The Triple Combination of Meropenem, Avibactam, and a Metallo-β-Lactamase Inhibitor Optimizes Antibacterial Coverage Against Different β-Lactamase Producers
[Display omitted] This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteri...
Uloženo v:
| Abstract | [Display omitted]
This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteria. A diverse panel comprising MBL- and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method. The frequency of resistance (FoR) to MEM combined with InC58 was investigated. Mutants were sequenced and tested for cross resistance, fitness, and the stability of the resistance phenotype. Compared with the double combinations of MEM plus an SBL or MBL inhibitor, the triple combination extended the spectrum of activity to most of the isolates bearing SBLs (oxacillinase-48 (OXA-48) and Klebsiella pneumoniae carbapenemase-2 (KPC-2)) and MBLs (New Delhi metallo-β-lactamases (NDMs)), although it was not effective against Verona integron-encoded metallo-β-lactamase (VIM)-carrying Pseudomonas aeruginosa (P. aeruginosa) and OXA-23-carrying Acinetobacter baumannii (A. baumannii). The FoR to MEM plus InC58 ranged from 2.22 × 10−7 to 1.13 × 10−6. The resistance correlated with mutations to ompC and comR, affecting porin C and copper permeability, respectively. The mutants manifested a fitness cost, a decreased level of resistance during passage without antibiotic pressure, and cross resistance to another carbapenem (imipenem) and a β-lactamase inhibitor (taniborbactam). In conclusion, compared with the dual combinations, the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria, revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance. |
|---|---|
| AbstractList | This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteria. A diverse panel comprising MBL- and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method. The frequency of resistance (FoR) to MEM combined with InC58 was investigated. Mutants were sequenced and tested for cross resistance, fitness, and the stability of the resistance phenotype. Compared with the double combinations of MEM plus an SBL or MBL inhibitor, the triple combination extended the spectrum of activity to most of the isolates bearing SBLs (oxacillinase-48 (OXA-48) and Klebsiella pneumoniae carbapenemase-2 (KPC-2)) and MBLs (New Delhi metallo-β-lactamases (NDMs)), although it was not effective against Verona integron-encoded metallo-β-lactamase (VIM)-carrying Pseudomonas aeruginosa (P. aeruginosa) and OXA-23-carrying Acinetobacter baumannii (A. baumannii). The FoR to MEM plus InC58 ranged from 2.22 × 10-7 to 1.13 × 10-6. The resistance correlated with mutations to ompC and comR, affecting porin C and copper permeability, respectively. The mutants manifested a fitness cost, a decreased level of resistance during passage without antibiotic pressure, and cross resistance to another carbapenem (imipenem) and a β-lactamase inhibitor (taniborbactam). In conclusion, compared with the dual combinations, the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria, revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance.This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteria. A diverse panel comprising MBL- and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method. The frequency of resistance (FoR) to MEM combined with InC58 was investigated. Mutants were sequenced and tested for cross resistance, fitness, and the stability of the resistance phenotype. Compared with the double combinations of MEM plus an SBL or MBL inhibitor, the triple combination extended the spectrum of activity to most of the isolates bearing SBLs (oxacillinase-48 (OXA-48) and Klebsiella pneumoniae carbapenemase-2 (KPC-2)) and MBLs (New Delhi metallo-β-lactamases (NDMs)), although it was not effective against Verona integron-encoded metallo-β-lactamase (VIM)-carrying Pseudomonas aeruginosa (P. aeruginosa) and OXA-23-carrying Acinetobacter baumannii (A. baumannii). The FoR to MEM plus InC58 ranged from 2.22 × 10-7 to 1.13 × 10-6. The resistance correlated with mutations to ompC and comR, affecting porin C and copper permeability, respectively. The mutants manifested a fitness cost, a decreased level of resistance during passage without antibiotic pressure, and cross resistance to another carbapenem (imipenem) and a β-lactamase inhibitor (taniborbactam). In conclusion, compared with the dual combinations, the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria, revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance. This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteria. A diverse panel comprising MBL- and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method. The frequency of resistance (FoR) to MEM combined with InC58 was investigated. Mutants were sequenced and tested for cross resistance, fitness, and the stability of the resistance phenotype. Compared with the double combinations of MEM plus an SBL or MBL inhibitor, the triple combination extended the spectrum of activity to most of the isolates bearing SBLs (oxacillinase-48 (OXA-48) and carbapenemase-2 (KPC-2)) and MBLs (New Delhi metallo-β-lactamases (NDMs)), although it was not effective against Verona integron-encoded metallo-β-lactamase (VIM)-carrying ( ) and OXA-23-carrying ( ). The FoR to MEM plus InC58 ranged from 2.22 × 10 to 1.13 × 10 . The resistance correlated with mutations to and , affecting porin C and copper permeability, respectively. The mutants manifested a fitness cost, a decreased level of resistance during passage without antibiotic pressure, and cross resistance to another carbapenem (imipenem) and a β-lactamase inhibitor (taniborbactam). In conclusion, compared with the dual combinations, the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria, revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance. This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteria. A diverse panel comprising MBL- and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method. The frequency of resistance (FoR) to MEM combined with InC58 was investigated. Mutants were sequenced and tested for cross resistance, fitness, and the stability of the resistance phenotype. Compared with the double combinations of MEM plus an SBL or MBL inhibitor, the triple combination extended the spectrum of activity to most of the isolates bearing SBLs (oxacillinase-48 (OXA-48) and Klebsiella pneumoniae carbapenemase-2 (KPC-2)) and MBLs (New Delhi metallo-β-lactamases (NDMs)), although it was not effective against Verona integron-encoded metallo-β-lactamase (VIM)-carrying Pseudomonas aeruginosa (P. aeruginosa) and OXA-23-carrying Acinetobacter baumannii (A. baumannii). The FoR to MEM plus InC58 ranged from 2.22 × 10−7 to 1.13 × 10−6. The resistance correlated with mutations to ompC and comR, affecting porin C and copper permeability, respectively. The mutants manifested a fitness cost, a decreased level of resistance during passage without antibiotic pressure, and cross resistance to another carbapenem (imipenem) and a β-lactamase inhibitor (taniborbactam). In conclusion, compared with the dual combinations, the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria, revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance. This work explores the potential of a triple combination of meropenem(MEM),a novel metallo-β-lactamase(MBL)inhibitor(indole-2-carboxylate 58(InC58)),and a serine-β-lactamase(SBL)inhibitor(avibactam(AVI))for broad-spectrum activity against carbapenemase-producing bacteria.A diverse panel comprising MBL-and SBL-producing strains was used for susceptibility testing of the triple combi-nation using the agar dilution method.The frequency of resistance(FoR)to MEM combined with InC58 was investigated.Mutants were sequenced and tested for cross resistance,fitness,and the stability of the resistance phenotype.Compared with the double combinations of MEM plus an SBL or MBL inhibitor,the triple combination extended the spectrum of activity to most of the isolates bearing SBLs(oxacillinase-48(OXA-48)and Klebsiella pneumoniae carbapenemase-2(KPC-2))and MBLs(New Delhi metallo-β-lactamases(NDMs)),although it was not effective against Verona integron-encoded metallo-β-lactamase(VIM)-carrying Pseudomonas aeruginosa(P.aeruginosa)and OXA-23-carrying Acinetobacter baumannii(A.baumannii).The FoR to MEM plus InC58 ranged from 2.22×10-7 to 1.13×10-6.The resis-tance correlated with mutations to ompC and comR,affecting porin C and copper permeability,respec-tively.The mutants manifested a fitness cost,a decreased level of resistance during passage without antibiotic pressure,and cross resistance to another carbapenem(imipenem)and a β-lactamase inhibitor(taniborbactam).In conclusion,compared with the dual combinations,the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria,revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance. [Display omitted] This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and a serine-β-lactamase (SBL) inhibitor (avibactam (AVI)) for broad-spectrum activity against carbapenemase-producing bacteria. A diverse panel comprising MBL- and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method. The frequency of resistance (FoR) to MEM combined with InC58 was investigated. Mutants were sequenced and tested for cross resistance, fitness, and the stability of the resistance phenotype. Compared with the double combinations of MEM plus an SBL or MBL inhibitor, the triple combination extended the spectrum of activity to most of the isolates bearing SBLs (oxacillinase-48 (OXA-48) and Klebsiella pneumoniae carbapenemase-2 (KPC-2)) and MBLs (New Delhi metallo-β-lactamases (NDMs)), although it was not effective against Verona integron-encoded metallo-β-lactamase (VIM)-carrying Pseudomonas aeruginosa (P. aeruginosa) and OXA-23-carrying Acinetobacter baumannii (A. baumannii). The FoR to MEM plus InC58 ranged from 2.22 × 10−7 to 1.13 × 10−6. The resistance correlated with mutations to ompC and comR, affecting porin C and copper permeability, respectively. The mutants manifested a fitness cost, a decreased level of resistance during passage without antibiotic pressure, and cross resistance to another carbapenem (imipenem) and a β-lactamase inhibitor (taniborbactam). In conclusion, compared with the dual combinations, the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemase-producing bacteria, revealing a new strategy to combat β-lactamase-mediated antimicrobial resistance. |
| Author | Ling, Zhuoren Nieto-Rosado, Maria Suna, Edgars Rakhi, Nadira Naznin Orbegozo Rubio, Claudia Brem, Jürgen Zhou, Yuqing Lankapalli, Aditya Mathias, Jordan Zhang, Yanfang Martins, Willames Premchand-Branker, Shonnette Sands, Kirsty Schofield, Christopher Joseph Gray-Hammerton, Charlotte Trush, Maria Mykolaivna Farley, Alistair James Macdonald Walsh, Timothy Cook, Kate Baran, Andrei |
| AuthorAffiliation | Department of Biology & Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3RE,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK%Latvian Institute of Organic Synthesis,Riga LV-1006,Latvia%Department of Medical Microbiology,Division of Infection and Immunity,School of Medicine,Cardiff University,Cardiff CF14 4XN,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK;Enzymology and Applied Biocatalysis Research Center,Faculty of Chemistry and Chemical Engineering,Babes-Bolyai University,Cluj-Napoca 400028,Romania |
| AuthorAffiliation_xml | – name: Department of Biology & Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3RE,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK%Latvian Institute of Organic Synthesis,Riga LV-1006,Latvia%Department of Medical Microbiology,Division of Infection and Immunity,School of Medicine,Cardiff University,Cardiff CF14 4XN,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK;Enzymology and Applied Biocatalysis Research Center,Faculty of Chemistry and Chemical Engineering,Babes-Bolyai University,Cluj-Napoca 400028,Romania |
| Author_xml | – sequence: 1 givenname: Zhuoren surname: Ling fullname: Ling, Zhuoren email: lingacademic@163.com organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 2 givenname: Alistair James Macdonald surname: Farley fullname: Farley, Alistair James Macdonald organization: Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK – sequence: 3 givenname: Aditya surname: Lankapalli fullname: Lankapalli, Aditya organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 4 givenname: Yanfang surname: Zhang fullname: Zhang, Yanfang organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 5 givenname: Shonnette surname: Premchand-Branker fullname: Premchand-Branker, Shonnette organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 6 givenname: Kate orcidid: 0000-0002-5537-8567 surname: Cook fullname: Cook, Kate organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 7 givenname: Andrei surname: Baran fullname: Baran, Andrei organization: Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia – sequence: 8 givenname: Charlotte surname: Gray-Hammerton fullname: Gray-Hammerton, Charlotte organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 9 givenname: Claudia surname: Orbegozo Rubio fullname: Orbegozo Rubio, Claudia organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 10 givenname: Edgars surname: Suna fullname: Suna, Edgars organization: Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia – sequence: 11 givenname: Jordan orcidid: 0000-0001-5023-8525 surname: Mathias fullname: Mathias, Jordan organization: Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK – sequence: 12 givenname: Jürgen orcidid: 0000-0002-0137-3226 surname: Brem fullname: Brem, Jürgen organization: Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK – sequence: 13 givenname: Kirsty surname: Sands fullname: Sands, Kirsty organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 14 givenname: Maria orcidid: 0000-0001-6188-5947 surname: Nieto-Rosado fullname: Nieto-Rosado, Maria organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 15 givenname: Maria Mykolaivna surname: Trush fullname: Trush, Maria Mykolaivna organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 16 givenname: Nadira Naznin surname: Rakhi fullname: Rakhi, Nadira Naznin organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 17 givenname: Willames surname: Martins fullname: Martins, Willames organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 18 givenname: Yuqing surname: Zhou fullname: Zhou, Yuqing organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK – sequence: 19 givenname: Christopher Joseph surname: Schofield fullname: Schofield, Christopher Joseph organization: Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK – sequence: 20 givenname: Timothy surname: Walsh fullname: Walsh, Timothy organization: Department of Biology & Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3RE, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40109291$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsuOEzEQHKFF7LLsB3BBc0HiwIT2Y17igKLwihS0HMLZ6vH0zDqa2MGeBMHH8BF8CN-Ek-wiwmFPttxV1dXuepycWWcpSZ4ymDBgxavVhGw_4cDlBPgEGDxILjjURQbAi7PDPc8qqOvz5CqEFQCwnEEJ1aPkXEZ4zWt2kfxc3lC69GYzUDpz68ZYHI2zqevST-TdhiytX6bTnWlQjxivaNsUY23EYXDZ71_Z4lDAQOnc3pjGjM6n15vRrM0PCunUjgcqeYND7LAjjz2l0x6NDWP61nQdebJjeqL02bt2q8mHJ8nDDodAV7fnZfLl_bvl7GO2uP4wn00XmZaFkJmgWusKoJKtEJxBVRLpQjDRlZIxwTGHXPOiwbzmVQElci04VTJvpcxL3YnLZH7UbR2u1MabNfrvyqFRhwfne4V-NHogVRKUVLMqrzRKTgIBURAvSbeNoBKi1puj1mbbrKnVcTqPw4noacWaG9W7nWKsZqKUe4XnR4VvaDu0vVq5rbdxftVrRfuVxz0yGXEvbjt593VLYVRrEzQNA1py26AEK2suC1bvoc_-NfXXzV0SIqA8ArR3IXjqlDbjIQvRoxkUA7WPnVqpGDu196CAq8iOTPYf8078Ps7rI4fiUneGvArakNXUGk96jL9u7mH_Aaq98Q0 |
| CitedBy_id | crossref_primary_10_3389_fmicb_2025_1646319 crossref_primary_10_1128_cmr_00279_24 crossref_primary_10_1002_bies_70001 crossref_primary_10_3390_pharmaceutics17050648 |
| Cites_doi | 10.1128/CMR.00037-09 10.1093/jac/dkx217 10.1073/pnas.1205073109 10.1128/AAC.00989-17 10.1016/j.jgar.2019.12.009 10.1093/jac/dkaa177 10.1371/journal.pcbi.1009802 10.1128/CMR.00115-20 10.1128/AAC.00537-17 10.1128/AAC.00756-10 10.1093/jac/dkq037 10.1038/nrmicro1994 10.1038/s41564-022-01184-y 10.1186/s13104-019-4177-4 10.1093/jac/dkaa345 10.1038/s41564-021-00870-7 10.1016/j.vetmic.2007.01.015 10.1128/JCM.02981-13 10.1016/j.febslet.2015.08.015 10.1093/jac/dky082 10.1128/microbiolspec.ARBA-0007-2017 10.1186/1471-2105-10-421 10.1371/journal.pone.0025825 10.1128/AAC.00389-17 10.1371/journal.pone.0112963 10.1128/AAC.02101-17 10.1093/ajhp/zxab012 10.1093/jac/dkx179 10.1186/s12859-018-2336-6 10.1128/JCM.02452-13 10.1074/jbc.M113.485979 10.1038/s41587-019-0072-8 10.1128/AAC.02280-17 10.1016/j.tim.2011.04.005 10.1128/AAC.02247-12 10.1038/s41557-021-00831-x 10.1128/AAC.01076-18 10.1128/CMR.00047-19 10.1093/jac/dkaa241 10.1093/jac/dkz228 10.2165/00003495-200767070-00006 10.1038/s41579-019-0159-8 10.1007/s10534-011-9510-x 10.1101/cshperspect.a025247 10.3390/ijms21239308 10.1086/514909 10.1128/AAC.01370-10 10.1093/bioinformatics/btt476 |
| ContentType | Journal Article |
| Copyright | 2024 THE AUTHORS 2024 THE AUTHORS. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. 2024 THE AUTHORS 2024 |
| Copyright_xml | – notice: 2024 THE AUTHORS – notice: 2024 THE AUTHORS. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. – notice: 2024 THE AUTHORS 2024 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 2B. 4A8 92I 93N PSX TCJ 5PM DOA |
| DOI | 10.1016/j.eng.2024.02.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2096-0026 |
| EndPage | 132 |
| ExternalDocumentID | oai_doaj_org_article_7e07e91858ca42e3a0aa3e27ecdb3e70 PMC11913740 gc_e202407014 40109291 10_1016_j_eng_2024_02_010 S2095809924002297 |
| Genre | Journal Article |
| GroupedDBID | -SC -S~ 0R~ 0SF 1-T 5VR 6I. 92H 92I 92R 93N AACTN AAEDW AAFTH AALRI AAXDM AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFJKZ AFTJW AFUIB AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEC CCEZO CEKLB EBS EJD FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 Q-- RIG ROL SSZ TCJ TGT U1G U5M AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION NPM 7X8 2B. 4A8 PSX 5PM |
| ID | FETCH-LOGICAL-c4634-3e9cc80084d3321087eec6313f741132a505c26ba5928607a2c32e845d4457cf3 |
| IEDL.DBID | DOA |
| ISSN | 2095-8099 |
| IngestDate | Fri Oct 03 12:45:26 EDT 2025 Tue Sep 30 17:04:32 EDT 2025 Thu May 29 03:58:45 EDT 2025 Thu Jul 10 22:28:58 EDT 2025 Sat Mar 22 01:33:53 EDT 2025 Sat Nov 29 08:08:39 EST 2025 Tue Nov 18 22:53:34 EST 2025 Sat Oct 26 15:43:58 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Carbapenemase Avibactam Meropenem Antimicrobial resistance Metallo/serine-β-lactamase inhibitor |
| Language | English |
| License | This is an open access article under the CC BY license. 2024 THE AUTHORS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4634-3e9cc80084d3321087eec6313f741132a505c26ba5928607a2c32e845d4457cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5023-8525 0000-0002-5537-8567 0000-0002-0137-3226 0000-0001-6188-5947 |
| OpenAccessLink | https://doaj.org/article/7e07e91858ca42e3a0aa3e27ecdb3e70 |
| PMID | 40109291 |
| PQID | 3179246194 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7e07e91858ca42e3a0aa3e27ecdb3e70 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11913740 wanfang_journals_gc_e202407014 proquest_miscellaneous_3179246194 pubmed_primary_40109291 crossref_citationtrail_10_1016_j_eng_2024_02_010 crossref_primary_10_1016_j_eng_2024_02_010 elsevier_sciencedirect_doi_10_1016_j_eng_2024_02_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | China |
| PublicationPlace_xml | – name: China |
| PublicationTitle | Engineering (Beijing, China) |
| PublicationTitleAlternate | Engineering (Beijing) |
| PublicationTitle_FL | Engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Enzymology and Applied Biocatalysis Research Center,Faculty of Chemistry and Chemical Engineering,Babes-Bolyai University,Cluj-Napoca 400028,Romania Department of Biology & Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3RE,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK%Latvian Institute of Organic Synthesis,Riga LV-1006,Latvia%Department of Medical Microbiology,Division of Infection and Immunity,School of Medicine,Cardiff University,Cardiff CF14 4XN,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK Higher Education Press Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Enzymology and Applied Biocatalysis Research Center,Faculty of Chemistry and Chemical Engineering,Babes-Bolyai University,Cluj-Napoca 400028,Romania – name: Department of Biology & Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3RE,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK%Latvian Institute of Organic Synthesis,Riga LV-1006,Latvia%Department of Medical Microbiology,Division of Infection and Immunity,School of Medicine,Cardiff University,Cardiff CF14 4XN,UK%Chemistry Research Laboratory,Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research,University of Oxford,Oxford OX1 3TA,UK – name: Higher Education Press – name: Elsevier |
| References | Zankari, Allesøe, Joensen, Cavaco, Lund, Aarestrup (b0155) 2017; 72 Pagès, James, Winterhalter (b0185) 2008; 6 spp. and spp. Microbiol Spectr 2018;6(3):ARBA. Lupo A, Haenni M, Madec JY. Antimicrobial resistance in MacGowan, Attwood, Bowker, Noel (b0205) 2020; 75 Bortolaia, Kaas, Ruppe, Roberts, Schwarz, Cattoir (b0150) 2020; 75 Yahav, Giske, Grāmatniece, Abodakpi, Tam, Leibovici (b0070) 2020; 34 Schwarz, Silley, Simjee, Woodford, van Duijkeren, Johnson (b0120) 2010; 65 Hasman, Saputra, Sicheritz-Ponten, Lund, Svendsen, Frimodt-Møller (b0165) 2014; 52 Both, Büttner, Huang, Perbandt, Belmar Campos, Christner (b0110) 2017; 72 Larsen, Cosentino, Lukjancenko, Saputra, Rasmussen, Hasman (b0170) 2014; 52 Li, Mehrotra, Ghimire, Adewoye (b0010) 2007; 121 Livermore, Mushtaq, Warner, Zhang, Maharjan, Doumith (b0045) 2011; 55 Sands, Carvalho, Portal, Thomson, Dyer, Akpulu (b0125) 2021; 6 Zhanel, Wiebe, Dilay, Thomson, Rubinstein, Hoban (b0180) 2007; 67 Ehmann, Jahić, Ross, Gu, Hu, Kern (b0030) 2012; 109 Lou, Chen, Black, Bushell, Ceccarelli, Mach (b0245) 2011; 6 Meini, Llarrull, Vila (b0055) 2015; 589 Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th edition. Wayne: CLSI M100; 2020. Breidenstein, de la Fuente-Núñez, Hancock (b0225) 2011; 19 Idowu, Ammeter, Arthur, Zhanel, Schweizer (b0200) 2019; 74 Lahiri, Mangani, Durand-Reville, Benvenuti, De Luca, Sanyal (b0040) 2013; 57 Drawz, Bonomo (b0060) 2010; 23 Wick, Holt (b0140) 2022; 18 Giddins, Macesic, Annavajhala, Stump, Khan, McConville (b0105) 2018; 62 Zimin, Marçais, Puiu, Roberts, Salzberg, Yorke (b0145) 2013; 29 Camacho, Coulouris, Avagyan, Ma, Papadopoulos, Bealer (b0160) 2009; 10 Kolmogorov, Yuan, Lin, Pevzner (b0130) 2019; 37 Vázquez-Ucha, Arca-Suárez, Bou, Beceiro (b0230) 2020; 21 Page, Dantier, Desarbre, Gaucher, Gebhardt, Schmitt-Hoffmann (b0195) 2011; 55 Brem, Panduwawala, Hansen, Hewitt, Liepins, Donets (b0065) 2022; 14 Gaibani, Campoli, Lewis, Volpe, Scaltriti, Giannella (b0100) 2018; 73 Mansour, Ouweini, Chahine, Karaoui (b0210) 2021; 78 Wang, Wang, Wang, Cai (b0075) 2020; 22 Humphries, Hemarajata (b0085) 2017; 61 Nelson, Hemarajata, Sun, Rubio-Aparicio, Tsivkovski, Yang (b0090) 2017; 61 Sun, Chen, Li, Li, Zou, Zhao (b0095) 2020; 75 Bush, Bradford (b0005) 2016; 6 Chetri, Singha, Bhowmik, Nath, Chanda, Chakravarty (b0240) 2019; 12 Zhang, Kashikar, Brown, Denys, Bush (b0080) 2017; 61 Bush, Bradford (b0015) 2020; 33 Clausen, Aarestrup, Lund (b0175) 2018; 19 Mermod, Magnani, Solioz, Stoyanov (b0190) 2012; 25 Walker, Abeel, Shea, Priest, Abouelliel, Sakthikumar (b0135) 2014; 9 Hancock (b0215) 1998; 27 Ehmann, Jahic, Ross, Gu, Hu, Durand-Réville (b0035) 2013; 288 Bush (b0020) 2018; 62 Carvalho, Sands, Thomson, Portal, Mathias, Milton (b0050) 2022; 7 Bush, Bradford (b0025) 2019; 17 Djoko, Achard, Phan, Lo, Miraula, Prombhul (b0235) 2018; 62 Schwarz (10.1016/j.eng.2024.02.010_b0120) 2010; 65 Brem (10.1016/j.eng.2024.02.010_b0065) 2022; 14 Djoko (10.1016/j.eng.2024.02.010_b0235) 2018; 62 Pagès (10.1016/j.eng.2024.02.010_b0185) 2008; 6 Clausen (10.1016/j.eng.2024.02.010_b0175) 2018; 19 Zankari (10.1016/j.eng.2024.02.010_b0155) 2017; 72 Nelson (10.1016/j.eng.2024.02.010_b0090) 2017; 61 Li (10.1016/j.eng.2024.02.010_b0010) 2007; 121 MacGowan (10.1016/j.eng.2024.02.010_b0205) 2020; 75 Wick (10.1016/j.eng.2024.02.010_b0140) 2022; 18 Giddins (10.1016/j.eng.2024.02.010_b0105) 2018; 62 Larsen (10.1016/j.eng.2024.02.010_b0170) 2014; 52 Vázquez-Ucha (10.1016/j.eng.2024.02.010_b0230) 2020; 21 Idowu (10.1016/j.eng.2024.02.010_b0200) 2019; 74 Bush (10.1016/j.eng.2024.02.010_b0005) 2016; 6 Ehmann (10.1016/j.eng.2024.02.010_b0030) 2012; 109 Bush (10.1016/j.eng.2024.02.010_b0015) 2020; 33 Carvalho (10.1016/j.eng.2024.02.010_b0050) 2022; 7 Page (10.1016/j.eng.2024.02.010_b0195) 2011; 55 Bush (10.1016/j.eng.2024.02.010_b0025) 2019; 17 Hancock (10.1016/j.eng.2024.02.010_b0215) 1998; 27 Wang (10.1016/j.eng.2024.02.010_b0075) 2020; 22 Sun (10.1016/j.eng.2024.02.010_b0095) 2020; 75 Lahiri (10.1016/j.eng.2024.02.010_b0040) 2013; 57 Both (10.1016/j.eng.2024.02.010_b0110) 2017; 72 Livermore (10.1016/j.eng.2024.02.010_b0045) 2011; 55 10.1016/j.eng.2024.02.010_b0115 Zhang (10.1016/j.eng.2024.02.010_b0080) 2017; 61 Humphries (10.1016/j.eng.2024.02.010_b0085) 2017; 61 Meini (10.1016/j.eng.2024.02.010_b0055) 2015; 589 Zhanel (10.1016/j.eng.2024.02.010_b0180) 2007; 67 Ehmann (10.1016/j.eng.2024.02.010_b0035) 2013; 288 Mansour (10.1016/j.eng.2024.02.010_b0210) 2021; 78 Bortolaia (10.1016/j.eng.2024.02.010_b0150) 2020; 75 Yahav (10.1016/j.eng.2024.02.010_b0070) 2020; 34 Lou (10.1016/j.eng.2024.02.010_b0245) 2011; 6 Camacho (10.1016/j.eng.2024.02.010_b0160) 2009; 10 Drawz (10.1016/j.eng.2024.02.010_b0060) 2010; 23 Chetri (10.1016/j.eng.2024.02.010_b0240) 2019; 12 10.1016/j.eng.2024.02.010_b0220 Zimin (10.1016/j.eng.2024.02.010_b0145) 2013; 29 Gaibani (10.1016/j.eng.2024.02.010_b0100) 2018; 73 Kolmogorov (10.1016/j.eng.2024.02.010_b0130) 2019; 37 Bush (10.1016/j.eng.2024.02.010_b0020) 2018; 62 Sands (10.1016/j.eng.2024.02.010_b0125) 2021; 6 Breidenstein (10.1016/j.eng.2024.02.010_b0225) 2011; 19 Hasman (10.1016/j.eng.2024.02.010_b0165) 2014; 52 Walker (10.1016/j.eng.2024.02.010_b0135) 2014; 9 Mermod (10.1016/j.eng.2024.02.010_b0190) 2012; 25 |
| References_xml | – volume: 37 start-page: 540 year: 2019 end-page: 546 ident: b0130 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat Biotechnol – volume: 23 start-page: 160 year: 2010 end-page: 201 ident: b0060 article-title: Three decades of β-lactamase inhibitors publication-title: Clin Microbiol Rev – volume: 6 start-page: a025247 year: 2016 ident: b0005 article-title: β-Lactams and β-lactamase inhibitors: an overview publication-title: Cold Spring Harb Perspect Med – reference: Lupo A, Haenni M, Madec JY. Antimicrobial resistance in – volume: 6 start-page: e25825 year: 2011 ident: b0245 article-title: Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant publication-title: PLoS One – volume: 62 start-page: e02280 year: 2018 end-page: e2317 ident: b0235 article-title: Copper ions and coordination complexes as novel carbapenem adjuvants publication-title: Antimicrob Agents Chemother – volume: 52 start-page: 1529 year: 2014 end-page: 1539 ident: b0170 article-title: Benchmarking of methods for genomic taxonomy publication-title: J Clin Microbiol – volume: 12 start-page: 138 year: 2019 ident: b0240 article-title: Transcriptional response of publication-title: BMC Res Notes – volume: 72 start-page: 2483 year: 2017 end-page: 2488 ident: b0110 article-title: Emergence of ceftazidime/avibactam non-susceptibility in an MDR publication-title: J Antimicrob Chemother – volume: 33 start-page: e00047 year: 2020 end-page: e119 ident: b0015 article-title: Epidemiology of β-lactamase-producing pathogens publication-title: Clin Microbiol Rev – volume: 75 start-page: 3491 year: 2020 end-page: 3500 ident: b0150 article-title: ResFinder 4.0 for predictions of phenotypes from genotypes publication-title: J Antimicrob Chemother – volume: 19 start-page: 307 year: 2018 ident: b0175 article-title: Rapid and precise alignment of raw reads against redundant databases with KMA publication-title: BMC Bioinformatics – volume: 18 start-page: e1009802 year: 2022 ident: b0140 article-title: Polypolish: short-read polishing of long-read bacterial genome assemblies publication-title: PLoS Comput Biol – volume: 29 start-page: 2669 year: 2013 end-page: 2677 ident: b0145 article-title: The MaSuRCA genome assembler publication-title: Bioinformatics – volume: 10 start-page: 421 year: 2009 ident: b0160 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics – volume: 7 start-page: 1337 year: 2022 end-page: 1347 ident: b0050 article-title: BARNARDS Group. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries publication-title: Nat Microbiol – volume: 109 start-page: 11663 year: 2012 end-page: 11668 ident: b0030 article-title: Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: e00115 year: 2020 end-page: e120 ident: b0070 article-title: New β-lactam-β-lactamase inhibitor combinations publication-title: Clin Microbiol Rev – volume: 78 start-page: 674 year: 2021 end-page: 683 ident: b0210 article-title: Imipenem/cilastatin/relebactam: a new carbapenem β-lactamase inhibitor combination publication-title: Am J Health Syst Pharm – volume: 19 start-page: 419 year: 2011 end-page: 426 ident: b0225 article-title: : all roads lead to resistance publication-title: Trends Microbiol – reference: spp. Microbiol Spectr 2018;6(3):ARBA. – volume: 17 start-page: 295 year: 2019 end-page: 306 ident: b0025 article-title: Interplay between β-lactamases and new β-lactamase inhibitors publication-title: Nat Rev Microbiol – volume: 55 start-page: 390 year: 2011 end-page: 394 ident: b0045 article-title: Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae publication-title: Antimicrob Agents Chemother – volume: 72 start-page: 2764 year: 2017 end-page: 2768 ident: b0155 article-title: PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens publication-title: J Antimicrob Chemother – volume: 57 start-page: 2496 year: 2013 end-page: 2505 ident: b0040 article-title: Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and publication-title: Antimicrob Agents Chemother – volume: 61 start-page: e00389 year: 2017 end-page: e417 ident: b0080 article-title: Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested publication-title: Antimicrob Agents Chemother – volume: 67 start-page: 1027 year: 2007 end-page: 1052 ident: b0180 article-title: Comparative review of the carbapenems publication-title: Drugs – volume: 62 start-page: e02101 year: 2018 end-page: e2117 ident: b0105 article-title: Successive emergence of ceftazidime–avibactam resistance through distinct genomic adaptations in publication-title: Antimicrob Agents Chemother – volume: 75 start-page: 3072 year: 2020 end-page: 3074 ident: b0095 article-title: Phenotypic and genotypic analysis of KPC-51 and KPC-52, two novel KPC-2 variants conferring resistance to ceftazidime/avibactam in the KPC-producing publication-title: J Antimicrob Chemother – reference: Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th edition. Wayne: CLSI M100; 2020. – volume: 6 start-page: 893 year: 2008 end-page: 903 ident: b0185 article-title: The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria publication-title: Nat Rev Microbiol – volume: 73 start-page: 1525 year: 2018 end-page: 1529 ident: b0100 article-title: evolution of resistant subpopulations of KPC-producing publication-title: J Antimicrob Chemother – volume: 21 start-page: 9308 year: 2020 ident: b0230 article-title: New carbapenemase inhibitors: clearing the way for the β-lactams publication-title: Int J Mol Sci – volume: 62 start-page: e01076 year: 2018 end-page: e1118 ident: b0020 article-title: Past and present perspectives on β-lactamases publication-title: Antimicrob Agents Chemother – volume: 61 start-page: e00537 year: 2017 end-page: e00617 ident: b0085 article-title: Resistance to ceftazidime-avibactam in publication-title: Antimicrob Agents Chemother – volume: 65 start-page: 601 year: 2010 end-page: 604 ident: b0120 article-title: Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals publication-title: J Antimicrob Chemother – volume: 22 start-page: 18 year: 2020 end-page: 27 ident: b0075 article-title: Resistance to ceftazidime–avibactam and underlying mechanisms publication-title: J Glob Antimicrob Resist – volume: 75 start-page: 2711 year: 2020 end-page: 2712 ident: b0205 article-title: Comment on: cefepime/sulbactam as an enhanced antimicrobial combination therapy for the treatment of MDR Gram-negative infections publication-title: J Antimicrob Chemother – volume: 288 start-page: 27960 year: 2013 end-page: 27971 ident: b0035 article-title: Kinetics of avibactam inhibition against Class A, C, and D β-lactamases publication-title: J Biol Chem – volume: 61 start-page: e00989 year: 2017 end-page: e1017 ident: b0090 article-title: Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of publication-title: Antimicrob Agents Chemother – volume: 589 start-page: 3419 year: 2015 end-page: 3432 ident: b0055 article-title: Overcoming differences: the catalytic mechanism of metallo-β-lactamases publication-title: FEBS Lett – volume: 25 start-page: 33 year: 2012 end-page: 43 ident: b0190 article-title: The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of publication-title: Biometals – volume: 121 start-page: 197 year: 2007 end-page: 214 ident: b0010 article-title: β-Lactam resistance and β-lactamases in bacteria of animal origin publication-title: Vet Microbiol – volume: 52 start-page: 139 year: 2014 end-page: 146 ident: b0165 article-title: Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples publication-title: J Clin Microbiol – volume: 74 start-page: 2640 year: 2019 end-page: 2648 ident: b0200 article-title: Potentiation of β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations against MDR and XDR publication-title: J Antimicrob Chemother – volume: 6 start-page: 512 year: 2021 end-page: 523 ident: b0125 article-title: Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries publication-title: Nat Microbiol – reference: spp. and – volume: 14 start-page: 15 year: 2022 end-page: 24 ident: b0065 article-title: Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors publication-title: Nat Chem – volume: 9 start-page: e112963 year: 2014 ident: b0135 article-title: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement publication-title: PLoS One – volume: 55 start-page: 1510 year: 2011 end-page: 1519 ident: b0195 article-title: and publication-title: Antimicrob Agents Chemother – volume: 27 start-page: S93 year: 1998 end-page: S99 ident: b0215 article-title: Resistance mechanisms in publication-title: Clin Infect Dis – volume: 23 start-page: 160 issue: 1 year: 2010 ident: 10.1016/j.eng.2024.02.010_b0060 article-title: Three decades of β-lactamase inhibitors publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00037-09 – volume: 72 start-page: 2764 issue: 10 year: 2017 ident: 10.1016/j.eng.2024.02.010_b0155 article-title: PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx217 – volume: 109 start-page: 11663 issue: 29 year: 2012 ident: 10.1016/j.eng.2024.02.010_b0030 article-title: Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1205073109 – volume: 61 start-page: e00989 issue: 10 year: 2017 ident: 10.1016/j.eng.2024.02.010_b0090 article-title: Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00989-17 – volume: 22 start-page: 18 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0075 article-title: Resistance to ceftazidime–avibactam and underlying mechanisms publication-title: J Glob Antimicrob Resist doi: 10.1016/j.jgar.2019.12.009 – volume: 75 start-page: 2711 issue: 9 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0205 article-title: Comment on: cefepime/sulbactam as an enhanced antimicrobial combination therapy for the treatment of MDR Gram-negative infections publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkaa177 – volume: 18 start-page: e1009802 issue: 1 year: 2022 ident: 10.1016/j.eng.2024.02.010_b0140 article-title: Polypolish: short-read polishing of long-read bacterial genome assemblies publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1009802 – volume: 34 start-page: e00115 issue: 1 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0070 article-title: New β-lactam-β-lactamase inhibitor combinations publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00115-20 – volume: 61 start-page: e00537 issue: 6 year: 2017 ident: 10.1016/j.eng.2024.02.010_b0085 article-title: Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00537-17 – volume: 55 start-page: 390 issue: 1 year: 2011 ident: 10.1016/j.eng.2024.02.010_b0045 article-title: Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00756-10 – volume: 65 start-page: 601 issue: 4 year: 2010 ident: 10.1016/j.eng.2024.02.010_b0120 article-title: Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkq037 – volume: 6 start-page: 893 issue: 12 year: 2008 ident: 10.1016/j.eng.2024.02.010_b0185 article-title: The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1994 – volume: 7 start-page: 1337 issue: 9 year: 2022 ident: 10.1016/j.eng.2024.02.010_b0050 article-title: BARNARDS Group. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries publication-title: Nat Microbiol doi: 10.1038/s41564-022-01184-y – volume: 12 start-page: 138 issue: 1 year: 2019 ident: 10.1016/j.eng.2024.02.010_b0240 article-title: Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress publication-title: BMC Res Notes doi: 10.1186/s13104-019-4177-4 – volume: 75 start-page: 3491 issue: 12 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0150 article-title: ResFinder 4.0 for predictions of phenotypes from genotypes publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkaa345 – volume: 6 start-page: 512 issue: 4 year: 2021 ident: 10.1016/j.eng.2024.02.010_b0125 article-title: Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries publication-title: Nat Microbiol doi: 10.1038/s41564-021-00870-7 – volume: 121 start-page: 197 issue: 3–4 year: 2007 ident: 10.1016/j.eng.2024.02.010_b0010 article-title: β-Lactam resistance and β-lactamases in bacteria of animal origin publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2007.01.015 – volume: 52 start-page: 1529 issue: 5 year: 2014 ident: 10.1016/j.eng.2024.02.010_b0170 article-title: Benchmarking of methods for genomic taxonomy publication-title: J Clin Microbiol doi: 10.1128/JCM.02981-13 – volume: 589 start-page: 3419 issue: 22 year: 2015 ident: 10.1016/j.eng.2024.02.010_b0055 article-title: Overcoming differences: the catalytic mechanism of metallo-β-lactamases publication-title: FEBS Lett doi: 10.1016/j.febslet.2015.08.015 – volume: 73 start-page: 1525 issue: 6 year: 2018 ident: 10.1016/j.eng.2024.02.010_b0100 article-title: In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment publication-title: J Antimicrob Chemother doi: 10.1093/jac/dky082 – ident: 10.1016/j.eng.2024.02.010_b0220 doi: 10.1128/microbiolspec.ARBA-0007-2017 – ident: 10.1016/j.eng.2024.02.010_b0115 – volume: 10 start-page: 421 issue: 1 year: 2009 ident: 10.1016/j.eng.2024.02.010_b0160 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 6 start-page: e25825 issue: 10 year: 2011 ident: 10.1016/j.eng.2024.02.010_b0245 article-title: Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli publication-title: PLoS One doi: 10.1371/journal.pone.0025825 – volume: 61 start-page: e00389 issue: 8 year: 2017 ident: 10.1016/j.eng.2024.02.010_b0080 article-title: Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime–, ceftaroline–, or aztreonam–avibactam publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00389-17 – volume: 9 start-page: e112963 issue: 11 year: 2014 ident: 10.1016/j.eng.2024.02.010_b0135 article-title: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement publication-title: PLoS One doi: 10.1371/journal.pone.0112963 – volume: 62 start-page: e02101 issue: 3 year: 2018 ident: 10.1016/j.eng.2024.02.010_b0105 article-title: Successive emergence of ceftazidime–avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02101-17 – volume: 78 start-page: 674 issue: 8 year: 2021 ident: 10.1016/j.eng.2024.02.010_b0210 article-title: Imipenem/cilastatin/relebactam: a new carbapenem β-lactamase inhibitor combination publication-title: Am J Health Syst Pharm doi: 10.1093/ajhp/zxab012 – volume: 72 start-page: 2483 issue: 9 year: 2017 ident: 10.1016/j.eng.2024.02.010_b0110 article-title: Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx179 – volume: 19 start-page: 307 issue: 1 year: 2018 ident: 10.1016/j.eng.2024.02.010_b0175 article-title: Rapid and precise alignment of raw reads against redundant databases with KMA publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2336-6 – volume: 52 start-page: 139 issue: 1 year: 2014 ident: 10.1016/j.eng.2024.02.010_b0165 article-title: Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples publication-title: J Clin Microbiol doi: 10.1128/JCM.02452-13 – volume: 288 start-page: 27960 issue: 39 year: 2013 ident: 10.1016/j.eng.2024.02.010_b0035 article-title: Kinetics of avibactam inhibition against Class A, C, and D β-lactamases publication-title: J Biol Chem doi: 10.1074/jbc.M113.485979 – volume: 37 start-page: 540 issue: 5 year: 2019 ident: 10.1016/j.eng.2024.02.010_b0130 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0072-8 – volume: 62 start-page: e02280 issue: 2 year: 2018 ident: 10.1016/j.eng.2024.02.010_b0235 article-title: Copper ions and coordination complexes as novel carbapenem adjuvants publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02280-17 – volume: 19 start-page: 419 issue: 8 year: 2011 ident: 10.1016/j.eng.2024.02.010_b0225 article-title: Pseudomonas aeruginosa: all roads lead to resistance publication-title: Trends Microbiol doi: 10.1016/j.tim.2011.04.005 – volume: 57 start-page: 2496 issue: 6 year: 2013 ident: 10.1016/j.eng.2024.02.010_b0040 article-title: Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02247-12 – volume: 14 start-page: 15 issue: 1 year: 2022 ident: 10.1016/j.eng.2024.02.010_b0065 article-title: Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors publication-title: Nat Chem doi: 10.1038/s41557-021-00831-x – volume: 62 start-page: e01076 issue: 10 year: 2018 ident: 10.1016/j.eng.2024.02.010_b0020 article-title: Past and present perspectives on β-lactamases publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01076-18 – volume: 33 start-page: e00047 issue: 2 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0015 article-title: Epidemiology of β-lactamase-producing pathogens publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00047-19 – volume: 75 start-page: 3072 issue: 10 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0095 article-title: Phenotypic and genotypic analysis of KPC-51 and KPC-52, two novel KPC-2 variants conferring resistance to ceftazidime/avibactam in the KPC-producing Klebsiella pneumoniae ST11 clone background publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkaa241 – volume: 74 start-page: 2640 issue: 9 year: 2019 ident: 10.1016/j.eng.2024.02.010_b0200 article-title: Potentiation of β-lactam antibiotics and β-lactam/β-lactamase inhibitor combinations against MDR and XDR Pseudomonas aeruginosa using non-ribosomal tobramycin-cyclam conjugates publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkz228 – volume: 67 start-page: 1027 issue: 7 year: 2007 ident: 10.1016/j.eng.2024.02.010_b0180 article-title: Comparative review of the carbapenems publication-title: Drugs doi: 10.2165/00003495-200767070-00006 – volume: 17 start-page: 295 issue: 5 year: 2019 ident: 10.1016/j.eng.2024.02.010_b0025 article-title: Interplay between β-lactamases and new β-lactamase inhibitors publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0159-8 – volume: 25 start-page: 33 issue: 1 year: 2012 ident: 10.1016/j.eng.2024.02.010_b0190 article-title: The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli publication-title: Biometals doi: 10.1007/s10534-011-9510-x – volume: 6 start-page: a025247 issue: 8 year: 2016 ident: 10.1016/j.eng.2024.02.010_b0005 article-title: β-Lactams and β-lactamase inhibitors: an overview publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a025247 – volume: 21 start-page: 9308 issue: 23 year: 2020 ident: 10.1016/j.eng.2024.02.010_b0230 article-title: New carbapenemase inhibitors: clearing the way for the β-lactams publication-title: Int J Mol Sci doi: 10.3390/ijms21239308 – volume: 27 start-page: S93 issue: s1 year: 1998 ident: 10.1016/j.eng.2024.02.010_b0215 article-title: Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria publication-title: Clin Infect Dis doi: 10.1086/514909 – volume: 55 start-page: 1510 issue: 4 year: 2011 ident: 10.1016/j.eng.2024.02.010_b0195 article-title: In vitro and in vivo properties of BAL30376, a β-lactam and dual β-lactamase inhibitor combination with enhanced activity against Gram-negative bacilli that express multiple β-lactamases publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01370-10 – volume: 29 start-page: 2669 issue: 21 year: 2013 ident: 10.1016/j.eng.2024.02.010_b0145 article-title: The MaSuRCA genome assembler publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt476 |
| SSID | ssj0001510708 ssib026970494 |
| Score | 2.2972472 |
| Snippet | [Display omitted]
This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor... This work explores the potential of a triple combination of meropenem (MEM), a novel metallo-β-lactamase (MBL) inhibitor (indole-2-carboxylate 58 (InC58)), and... This work explores the potential of a triple combination of meropenem(MEM),a novel metallo-β-lactamase(MBL)inhibitor(indole-2-carboxylate 58(InC58)),and a... |
| SourceID | doaj pubmedcentral wanfang proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 124 |
| SubjectTerms | Antimicrobial resistance Avibactam Carbapenemase Meropenem Metallo/serine-β-lactamase inhibitor Research Natural Medicine |
| Title | The Triple Combination of Meropenem, Avibactam, and a Metallo-β-Lactamase Inhibitor Optimizes Antibacterial Coverage Against Different β-Lactamase Producers |
| URI | https://dx.doi.org/10.1016/j.eng.2024.02.010 https://www.ncbi.nlm.nih.gov/pubmed/40109291 https://www.proquest.com/docview/3179246194 https://d.wanfangdata.com.cn/periodical/gc-e202407014 https://pubmed.ncbi.nlm.nih.gov/PMC11913740 https://doaj.org/article/7e07e91858ca42e3a0aa3e27ecdb3e70 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2096-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001510708 issn: 2095-8099 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgAgkWiDfDY2QkVoiIxPbEznJ4VCBB6aJIs7Mc5zpNRT1oJi0SH8NH8CF8E9dOMkpUqWzYjcaJHcf3cW58fS4hL6zKcyhtlViuyiR4qEQ5qJLcOoEmGZ2idbHYhDw4UKtVcTgq9RVywjp64O7FvZaQSijQqyhrBANuUmM4MAm2KjnIGK0j6hkFU935YAxrunJ0iCHQDBfFsKUZk7vA1xgbMhH5OsPp2ZFTitz9E990EXteTKG8_sN4Z3w98k77t8mtHlbSZTedO-QK-Lvk5ohs8B75hRJBjzbhwzpFK4ARcVwUunb0M4RP8h5OX9HleVMa2xr8aXxFDba1YW8--fM7-RQb0O3Rj_64KdEWbOgXNDmnzU_Y0qVv461RpHEE1BG0VXRZmwYhKH3XV2Jp6aSnw8g4ixj0Pvm6__7o7Yekr86QWJFzkXAorFWBj7_i4SCQkgA25xl3CFIwxjWIrSzLS7MomMpTaZjlDJRYVEIspHX8Adnzaw-PCOXOgMmdzVPuECBizJZlAC4rGQZMHMSMpMPyaNtTl4cKGt_0kKN2gkpe67CiOmUaV3RGXu5u-d7xdlx28Zuw5rsLA-V2_AMFUfeCqP8liDMiBonRPXrpUAl21Vw29vNBujRqdtiuMR7WZ1uNelMEtr8C5_-wk7bdE4qwo8mKbEbURA4nU5i2-OY4socHRj8uBQ4870VW92Zrq2urITwb6k4mHv-Pt_KE3AgddgnOT8leuzmDZ-SaPW-b7WZOrsqVmkfV_Qs2kElC |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Triple+Combination+of+Meropenem%2C+Avibactam%2C+and+a+Metallo-%CE%B2-Lactamase+Inhibitor+Optimizes+Antibacterial+Coverage+Against+Different+%CE%B2-Lactamase+Producers&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Zhuoren+Ling&rft.au=Alistair+James+Macdonald+Farley&rft.au=Aditya+Lankapalli&rft.au=Yanfang+Zhang&rft.date=2024-07-01&rft.pub=Elsevier&rft.issn=2095-8099&rft.volume=38&rft.spage=124&rft.epage=132&rft_id=info:doi/10.1016%2Fj.eng.2024.02.010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e07e91858ca42e3a0aa3e27ecdb3e70 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgc-e%2Fgc-e.jpg |