5aQui-74cJ_nNwEgkuVeDb9cJeVBDft4hyUpy1hQFuYNMdw0_14IcRA-D4A55uwRUjjrz6za6stNF7VPvFHCZdMheg7Nr2R6XHPwVHuB056fJv2YDf_TyXwVfka1QxDbkr78mG_PThX1DHpiz-bg-7ZL7YiS7rQHi2fcv2R8Ycy3y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CHdKQEJcNWLlsfkC8ZUpi15fHqlAGlGiaNmlvkePYotKaVks7tjd-AeI38ks4dtJuRXuYEG-RkmMlOZ_t79jH5wN4Kwy3yJRtxGlKI5yhbSS5MVGB3IFSI01S6iA2IbJMnp6qw1YOyJ-FaepDrBbcfM8I47Xv4H5B-q9eLjAAwgk5xHn7caoSto-EcoNxKmQHNt4fDU9Gq00FzniyKh6OYF1P7Lm1rbXZ6uFM1_jjXKN4cRslXWe4YYoaPv6vH_cEHrVMlfQbaD2Fe7bagu1-hVH65Iq8IyF3NCzKb8HmYKkbtw0_EXnEXrYJthWZOvJxdPj7x6-E4OhqZxjkk8lR1ie6KkkoEzGuiN_-_16TuTcNGSY3zbCRNrOeTOwcUXs2ricErfzjQWSQfLuaIeQ0wntRh4YLL33hi1Q_g5Phh-PBQdSqPkQG3cYiZZhFGmSYLAqG_MEqHCecUKLUzjKRUhtbWkprWRqnmguNAazTLGVCxirtOfocOtW0sjtASpdIf9CXqdIwwbS0yF5KR2NXFFzFRRfE0ru5aUuie2WOs_xmaCSS3LvBC3ayPLghv-xCsrKcNWVB7mCzuwaga0PORA_D4C7sLRGVo8_8zo2u7HRR--Q7xbhMuvCiAdq1bY9LzvwdHvB057fJP2cDf_XyXw33YPPg-OsoH33KvryCB6Gkbchmfw2d-fnCvoH75mI-rs932374B_s2L-s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQQVAJ8dFS2AKtD4hbqnzM2s5xtbBQqKIVAtFb5DhjsVI3GzW70N74BYjfyC_p2Mluu6iHCnGLlIyVZJ7tN_Z4HmOvpBFITBkDkcRJQDM0BkoYExTEHZLEKBOV2otNyCxTx8fpuJMDcmdh2voQqwU31zP8eO06ONal_auXSwqAaEL2cd5BGKcRHBChvA1Ey11-19fDbLWlIEBEq9LhBNX1tJ5rW1qbq-7XuqHfZlu9i-sI6Tq_9RPU6OF__bRH7EHHU_mgBdZjdgurLbY9qChGn57z19xnjvol-S12b7hUjdtmvwh3HM-69NqKzyx_dzT-8_N3xGlsxZpCfD79lA24rkrui0RMKu42_380fO5MfX7JVTNqpMur51OcE2ZPJs2Uk5V73EsM8m_nNQFOE7gXjW-4cMIXrkT1E_Zl9Pbz8H3QaT4EBkQCQWoAiQQZUEUBxB4wpVHCylSW2iLIOMEQk1IhQhzGWkhN4avVEINUYRr3bbLDNqpZhc8YL22k3DFfSEsDErRC4i6lTUJbFCINix6TS-_mpiuI7nQ5TvKrgZGMcucGJ9cJuXdDftZj0cqybouC3MBmbw1Al4YCZJ-C4B7bXyIqJ5-5fRtd4WzRuNS7FISKeuxpC7RL275QAtwd4fF047fJP2RDd7X7r4b77O74zSg_Osw-Pmebvp6tT2V_wTbmpwt8ye6Y7_NJc7rnO-EFi38uQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+expression+of+GLP-1+receptor+mRNA+and+protein+allows+the+effect+of+GLP-1+on+glucose+metabolism+in+the+human+hypothalamus+and+brainstem&rft.jtitle=Journal+of+neurochemistry&rft.au=ALVAREZ%2C+Elvira&rft.au=MARTINEZ%2C+M.+Dolores&rft.au=DESCO%2C+Manuel&rft.au=POZO%2C+Miguel+Angel&rft.date=2005-02-01&rft.pub=Blackwell&rft.issn=0022-3042&rft.volume=92&rft.issue=4&rft.spage=798&rft.epage=806&rft_id=info:doi/10.1111%2Fj.1471-4159.2004.02914.x&rft.externalDBID=n%2Fa&rft.externalDocID=16475249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon