Accuracy and stability analysis of a second-order time-accurate loosely coupled partitioned algorithm for transient conjugate heat transfer problems

SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the lo...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 74; no. 2; pp. 113 - 133
Main Authors: Kazemi-Kamyab, V., van Zuijlen, A. H., Bijl, H.
Format: Journal Article
Language:English
Published: Bognor Regis Blackwell Publishing Ltd 20.01.2014
Wiley Subscription Services, Inc
Subjects:
ISSN:0271-2091, 1097-0363
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)–corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank–Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank–Nicolson scheme that imposes restriction on Δt given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd. For transient conjugate heat transfer, a loosely coupled algorithm is presented where Crank–Nicolson is used for time integration. Second‐order temporal accuracy is achieved using a predictor–corrector approach. The need for subiterations to retrieve the order is avoided, hence increasing the algorithm's computational efficiency. An analytical stability criterion is also obtained for the algorithm. The loosely coupled algorithm performs best (accuracy and stability wise) when the ratio of thermal effusivities of the coupled domains is much smaller than unity.
AbstractList SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)–corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank–Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank–Nicolson scheme that imposes restriction on Δt given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd. For transient conjugate heat transfer, a loosely coupled algorithm is presented where Crank–Nicolson is used for time integration. Second‐order temporal accuracy is achieved using a predictor–corrector approach. The need for subiterations to retrieve the order is avoided, hence increasing the algorithm's computational efficiency. An analytical stability criterion is also obtained for the algorithm. The loosely coupled algorithm performs best (accuracy and stability wise) when the ratio of thermal effusivities of the coupled domains is much smaller than unity.
SUMMARY In this paper, a second-order time-accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank-Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)-corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank-Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank-Nicolson scheme that imposes restriction on [Delta]t given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARY In this paper, a second-order time-accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank-Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)-corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank-Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank-Nicolson scheme that imposes restriction on Delta t given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). For transient conjugate heat transfer, a loosely coupled algorithm is presented where Crank-Nicolson is used for time integration. Second-order temporal accuracy is achieved using a predictor-corrector approach. The need for subiterations to retrieve the order is avoided, hence increasing the algorithm's computational efficiency. An analytical stability criterion is also obtained for the algorithm. The loosely coupled algorithm performs best (accuracy and stability wise) when the ratio of thermal effusivities of the coupled domains is much smaller than unity.
In this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids, also referred to by conjugate heat transfer. The Crank–Nicolson scheme is used for time integration. The accuracy and stability of the loosely coupled solution algorithm are analyzed analytically. Based on the accuracy analysis, the design order of the time integration scheme is preserved by following a predictor (implicit)–corrector (explicit) approach. Hence, the need to perform an additional implicit solve (a subiteration) at each time step is avoided. The analytical stability analysis shows that by using the Crank–Nicolson scheme for time integration, the partitioned algorithm is unstable for large Fourier numbers, unlike the monolithic approach. Accordingly, using the stability analysis, a stability criterion is obtained for the Crank–Nicolson scheme that imposes restriction on Δ t given the material properties and mesh spacings of the coupled domains. As the ratio of the thermal effusivities of the coupled domains reaches unity, the stability of the algorithm reduces. To demonstrate the applicability of the algorithm, a numerical example is considered (an unsteady conjugate natural convection in an enclosure). Copyright © 2013 John Wiley & Sons, Ltd.
Author Bijl, H.
van Zuijlen, A. H.
Kazemi-Kamyab, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Kazemi-Kamyab
  fullname: Kazemi-Kamyab, V.
  email: Correspondence to: V. Kazemi-Kamyab, Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands., v.kazemikamyab@tudelft.nl
  organization: Faculty of Aerospace Engineering, Delft University of Technology, 2600 GB Delft, The Netherlands
– sequence: 2
  givenname: A. H.
  surname: van Zuijlen
  fullname: van Zuijlen, A. H.
  organization: Faculty of Aerospace Engineering, Delft University of Technology, 2600 GB Delft, The Netherlands
– sequence: 3
  givenname: H.
  surname: Bijl
  fullname: Bijl, H.
  organization: Faculty of Aerospace Engineering, Delft University of Technology, 2600 GB Delft, The Netherlands
BookMark eNqFkV-L1DAUxYus4Owq-BECvvjSMf-atI_L6K7CoAiK4EtIk9vdjGkzJina7-EHNnVEcVF8CiG_c3LvOefV2RQmqKrHBG8JxvTZ4O2WtZzeqzYEd7LGTLCzaoOpJDXFHXlQnad0wBh3tGWb6tulMXPUZkF6sihl3Tvv8nrTfkkuoTAgjRKYMNk6RAsRZTdCrX_IMiAfQgK_IBPmoweLjjpml10ZyiLtb0J0-XZEQyi6qKfkYMqFnQ7zzaq-BZ1PD0NxPsbQexjTw-r-oH2CRz_Pi-r91Yt3u5f1_s31q93lvjZcMFob2gOVkpQ9uSzLdxJ3mnYgWsu0oMRYsB23knRN1xg2CG5kb3reMkOwlsAuqqcn3_Lx5xlSVqNLBrzXE4Q5KSI4ZYw2rfg_ymXTNKxkWtAnd9BDmGPJc6UE56xhmPw2NDGkFGFQx-hGHRdFsFqbVKVJtTZZ0O0d1Lis14xLcs7_TVCfBF-ch-Wfxupq__xP3qUMX3_xOn5SQjLZqA-vr9VO0rfNR7FXmH0Ht2bBfQ
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_compfluid_2018_06_016
crossref_primary_10_1016_j_cma_2019_07_029
crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_048
crossref_primary_10_1016_j_jcp_2016_02_022
crossref_primary_10_1016_j_ijthermalsci_2017_02_001
crossref_primary_10_3390_aerospace10030214
crossref_primary_10_2514_1_J056572
crossref_primary_10_1016_j_compfluid_2025_106594
crossref_primary_10_1016_j_jcp_2014_04_016
crossref_primary_10_1016_j_ijthermalsci_2017_12_014
crossref_primary_10_1016_j_jcp_2018_05_010
crossref_primary_10_1016_j_taml_2016_08_005
crossref_primary_10_1108_EC_03_2017_0071
crossref_primary_10_1016_j_ijthermalsci_2019_106048
crossref_primary_10_1016_j_cma_2013_05_021
crossref_primary_10_1016_j_jppr_2021_05_005
Cites_doi 10.2514/6.2011-2017
10.1016/j.cma.2004.11.031
10.1002/fld.1637
10.1016/0021-9991(86)90099-9
10.1016/j.compstruc.2009.12.006
10.1016/j.jcp.2009.02.007
10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
10.1137/1.9780898717839
10.1016/0017-9310(86)90017-7
10.1016/j.jcp.2007.02.021
10.1007/s00791-010-0150-4
10.1080/104077901752379620
10.1002/fld.1416
10.1201/b15915
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.3842
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 133
ExternalDocumentID 3144307171
10_1002_fld_3842
FLD3842
ark_67375_WNG_C72Q5Z6L_0
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c4632-c2be2771109471009709a29e68d3a621cded94d719595c3f64c7bcb483c10a7e3
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327727200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Sun Nov 09 12:58:56 EST 2025
Tue Oct 07 09:34:15 EDT 2025
Fri Jul 25 10:35:26 EDT 2025
Sat Nov 29 03:27:49 EST 2025
Tue Nov 18 21:56:34 EST 2025
Wed Aug 20 07:27:54 EDT 2025
Tue Nov 11 03:32:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4632-c2be2771109471009709a29e68d3a621cded94d719595c3f64c7bcb483c10a7e3
Notes istex:CE8863788721CCD5B13792337D1CC2C45FDBD957
ark:/67375/WNG-C72Q5Z6L-0
ArticleID:FLD3842
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1464435301
PQPubID 996375
PageCount 21
ParticipantIDs proquest_miscellaneous_1642332586
proquest_miscellaneous_1475553283
proquest_journals_1464435301
crossref_primary_10_1002_fld_3842
crossref_citationtrail_10_1002_fld_3842
wiley_primary_10_1002_fld_3842_FLD3842
istex_primary_ark_67375_WNG_C72Q5Z6L_0
PublicationCentury 2000
PublicationDate 20 January 2014
PublicationDateYYYYMMDD 2014-01-20
PublicationDate_xml – month: 01
  year: 2014
  text: 20 January 2014
  day: 20
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kanevsky A, Carpenter MH, Gottlieb D, Hesthaven JS. Application of implicit-explicit high order runge-kutta methods to discontinuous-galerkin schemes. Journal of Computational Physics 2007; 225: 1753-1781.
LeVeque R. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-Dependent Problems. SIAM: USA, 2007.
Roe B, Haselbacher A, Geubelle PH. Stability of fluid-structure thermal simulations on moving grids. International Journal of Numerical Methods in Fluids 2007; 54: 1097-1117.
Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers and Structures 2010; 88: 446-457.
Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 1986; 62: 40-65.
Giles MB. Stability analysis of numerical interface conditions in fluid-structure thermal analysis. International Journal of Numerical Methods in Fluids 1997; 25: 421-436.
Birken P, Quint KJ, Hartmann S, Meister A. A time-adaptive fluid-structure interaction method for thermal coupling. Computing and Visualization in Science 2010; 13: 331-340.
Incropera FP, DeWitt DP. Introduction to Heat Transfer. 4th ed. Wiley: USA, 2001.
Wesseling P. Principles of Computational Fluid Dynamics. Springer: Germany, 2000.
Kaminski DA, Prakash C. Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer 1986; 29: 1979-1988.
Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B 2001; 40: 199-228.
Farhat C, van der Zee KG, Geuzaine P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering 2006; 195: 1973-2001.
Majumdar P. Computational Methods for Heat and Mass Transfer. Taylor and Francis: Great Britain, 2005.
Henshaw WD, Chand KK. A composite grid solver for conjugate heat transfer in fluid-structure systems. Journal of Computational Physics 2009; 228: 3708-3741.
Roe B, Jaiman R, Haselbacher A, Geubelle PH. Combined interface boundary condition method for coupled thermal simulations. International Journal of Numerical Methods in Fluids 2008; 57: 329-354.
2010; 88
2007; 225
2010; 13
1986; 62
2001
2011
2000
1997; 25
2006; 195
2007
1986; 29
2008; 57
2005
2009; 228
2007; 54
2001; 40
e_1_2_14_2_1
e_1_2_14_4_1
e_1_2_14_3_1
e_1_2_14_10_1
e_1_2_14_13_1
e_1_2_14_12_1
Incropera FP (e_1_2_14_11_1) 2001
e_1_2_14_14_1
Wesseling P (e_1_2_14_15_1) 2000
e_1_2_14_17_1
e_1_2_14_16_1
e_1_2_14_6_1
e_1_2_14_5_1
e_1_2_14_8_1
e_1_2_14_7_1
e_1_2_14_9_1
References_xml – reference: Wesseling P. Principles of Computational Fluid Dynamics. Springer: Germany, 2000.
– reference: Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B 2001; 40: 199-228.
– reference: Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J. Performance of partitioned procedures in fluid-structure interaction. Computers and Structures 2010; 88: 446-457.
– reference: Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 1986; 62: 40-65.
– reference: Giles MB. Stability analysis of numerical interface conditions in fluid-structure thermal analysis. International Journal of Numerical Methods in Fluids 1997; 25: 421-436.
– reference: Roe B, Jaiman R, Haselbacher A, Geubelle PH. Combined interface boundary condition method for coupled thermal simulations. International Journal of Numerical Methods in Fluids 2008; 57: 329-354.
– reference: Henshaw WD, Chand KK. A composite grid solver for conjugate heat transfer in fluid-structure systems. Journal of Computational Physics 2009; 228: 3708-3741.
– reference: Farhat C, van der Zee KG, Geuzaine P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering 2006; 195: 1973-2001.
– reference: Majumdar P. Computational Methods for Heat and Mass Transfer. Taylor and Francis: Great Britain, 2005.
– reference: Incropera FP, DeWitt DP. Introduction to Heat Transfer. 4th ed. Wiley: USA, 2001.
– reference: Kanevsky A, Carpenter MH, Gottlieb D, Hesthaven JS. Application of implicit-explicit high order runge-kutta methods to discontinuous-galerkin schemes. Journal of Computational Physics 2007; 225: 1753-1781.
– reference: Birken P, Quint KJ, Hartmann S, Meister A. A time-adaptive fluid-structure interaction method for thermal coupling. Computing and Visualization in Science 2010; 13: 331-340.
– reference: Roe B, Haselbacher A, Geubelle PH. Stability of fluid-structure thermal simulations on moving grids. International Journal of Numerical Methods in Fluids 2007; 54: 1097-1117.
– reference: LeVeque R. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-Dependent Problems. SIAM: USA, 2007.
– reference: Kaminski DA, Prakash C. Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer 1986; 29: 1979-1988.
– year: 2011
– volume: 195
  start-page: 1973
  year: 2006
  end-page: 2001
  article-title: Provably second‐order time–accurate loosely–coupled solution algorithms for transient nonlinear computational aeroelasticity
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 62
  start-page: 40
  year: 1986
  end-page: 65
  article-title: Solution of the implicitly discretised fluid flow equations by operator–splitting
  publication-title: Journal of Computational Physics
– volume: 225
  start-page: 1753
  year: 2007
  end-page: 1781
  article-title: Application of implicit–explicit high order runge–kutta methods to discontinuous–galerkin schemes
  publication-title: Journal of Computational Physics
– year: 2005
– volume: 57
  start-page: 329
  year: 2008
  end-page: 354
  article-title: Combined interface boundary condition method for coupled thermal simulations
  publication-title: International Journal of Numerical Methods in Fluids
– year: 2001
– year: 2007
– volume: 88
  start-page: 446
  year: 2010
  end-page: 457
  article-title: Performance of partitioned procedures in fluid–structure interaction
  publication-title: Computers and Structures
– year: 2000
– volume: 13
  start-page: 331
  year: 2010
  end-page: 340
  article-title: A time–adaptive fluid–structure interaction method for thermal coupling
  publication-title: Computing and Visualization in Science
– volume: 228
  start-page: 3708
  year: 2009
  end-page: 3741
  article-title: A composite grid solver for conjugate heat transfer in fluid–structure systems
  publication-title: Journal of Computational Physics
– volume: 29
  start-page: 1979
  year: 1986
  end-page: 1988
  article-title: Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls
  publication-title: International Journal of Heat and Mass Transfer
– volume: 54
  start-page: 1097
  year: 2007
  end-page: 1117
  article-title: Stability of fluid–structure thermal simulations on moving grids
  publication-title: International Journal of Numerical Methods in Fluids
– volume: 25
  start-page: 421
  year: 1997
  end-page: 436
  article-title: Stability analysis of numerical interface conditions in fluid–structure thermal analysis
  publication-title: International Journal of Numerical Methods in Fluids
– volume: 40
  start-page: 199
  year: 2001
  end-page: 228
  article-title: A new benchmark quality solution for the buoyancy–driven cavity by discrete singular convolution
  publication-title: Numerical Heat Transfer, Part B
– ident: e_1_2_14_9_1
  doi: 10.2514/6.2011-2017
– volume-title: Introduction to Heat Transfer
  year: 2001
  ident: e_1_2_14_11_1
– volume-title: Principles of Computational Fluid Dynamics
  year: 2000
  ident: e_1_2_14_15_1
– ident: e_1_2_14_8_1
  doi: 10.1016/j.cma.2004.11.031
– ident: e_1_2_14_7_1
  doi: 10.1002/fld.1637
– ident: e_1_2_14_13_1
  doi: 10.1016/0021-9991(86)90099-9
– ident: e_1_2_14_4_1
  doi: 10.1016/j.compstruc.2009.12.006
– ident: e_1_2_14_3_1
  doi: 10.1016/j.jcp.2009.02.007
– ident: e_1_2_14_2_1
  doi: 10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
– ident: e_1_2_14_12_1
  doi: 10.1137/1.9780898717839
– ident: e_1_2_14_14_1
  doi: 10.1016/0017-9310(86)90017-7
– ident: e_1_2_14_5_1
  doi: 10.1016/j.jcp.2007.02.021
– ident: e_1_2_14_10_1
  doi: 10.1007/s00791-010-0150-4
– ident: e_1_2_14_17_1
  doi: 10.1080/104077901752379620
– ident: e_1_2_14_6_1
  doi: 10.1002/fld.1416
– ident: e_1_2_14_16_1
  doi: 10.1201/b15915
SSID ssj0009283
Score 2.1858807
Snippet SUMMARYIn this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and...
In this paper, a second‐order time‐accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and fluids,...
SUMMARY In this paper, a second-order time-accurate loosely coupled partitioned algorithm is presented for solving transient thermal coupling of solids and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Accuracy
Algorithms
conjugate heat transfer
Conjugates
Crank-Nicolson
Heat transfer
implicit time integration
loosely coupled
Mathematical analysis
partitioned approach
Stability
Stability analysis
Time integration
Title Accuracy and stability analysis of a second-order time-accurate loosely coupled partitioned algorithm for transient conjugate heat transfer problems
URI https://api.istex.fr/ark:/67375/WNG-C72Q5Z6L-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3842
https://www.proquest.com/docview/1464435301
https://www.proquest.com/docview/1475553283
https://www.proquest.com/docview/1642332586
Volume 74
WOSCitedRecordID wos000327727200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQlwMcKBQQCwUZCcEpNLGdOD5WLQuH1QoQFRWXyH-BQkhW-UHtrY_Akefrk3QmyW5bCRASp8jy2B7ZM_aMM_6GkGc21kppkwax5SYQzoSB8cwGUjkhOZfGK9cnm5CLRXp4qN6OUZX4FmbAh1hfuKFm9Ps1Krg2zc4FaGheuJc8FbD9TvBNFThek_33s4P5BeQuG0A4mYxAFlS0gp4N2c6q7ZXDaILzenzF0rxsr_YHzmzzf1i9TW6NZibdHeTiDrnmyy2yOZqcdFToZovcvIRHeJf82rW2q7U9obp0FOzGPnIWSwNyCa1yqmmDPrQ7O_3Zw3ZSzE4PBd03bT0tqqrxxQm1VbcsYLAlCmcPiOSoLj5X9VH75TsFW5m2eE7ie0ygLb92eKFH8WwYKnLoe0x309wjB7NXH_beBGPqhsCKhLPAMlhxKRHOVCB-kJKh0kz5JHVcJyyyzjslnERoG5CSPBFWGmtEym0Uaun5fbJRAmMPCPUm1wIxY_LYichKlbsk9cxwA70xJabkxWoNMzvimmN6jSIbEJlZBtOf4fRPydM15XLA8vgNzfNeDNYEuv6GsW8yzj4uXmd7kr2LPyXzLJyS7ZWcZKPaN-hHCbA_YdOEsdbVoLD4F0aXvuqQRsZxzEE4_0IDXiHnLE4T4KeXrD8ynM3m-_h9-K-Ej8gNMPow9Ai0YptstHXnH5Pr9kd71NRPRiU6B00FJUM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXSTgQKFQsVDASAhOobu2E8fiVLUsRSwrQK2ouFiO7UAhJKv8IHrjETjyfDwJM0l220qAkDhFlsf2yP7GHjv2N4Q8sKFRyiRxEFqeBMIl4yDxzAZSOSE5l4lXrg02Iefz-OhIvVojT5ZvYTp-iNWBG1pGO1-jgeOB9PYpa2iaucc8FjD_DkXEZTwgw70308PZKecu61g4mZwAGNRkyT07ZtvLsudWoyF27NdzruZZh7Vdcabr_6XrVXKldzTpToeMa2TN5xtkvXc6aW_S1Qa5fIaR8Dr5sWNtUxp7Qk3uKHiO7d1ZTHXcJbRIqaEV7qLdz2_fW-JOivHpIWHaorWnWVFUPjuhtmgWGTS2QHi2lEiOmux9UR7XHz5T8JZpjSslvsgE2fxjg0d6FFeHLiOFuvuAN9UNcjh9erC7H_TBGwILo8ECy2DMpURCU4EMQkqOlWHKR7HjJmIT67xTwkkktwGcpJGwMrGJiLmdjI30fJMMclDsJqE-SY1A1pg0dGJipUpdFHuW8ARqY0qMyKPlIGrbM5tjgI1Md5zMTEP3a-z-Ebm_klx0bB6_kXnY4mAlYMpPePtNhvrt_Jnelex1-C6a6fGIbC2BonvDr3AnJcADhWkT2lplg8nifxiT-6JBGRmGIQd0_kUG9oWcszCOQJ8WWn9UWE9ne_i99a-C98jF_YOXMz17Pn9xm1wCFxAvIoGJbJFBXTb-Drlgv9THVXm3t6hfvZopMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXYTgQKFQsVDASAhOoYkfcSxOVZcAYrUqiIqKS-TYDhTCZrXZRfTGT-DI7-OXMJPHtpUAIXGKLI8fsr_xjB37G0IeWGm0NnkSSMvzQLg8DHLPbKC0E4pzlXvtmmATajpNjo70wQZ50r-Fafkh1gduqBnNeo0K7ueu2D1lDS1K95gnAtbfoZBaigEZjl-nh5NTzl3WsnAyFQEYdNRzz4Zsty97zhoNcWC_nnM1zzqsjcVJN_-rr1fJlc7RpHstMq6RDT_bIpud00k7la63yOUzjITXyY89a1cLY0-omTkKnmNzdxZTLXcJrQpqaI27aPfz2_eGuJNifHpImKbo0tOyqmpfnlBbreYlNDZHeDaUSI6a8n21OF5--EzBW6ZLtJT4IhNkZx9XeKRH0Tq0GQXU3QW8qW-Qw_Tpm_3nQRe8IbAi5iywDOZcKSQ0FcggpFWoDdM-Thw3MYus804Lp5DcBnBSxMKq3OYi4TYKjfJ8mwxm0LGbhPq8MAJZYwrpRGSVLlyceJbzHGpjWozIo34SM9sxm2OAjTJrOZlZBsOf4fCPyP215Lxl8_iNzMMGB2sBs_iEt9-UzN5On2X7ir2S7-JJFo7ITg-UrFP8GndSAjxQWDahrXU2qCz-hzEzX61QRkkpOaDzLzKwL-ScySSG_jTQ-mOHs3Qyxu-tfxW8Ry4ejNNs8mL68ja5BB4g3kMCDdkhg-Vi5e-QC_bL8rhe3O0U6hcOuyiu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+and+stability+analysis+of+a+second-order+time-accurate+loosely+coupled+partitioned+algorithm+for+transient+conjugate+heat+transfer+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Kazemi-Kamyab%2C+V&rft.au=Zuijlen%2C+A+H&rft.au=Bijl%2C+H&rft.date=2014-01-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=74&rft.issue=2&rft.spage=113&rft_id=info:doi/10.1002%2Ffld.3842&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3144307171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon