Accuracy and stability analysis of a second-order time-accurate loosely coupled partitioned algorithm for transient conjugate heat transfer problems
SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the lo...
Saved in:
| Published in: | International journal for numerical methods in fluids Vol. 74; no. 2; pp. 113 - 133 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Blackwell Publishing Ltd
20.01.2014
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0271-2091, 1097-0363 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)–corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank–Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank–Nicolson scheme that imposes restriction on Δt given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd.
For transient conjugate heat transfer, a loosely coupled algorithm is presented where Crank–Nicolson is used for time integration. Second‐order temporal accuracy is achieved using a predictor–corrector approach. The need for subiterations to retrieve the order is avoided, hence increasing the algorithm's computational efficiency. An analytical stability criterion is also obtained for the algorithm. The loosely coupled algorithm performs best (accuracy and stability wise) when the ratio of thermal effusivities of the coupled domains is much smaller than unity. |
|---|---|
| AbstractList | SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)–corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank–Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank–Nicolson scheme that imposes restriction on Δt given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd.
For transient conjugate heat transfer, a loosely coupled algorithm is presented where Crank–Nicolson is used for time integration. Second‐order temporal accuracy is achieved using a predictor–corrector approach. The need for subiterations to retrieve the order is avoided, hence increasing the algorithm's computational efficiency. An analytical stability criterion is also obtained for the algorithm. The loosely coupled algorithm performs best (accuracy and stability wise) when the ratio of thermal effusivities of the coupled domains is much smaller than unity. SUMMARY In this paper, a second-order time-accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank-Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)-corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank-Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank-Nicolson scheme that imposes restriction on [Delta]t given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] SUMMARY In this paper, a second-order time-accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank-Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)-corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank-Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank-Nicolson scheme that imposes restriction on Delta t given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). For transient conjugate heat transfer, a loosely coupled algorithm is presented where Crank-Nicolson is used for time integration. Second-order temporal accuracy is achieved using a predictor-corrector approach. The need for subiterations to retrieve the order is avoided, hence increasing the algorithm's computational efficiency. An analytical stability criterion is also obtained for the algorithm. The loosely coupled algorithm performs best (accuracy and stability wise) when the ratio of thermal effusivities of the coupled domains is much smaller than unity. In this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)–corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank–Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank–Nicolson scheme that imposes restriction on Δ t given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd. |
| Author | Bijl, H. van Zuijlen, A. H. Kazemi-Kamyab, V. |
| Author_xml | – sequence: 1 givenname: V. surname: Kazemi-Kamyab fullname: Kazemi-Kamyab, V. email: Correspondence to: V. Kazemi-Kamyab, Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands., v.kazemikamyab@tudelft.nl organization: Faculty of Aerospace Engineering, Delft University of Technology, 2600 GB Delft, The Netherlands – sequence: 2 givenname: A. H. surname: van Zuijlen fullname: van Zuijlen, A. H. organization: Faculty of Aerospace Engineering, Delft University of Technology, 2600 GB Delft, The Netherlands – sequence: 3 givenname: H. surname: Bijl fullname: Bijl, H. organization: Faculty of Aerospace Engineering, Delft University of Technology, 2600 GB Delft, The Netherlands |
| BookMark | eNqFkV-L1DAUxYus4Owq-BECvvjSMf-atI_L6K7CoAiK4EtIk9vdjGkzJina7-EHNnVEcVF8CiG_c3LvOefV2RQmqKrHBG8JxvTZ4O2WtZzeqzYEd7LGTLCzaoOpJDXFHXlQnad0wBh3tGWb6tulMXPUZkF6sihl3Tvv8nrTfkkuoTAgjRKYMNk6RAsRZTdCrX_IMiAfQgK_IBPmoweLjjpml10ZyiLtb0J0-XZEQyi6qKfkYMqFnQ7zzaq-BZ1PD0NxPsbQexjTw-r-oH2CRz_Pi-r91Yt3u5f1_s31q93lvjZcMFob2gOVkpQ9uSzLdxJ3mnYgWsu0oMRYsB23knRN1xg2CG5kb3reMkOwlsAuqqcn3_Lx5xlSVqNLBrzXE4Q5KSI4ZYw2rfg_ymXTNKxkWtAnd9BDmGPJc6UE56xhmPw2NDGkFGFQx-hGHRdFsFqbVKVJtTZZ0O0d1Lis14xLcs7_TVCfBF-ch-Wfxupq__xP3qUMX3_xOn5SQjLZqA-vr9VO0rfNR7FXmH0Ht2bBfQ |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2018_06_016 crossref_primary_10_1016_j_cma_2019_07_029 crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_048 crossref_primary_10_1016_j_jcp_2016_02_022 crossref_primary_10_1016_j_ijthermalsci_2017_02_001 crossref_primary_10_3390_aerospace10030214 crossref_primary_10_2514_1_J056572 crossref_primary_10_1016_j_compfluid_2025_106594 crossref_primary_10_1016_j_jcp_2014_04_016 crossref_primary_10_1016_j_ijthermalsci_2017_12_014 crossref_primary_10_1016_j_jcp_2018_05_010 crossref_primary_10_1016_j_taml_2016_08_005 crossref_primary_10_1108_EC_03_2017_0071 crossref_primary_10_1016_j_ijthermalsci_2019_106048 crossref_primary_10_1016_j_cma_2013_05_021 crossref_primary_10_1016_j_jppr_2021_05_005 |
| Cites_doi | 10.2514/6.2011-2017 10.1016/j.cma.2004.11.031 10.1002/fld.1637 10.1016/0021-9991(86)90099-9 10.1016/j.compstruc.2009.12.006 10.1016/j.jcp.2009.02.007 10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J 10.1137/1.9780898717839 10.1016/0017-9310(86)90017-7 10.1016/j.jcp.2007.02.021 10.1007/s00791-010-0150-4 10.1080/104077901752379620 10.1002/fld.1416 10.1201/b15915 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1002/fld.3842 |
| DatabaseName | Istex CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1097-0363 |
| EndPage | 133 |
| ExternalDocumentID | 3144307171 10_1002_fld_3842 FLD3842 ark_67375_WNG_C72Q5Z6L_0 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT ALUQN AAYXX CITATION O8X 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c4632-c2be2771109471009709a29e68d3a621cded94d719595c3f64c7bcb483c10a7e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327727200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 |
| IngestDate | Sun Nov 09 12:58:56 EST 2025 Tue Oct 07 09:34:15 EDT 2025 Fri Jul 25 10:35:26 EDT 2025 Sat Nov 29 03:27:49 EST 2025 Tue Nov 18 21:56:34 EST 2025 Wed Aug 20 07:27:54 EDT 2025 Tue Nov 11 03:32:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4632-c2be2771109471009709a29e68d3a621cded94d719595c3f64c7bcb483c10a7e3 |
| Notes | istex:CE8863788721CCD5B13792337D1CC2C45FDBD957 ark:/67375/WNG-C72Q5Z6L-0 ArticleID:FLD3842 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1464435301 |
| PQPubID | 996375 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1642332586 proquest_miscellaneous_1475553283 proquest_journals_1464435301 crossref_primary_10_1002_fld_3842 crossref_citationtrail_10_1002_fld_3842 wiley_primary_10_1002_fld_3842_FLD3842 istex_primary_ark_67375_WNG_C72Q5Z6L_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20 January 2014 |
| PublicationDateYYYYMMDD | 2014-01-20 |
| PublicationDate_xml | – month: 01 year: 2014 text: 20 January 2014 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Kanevsky A, Carpenter MH, Gottlieb D, Hesthaven JS. Application of implicit-explicit high order runge-kutta methods to discontinuous-galerkin schemes. Journal of Computational Physics 2007; 225: 1753-1781. LeVeque R. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-Dependent Problems. SIAM: USA, 2007. Roe B, Haselbacher A, Geubelle PH. Stability of fluid-structure thermal simulations on moving grids. International Journal of Numerical Methods in Fluids 2007; 54: 1097-1117. Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers and Structures 2010; 88: 446-457. Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 1986; 62: 40-65. Giles MB. Stability analysis of numerical interface conditions in fluid-structure thermal analysis. International Journal of Numerical Methods in Fluids 1997; 25: 421-436. Birken P, Quint KJ, Hartmann S, Meister A. A time-adaptive fluid-structure interaction method for thermal coupling. Computing and Visualization in Science 2010; 13: 331-340. Incropera FP, DeWitt DP. Introduction to Heat Transfer. 4th ed. Wiley: USA, 2001. Wesseling P. Principles of Computational Fluid Dynamics. Springer: Germany, 2000. Kaminski DA, Prakash C. Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer 1986; 29: 1979-1988. Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B 2001; 40: 199-228. Farhat C, van der Zee KG, Geuzaine P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering 2006; 195: 1973-2001. Majumdar P. Computational Methods for Heat and Mass Transfer. Taylor and Francis: Great Britain, 2005. Henshaw WD, Chand KK. A composite grid solver for conjugate heat transfer in fluid-structure systems. Journal of Computational Physics 2009; 228: 3708-3741. Roe B, Jaiman R, Haselbacher A, Geubelle PH. Combined interface boundary condition method for coupled thermal simulations. International Journal of Numerical Methods in Fluids 2008; 57: 329-354. 2010; 88 2007; 225 2010; 13 1986; 62 2001 2011 2000 1997; 25 2006; 195 2007 1986; 29 2008; 57 2005 2009; 228 2007; 54 2001; 40 e_1_2_14_2_1 e_1_2_14_4_1 e_1_2_14_3_1 e_1_2_14_10_1 e_1_2_14_13_1 e_1_2_14_12_1 Incropera FP (e_1_2_14_11_1) 2001 e_1_2_14_14_1 Wesseling P (e_1_2_14_15_1) 2000 e_1_2_14_17_1 e_1_2_14_16_1 e_1_2_14_6_1 e_1_2_14_5_1 e_1_2_14_8_1 e_1_2_14_7_1 e_1_2_14_9_1 |
| References_xml | – reference: Wesseling P. Principles of Computational Fluid Dynamics. Springer: Germany, 2000. – reference: Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B 2001; 40: 199-228. – reference: Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers and Structures 2010; 88: 446-457. – reference: Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 1986; 62: 40-65. – reference: Giles MB. Stability analysis of numerical interface conditions in fluid-structure thermal analysis. International Journal of Numerical Methods in Fluids 1997; 25: 421-436. – reference: Roe B, Jaiman R, Haselbacher A, Geubelle PH. Combined interface boundary condition method for coupled thermal simulations. International Journal of Numerical Methods in Fluids 2008; 57: 329-354. – reference: Henshaw WD, Chand KK. A composite grid solver for conjugate heat transfer in fluid-structure systems. Journal of Computational Physics 2009; 228: 3708-3741. – reference: Farhat C, van der Zee KG, Geuzaine P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering 2006; 195: 1973-2001. – reference: Majumdar P. Computational Methods for Heat and Mass Transfer. Taylor and Francis: Great Britain, 2005. – reference: Incropera FP, DeWitt DP. Introduction to Heat Transfer. 4th ed. Wiley: USA, 2001. – reference: Kanevsky A, Carpenter MH, Gottlieb D, Hesthaven JS. Application of implicit-explicit high order runge-kutta methods to discontinuous-galerkin schemes. Journal of Computational Physics 2007; 225: 1753-1781. – reference: Birken P, Quint KJ, Hartmann S, Meister A. A time-adaptive fluid-structure interaction method for thermal coupling. Computing and Visualization in Science 2010; 13: 331-340. – reference: Roe B, Haselbacher A, Geubelle PH. Stability of fluid-structure thermal simulations on moving grids. International Journal of Numerical Methods in Fluids 2007; 54: 1097-1117. – reference: LeVeque R. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-Dependent Problems. SIAM: USA, 2007. – reference: Kaminski DA, Prakash C. Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer 1986; 29: 1979-1988. – year: 2011 – volume: 195 start-page: 1973 year: 2006 end-page: 2001 article-title: Provably second‐order time–accurate loosely–coupled solution algorithms for transient nonlinear computational aeroelasticity publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 62 start-page: 40 year: 1986 end-page: 65 article-title: Solution of the implicitly discretised fluid flow equations by operator–splitting publication-title: Journal of Computational Physics – volume: 225 start-page: 1753 year: 2007 end-page: 1781 article-title: Application of implicit–explicit high order runge–kutta methods to discontinuous–galerkin schemes publication-title: Journal of Computational Physics – year: 2005 – volume: 57 start-page: 329 year: 2008 end-page: 354 article-title: Combined interface boundary condition method for coupled thermal simulations publication-title: International Journal of Numerical Methods in Fluids – year: 2001 – year: 2007 – volume: 88 start-page: 446 year: 2010 end-page: 457 article-title: Performance of partitioned procedures in fluid–structure interaction publication-title: Computers and Structures – year: 2000 – volume: 13 start-page: 331 year: 2010 end-page: 340 article-title: A time–adaptive fluid–structure interaction method for thermal coupling publication-title: Computing and Visualization in Science – volume: 228 start-page: 3708 year: 2009 end-page: 3741 article-title: A composite grid solver for conjugate heat transfer in fluid–structure systems publication-title: Journal of Computational Physics – volume: 29 start-page: 1979 year: 1986 end-page: 1988 article-title: Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls publication-title: International Journal of Heat and Mass Transfer – volume: 54 start-page: 1097 year: 2007 end-page: 1117 article-title: Stability of fluid–structure thermal simulations on moving grids publication-title: International Journal of Numerical Methods in Fluids – volume: 25 start-page: 421 year: 1997 end-page: 436 article-title: Stability analysis of numerical interface conditions in fluid–structure thermal analysis publication-title: International Journal of Numerical Methods in Fluids – volume: 40 start-page: 199 year: 2001 end-page: 228 article-title: A new benchmark quality solution for the buoyancy–driven cavity by discrete singular convolution publication-title: Numerical Heat Transfer, Part B – ident: e_1_2_14_9_1 doi: 10.2514/6.2011-2017 – volume-title: Introduction to Heat Transfer year: 2001 ident: e_1_2_14_11_1 – volume-title: Principles of Computational Fluid Dynamics year: 2000 ident: e_1_2_14_15_1 – ident: e_1_2_14_8_1 doi: 10.1016/j.cma.2004.11.031 – ident: e_1_2_14_7_1 doi: 10.1002/fld.1637 – ident: e_1_2_14_13_1 doi: 10.1016/0021-9991(86)90099-9 – ident: e_1_2_14_4_1 doi: 10.1016/j.compstruc.2009.12.006 – ident: e_1_2_14_3_1 doi: 10.1016/j.jcp.2009.02.007 – ident: e_1_2_14_2_1 doi: 10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J – ident: e_1_2_14_12_1 doi: 10.1137/1.9780898717839 – ident: e_1_2_14_14_1 doi: 10.1016/0017-9310(86)90017-7 – ident: e_1_2_14_5_1 doi: 10.1016/j.jcp.2007.02.021 – ident: e_1_2_14_10_1 doi: 10.1007/s00791-010-0150-4 – ident: e_1_2_14_17_1 doi: 10.1080/104077901752379620 – ident: e_1_2_14_6_1 doi: 10.1002/fld.1416 – ident: e_1_2_14_16_1 doi: 10.1201/b15915 |
| SSID | ssj0009283 |
| Score | 2.1858807 |
| Snippet | SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and... In this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids,... SUMMARY In this paper, a second-order time-accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113 |
| SubjectTerms | Accuracy Algorithms conjugate heat transfer Conjugates Crank-Nicolson Heat transfer implicit time integration loosely coupled Mathematical analysis partitioned approach Stability Stability analysis Time integration |
| Title | Accuracy and stability analysis of a second-order time-accurate loosely coupled partitioned algorithm for transient conjugate heat transfer problems |
| URI | https://api.istex.fr/ark:/67375/WNG-C72Q5Z6L-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3842 https://www.proquest.com/docview/1464435301 https://www.proquest.com/docview/1475553283 https://www.proquest.com/docview/1642332586 |
| Volume | 74 |
| WOSCitedRecordID | wos000327727200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQlwMcKBQQCwUZCcEpNLGdOD5WLQuH1QoQFRWXyH-BQkhW-UHtrY_Akefrk3QmyW5bCRASp8jy2B7ZM_aMM_6GkGc21kppkwax5SYQzoSB8cwGUjkhOZfGK9cnm5CLRXp4qN6OUZX4FmbAh1hfuKFm9Ps1Krg2zc4FaGheuJc8FbD9TvBNFThek_33s4P5BeQuG0A4mYxAFlS0gp4N2c6q7ZXDaILzenzF0rxsr_YHzmzzf1i9TW6NZibdHeTiDrnmyy2yOZqcdFToZovcvIRHeJf82rW2q7U9obp0FOzGPnIWSwNyCa1yqmmDPrQ7O_3Zw3ZSzE4PBd03bT0tqqrxxQm1VbcsYLAlCmcPiOSoLj5X9VH75TsFW5m2eE7ie0ygLb92eKFH8WwYKnLoe0x309wjB7NXH_beBGPqhsCKhLPAMlhxKRHOVCB-kJKh0kz5JHVcJyyyzjslnERoG5CSPBFWGmtEym0Uaun5fbJRAmMPCPUm1wIxY_LYichKlbsk9cxwA70xJabkxWoNMzvimmN6jSIbEJlZBtOf4fRPydM15XLA8vgNzfNeDNYEuv6GsW8yzj4uXmd7kr2LPyXzLJyS7ZWcZKPaN-hHCbA_YdOEsdbVoLD4F0aXvuqQRsZxzEE4_0IDXiHnLE4T4KeXrD8ynM3m-_h9-K-Ej8gNMPow9Ai0YptstHXnH5Pr9kd71NRPRiU6B00FJUM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXSTgQKFQsVDASAhOobu2E8fiVLUsRSwrQK2ouFiO7UAhJKv8IHrjETjyfDwJM0l220qAkDhFlsf2yP7GHjv2N4Q8sKFRyiRxEFqeBMIl4yDxzAZSOSE5l4lXrg02Iefz-OhIvVojT5ZvYTp-iNWBG1pGO1-jgeOB9PYpa2iaucc8FjD_DkXEZTwgw70308PZKecu61g4mZwAGNRkyT07ZtvLsudWoyF27NdzruZZh7Vdcabr_6XrVXKldzTpToeMa2TN5xtkvXc6aW_S1Qa5fIaR8Dr5sWNtUxp7Qk3uKHiO7d1ZTHXcJbRIqaEV7qLdz2_fW-JOivHpIWHaorWnWVFUPjuhtmgWGTS2QHi2lEiOmux9UR7XHz5T8JZpjSslvsgE2fxjg0d6FFeHLiOFuvuAN9UNcjh9erC7H_TBGwILo8ECy2DMpURCU4EMQkqOlWHKR7HjJmIT67xTwkkktwGcpJGwMrGJiLmdjI30fJMMclDsJqE-SY1A1pg0dGJipUpdFHuW8ARqY0qMyKPlIGrbM5tjgI1Md5zMTEP3a-z-Ebm_klx0bB6_kXnY4mAlYMpPePtNhvrt_Jnelex1-C6a6fGIbC2BonvDr3AnJcADhWkT2lplg8nifxiT-6JBGRmGIQd0_kUG9oWcszCOQJ8WWn9UWE9ne_i99a-C98jF_YOXMz17Pn9xm1wCFxAvIoGJbJFBXTb-Drlgv9THVXm3t6hfvZopMw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXYTgQKFQsVDASAhOoYkfcSxOVZcAYrUqiIqKS-TYDhTCZrXZRfTGT-DI7-OXMJPHtpUAIXGKLI8fsr_xjB37G0IeWGm0NnkSSMvzQLg8DHLPbKC0E4pzlXvtmmATajpNjo70wQZ50r-Fafkh1gduqBnNeo0K7ueu2D1lDS1K95gnAtbfoZBaigEZjl-nh5NTzl3WsnAyFQEYdNRzz4Zsty97zhoNcWC_nnM1zzqsjcVJN_-rr1fJlc7RpHstMq6RDT_bIpud00k7la63yOUzjITXyY89a1cLY0-omTkKnmNzdxZTLXcJrQpqaI27aPfz2_eGuJNifHpImKbo0tOyqmpfnlBbreYlNDZHeDaUSI6a8n21OF5--EzBW6ZLtJT4IhNkZx9XeKRH0Tq0GQXU3QW8qW-Qw_Tpm_3nQRe8IbAi5iywDOZcKSQ0FcggpFWoDdM-Thw3MYus804Lp5DcBnBSxMKq3OYi4TYKjfJ8mwxm0LGbhPq8MAJZYwrpRGSVLlyceJbzHGpjWozIo34SM9sxm2OAjTJrOZlZBsOf4fCPyP215Lxl8_iNzMMGB2sBs_iEt9-UzN5On2X7ir2S7-JJFo7ITg-UrFP8GndSAjxQWDahrXU2qCz-hzEzX61QRkkpOaDzLzKwL-ScySSG_jTQ-mOHs3Qyxu-tfxW8Ry4ejNNs8mL68ja5BB4g3kMCDdkhg-Vi5e-QC_bL8rhe3O0U6hcOuyiu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+and+stability+analysis+of+a+second-order+time-accurate+loosely+coupled+partitioned+algorithm+for+transient+conjugate+heat+transfer+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Kazemi-Kamyab%2C+V&rft.au=Zuijlen%2C+A+H&rft.au=Bijl%2C+H&rft.date=2014-01-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=74&rft.issue=2&rft.spage=113&rft_id=info:doi/10.1002%2Ffld.3842&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3144307171 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |