Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method

Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake engineering & structural dynamics Jg. 44; H. 10; S. 1495 - 1522
Hauptverfasser: Ebrahimian, Hamed, Astroza, Rodrigo, Conte, Joel P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0098-8847, 1096-9845
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time-invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well-established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof-of-concept examples are presented. For each example, the FE-simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three-story three-bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise.
This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd.
Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time-invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well-established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof-of-concept examples are presented. For each example, the FE-simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three-story three-bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd.
Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd.
Author Conte, Joel P.
Astroza, Rodrigo
Ebrahimian, Hamed
Author_xml – sequence: 1
  givenname: Hamed
  surname: Ebrahimian
  fullname: Ebrahimian, Hamed
  organization: Department of Structural Engineering, University of California, CA,, San Diego, USA
– sequence: 2
  givenname: Rodrigo
  surname: Astroza
  fullname: Astroza, Rodrigo
  organization: Department of Structural Engineering, University of California, San Diego, CA,, USA
– sequence: 3
  givenname: Joel P.
  surname: Conte
  fullname: Conte, Joel P.
  email: Correspondence to: Joel P. Conte, Department of Structural Engineering, University of California, San Diego, CA, USA., jpconte@ucsd.edu
  organization: Department of Structural Engineering, University of California, CA,, San Diego, USA
BookMark eNqNkdFuFCEUhompidvWxEcg8cabWWEYYObSbNausdE0seklYeGgVIbZAhPbV_CpZbumxqYmXh1y-M4P__mP0VGcIiD0ipIlJaR9CzewbDlrn6EFJYNohr7jR2hByNA3fd_JF-g452tCCBNELtDP9W2BaMHijzqMOmLnQ4GE3ZTwqOvJ64B3OukR9m3Ixde2nyL2Edeng4-gE84lzabMqcLOR18AQ4ARYsHjZCFkPGcfv2LrE5hSi3OQ6q0_SFXtb5M9Rc-dDhle_q4n6PL9-stq05x_PvuwenfemE6wttGt4VZrN0hrey6IoGIwUm87sRWcWcdEZ6Wp_qQmW911tAfREyq2XEphwLET9Oagu0vTzVwdqdFnAyHoCNOcFZW0H7qec_EfKOFEcElJRV8_Qq-nOcVqRNUPCtIOTLR_BE2ack7g1C7VhaY7RYna56dqfmqfX0WXj1Djy_2-StI-PDXQHAZ--AB3_xRW64v137zPBW4feJ2-KyGZ5Orq05kidLMR8mKlGPsFZ4--dw
CODEN IJEEBG
CitedBy_id crossref_primary_10_1016_j_ymssp_2019_02_040
crossref_primary_10_1002_eqe_3317
crossref_primary_10_1061__ASCE_ST_1943_541X_0003095
crossref_primary_10_1177_1475921721994740
crossref_primary_10_1002_eqe_3915
crossref_primary_10_1109_TIM_2020_2967138
crossref_primary_10_1177_14613484211014316
crossref_primary_10_1177_1077546320949115
crossref_primary_10_1002_stc_2297
crossref_primary_10_1002_stc_2373
crossref_primary_10_1016_j_ymssp_2020_107359
crossref_primary_10_1016_j_measurement_2022_110940
crossref_primary_10_1016_j_ymssp_2021_108602
crossref_primary_10_1016_j_soildyn_2017_10_017
crossref_primary_10_1016_j_ymssp_2021_108204
crossref_primary_10_1177_14759217241262972
crossref_primary_10_1016_j_ymssp_2021_108048
crossref_primary_10_3389_fbuil_2023_1143597
crossref_primary_10_1016_j_asoc_2019_105994
crossref_primary_10_3390_s22031278
crossref_primary_10_1016_j_ymssp_2016_07_020
crossref_primary_10_1016_j_ymssp_2016_02_002
crossref_primary_10_1016_j_engstruct_2023_117094
crossref_primary_10_1016_j_ymssp_2025_112361
crossref_primary_10_1002_stc_2128
crossref_primary_10_1016_j_probengmech_2025_103761
crossref_primary_10_1016_j_ymssp_2020_106779
crossref_primary_10_3390_buildings13010028
crossref_primary_10_1016_j_ymssp_2019_106582
crossref_primary_10_3390_app9020306
crossref_primary_10_1007_s13349_021_00496_7
crossref_primary_10_3390_buildings13020420
crossref_primary_10_1016_j_engstruct_2022_114901
crossref_primary_10_1016_j_engstruct_2022_113940
crossref_primary_10_1016_j_eswa_2023_122339
crossref_primary_10_1007_s00466_023_02403_x
crossref_primary_10_1016_j_engstruct_2021_112278
crossref_primary_10_1016_j_engstruct_2023_116632
crossref_primary_10_1016_j_engstruct_2019_109724
crossref_primary_10_2514_1_J063611
crossref_primary_10_1016_j_jsv_2018_09_023
crossref_primary_10_1016_j_ymssp_2017_06_032
crossref_primary_10_3389_fbuil_2017_00056
crossref_primary_10_1061__ASCE_EM_1943_7889_0001590
crossref_primary_10_1002_eqe_4132
crossref_primary_10_1016_j_cma_2022_114578
crossref_primary_10_1016_j_ymssp_2018_06_014
crossref_primary_10_1016_j_ymssp_2018_09_041
crossref_primary_10_1061__ASCE_EM_1943_7889_0002084
crossref_primary_10_1016_j_jsv_2020_115741
crossref_primary_10_3390_met10091141
crossref_primary_10_1177_1077546320925604
crossref_primary_10_1002_stc_2597
crossref_primary_10_1016_j_ymssp_2023_110425
crossref_primary_10_1002_eqe_4063
crossref_primary_10_1051_matecconf_20152403002
crossref_primary_10_1155_2024_4930237
crossref_primary_10_1177_1475921720948207
crossref_primary_10_1016_j_oceaneng_2024_119458
crossref_primary_10_1016_j_jsv_2023_117712
crossref_primary_10_1016_j_jsv_2020_115690
crossref_primary_10_1007_s00366_022_01622_9
crossref_primary_10_1007_s42452_021_04522_7
crossref_primary_10_1016_j_ymssp_2020_106837
crossref_primary_10_1016_j_probengmech_2020_103083
crossref_primary_10_3390_met10070876
crossref_primary_10_1002_stc_2424
crossref_primary_10_1016_j_ymssp_2021_108517
crossref_primary_10_1016_j_ymssp_2022_108814
crossref_primary_10_1016_j_engstruct_2020_111413
crossref_primary_10_1002_stc_3116
crossref_primary_10_1016_j_compstruc_2016_09_001
crossref_primary_10_1155_stc_1167999
crossref_primary_10_1155_2020_8822239
crossref_primary_10_1016_j_ymssp_2017_01_040
crossref_primary_10_1016_j_ymssp_2024_111703
crossref_primary_10_1016_j_engstruct_2025_120509
crossref_primary_10_1016_j_engstruct_2019_109867
crossref_primary_10_1016_j_soildyn_2022_107496
crossref_primary_10_1002_stc_2908
crossref_primary_10_1016_j_engfracmech_2018_04_041
crossref_primary_10_1016_j_jsv_2022_117188
crossref_primary_10_1016_j_ymssp_2023_111048
Cites_doi 10.1002/stc.290
10.1061/(ASCE)0733-9399(2003)129:12(1380)
10.1007/978-3-642-61544-3
10.2172/249299
10.1061/(ASCE)0733-9399(1988)114:5(833)
10.1016/j.apm.2008.07.019
10.1002/0471221546
10.1016/j.mechrescom.2012.08.006
10.1061/(ASCE)0887-3801(2008)22:5(281)
10.1016/j.probengmech.2010.08.006
10.1061/(ASCE)ST.1943-541X.0000915
10.1061/(ASCE)EM.1943-7889.0000851
10.1061/(ASCE)ST.1943-541X.0000511
10.1002/stc.84
10.1016/j.cma.2004.04.011
10.1098/rspa.2007.1834
10.1002/eqe.4290200806
10.1016/j.ymssp.2006.10.002
10.1006/mssp.2000.1351
10.1061/(ASCE)0733-9445(2000)126:1(98)
10.1016/0045-7825(90)90109-Y
10.1002/0470045345
10.1016/j.cma.2004.02.003
10.1002/eqe.63
10.1016/0045-7949(94)90357-3
10.1061/(ASCE)EM.1943-7889.0000498
10.1016/0141-0296(88)90035-1
10.1016/j.probengmech.2005.08.003
10.1109/TAC.1972.1100100
10.1002/stc.186
10.1177/1077546304031166
10.1177/1475921704047500
10.1016/j.strusafe.2010.03.008
10.1061/(ASCE)0733-9399(1994)120:6(1219)
10.1061/(ASCE)0733-9399(1984)110%3A12(1757)
10.1061/(ASCE)0733-9399(1999)125:2(133)
10.1016/0045-7825(93)90151-M
10.1016/j.ymssp.2005.04.008
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7TV
7SM
7SU
DOI 10.1002/eqe.2532
DatabaseName Istex
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Pollution Abstracts
Earthquake Engineering Abstracts
Environmental Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Pollution Abstracts
Earthquake Engineering Abstracts
Environmental Engineering Abstracts
DatabaseTitleList Earthquake Engineering Abstracts
CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 1522
ExternalDocumentID 3742468371
10_1002_eqe_2532
EQE2532
ark_67375_WNG_01HH67QC_3
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7TV
7SM
7SU
ID FETCH-LOGICAL-c4632-a2c5daaf97dd85606169c7ab46b653df364d7c0037a0ba4418e68016b5776cef3
IEDL.DBID DRFUL
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357973200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-8847
IngestDate Tue Oct 07 09:56:10 EDT 2025
Tue Oct 07 09:33:24 EDT 2025
Fri Jul 25 03:33:16 EDT 2025
Tue Nov 18 21:47:07 EST 2025
Sat Nov 29 03:40:47 EST 2025
Thu Sep 25 07:34:05 EDT 2025
Tue Nov 11 03:29:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4632-a2c5daaf97dd85606169c7ab46b653df364d7c0037a0ba4418e68016b5776cef3
Notes istex:A5FDFCD0900F5BEDAE14BC470329736D27B82E6D
ark:/67375/WNG-01HH67QC-3
ArticleID:EQE2532
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1696029362
PQPubID 866380
PageCount 28
ParticipantIDs proquest_miscellaneous_1718948556
proquest_miscellaneous_1705065710
proquest_journals_1696029362
crossref_primary_10_1002_eqe_2532
crossref_citationtrail_10_1002_eqe_2532
wiley_primary_10_1002_eqe_2532_EQE2532
istex_primary_ark_67375_WNG_01HH67QC_3
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationTitleAlternate Earthquake Engng Struct. Dyn
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kleiber M, Antunez H, Hien TD, Kowalczyk P. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. John Wiley & Sons Ltd: England, 1997.
Eftekhar Azam S, Mariani S. Dual Estimation of Partially Observed Nonlinear Structural Systems: A Particle Filter Approach. Mechanics Research Communications 2012; 46: 54-61. DOI: 10.1016/j.mechrescom.2012.08.006.
Gupta A, Krawinkler H. Behavior of Ductile SMRFs at Various Seismic Hazard Levels. ASCE Journal of Structural Engineering 2000; 126(1): 98-107. DOI: 10.1061/(ASCE)0733-9445(2000)126:1(98).
Saha N, Roy D. Extended Kalman Filters using Explicit and Derivative-free Local Linearizations. Applied Mathematical Modelling 2009; 33(6): 2545-2563. DOI: 10.1016/j.apm.2008.07.019.
Lin J, Zhang Y. Nonlinear Structural Identification Using Extended Kalman Filter. Computers & Structures 1994; 52(4): 757-764. DOI: 10.1016/0045-7949(94)90357-3.
Sues RH, Mau ST, Wen Y-K. Systems Identification of Degrading Hysteretic Restoring Forces. ASCE Journal of Engineering Mechanics 1988; 114(5): 833-846. DOI: 10.1061/(ASCE)0733-9399(1988)114:5(833).
Hemez FM, Doebling SW. Review and Assessment of Model Updating for Nonlinear Transient Analysis. Mechanical Systems and Signal Processing 2001; 15(1): 45-74. DOI: 10.1006/mssp.2000.1351.
Edited by: Haykin S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.: New York, 2001.
Barbato M, Conte JP. Finite Element Response Sensitivity Analysis: A Comparison between Force-based and Displacement-based Frame Element Models. Computer Methods in Applied Mechanics and Engineering 2005; 194(12-16): 1479-1512. DOI: 10.1016/j.cma.2004.04.011.
Wu M, Smyth AW. Application of the Unscented Kalman Filter for Real-time Nonlinear Structural System Identification. Structural Control and Health Monitoring 2007; 14(7): 971-990. DOI: 10.1002/stc.186.
Shahidi SG , Pakzad SN. Generalized Response Surface Model Updating Using Time Domain Data. ASCE Journal of Structural Engineering 2013: A4014001. DOI: 10.1061/(ASCE)ST.1943-541X.0000915.
Smyth AW, Masri SF, Chassiakos AG, Caughey TK. On-line Parametric Identification of MDOF Nonlinear Hysteretic Systems. ASCE Journal of Engineering Mechanics 1999; 125(2): 133-142. DOI: 10.1061/(ASCE)0733-9399(1999)125:2(133).
Loh C, Tsaur Y. Time Domain Estimation of Structural Parameters. Engineering Structures 1988; 10(2): 95-105. DOI: 10.1016/0141-0296(88)90035-1.
Carden EP, Fanning P. Vibration Based Condition Monitoring: A Review. Structural Health Monitoring 2004; 3(4): 355-377. DOI: 10.1177/1475921704047500.
Scott MH, Haukaas T. Software Framework for Parameter Updating and Finite-Element Response Sensitivity Analysis. ASCE Journal of Computing in Civil Engineering 2008; 22(5): 281-291. DOI: 10.1061/(ASCE)0887-3801(2008)22:5(281).
Ching J, Beck JL, Porter KA. Bayesian State and Parameter Estimation of Uncertain Dynamical Systems. Probabilistic Engineering Mechanics 2006; 21: 81-96. DOI: 10.1016/j.probengmech.2005.08.003.
Juang J. Applied System Identification. Prentice Hall PTR: Upper Saddle River, NJ, 1994.
Tsay JJ, Arora JS. Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory. Computer Methods in Applied Mechanics and Engineering 1990; 81(2): 183-208. DOI: 10.1016/0045-7825(90)90109-Y.
Koh CG, See LM. Estimation of Structural Parameters in Time Domain: A Substructure Approach. Earthquake Engineering & Structural Dynamics 1991; 20(8): 787-801. DOI: 10.1002/eqe.4290200806.
Mehra RK. Approaches to Adaptive Filtering. IEEE Transactions on Automatic Control 1972; 17(5): 693-698. DOI: 10.1109/TAC.1972.1100100.
Worden K, Farrar CR, Manson G, Park G. The Fundamental Axioms of Structural Health Monitoring. Proceedings of the Royal Society A 2007; 463(2082): 1639-1664. DOI: 10.1098/rspa.2007.1834.
Corigliano A, Mariani S. Parameter Identification in Explicit Structural Dynamics: Performance of the Extended Kalman Filter. Computer Methods in Applied Mechanics and Engineering 2004; 193(36-38): 3807-3835. DOI: 10.1016/j.cma.2004.02.003.
Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. Springer-Verlag: Berlin, 1989.
Bucy RS, Joseph PD. Filtering for Stochastic Processes, with Applications to Guidance. John Wiley & Sons, Inc.: New York, 1968.
Yang Y, Ma F. Constrained Kalman Filter for Nonlinear Structural Identification. Journal of Vibration and Control 2003; 9: 1343-1357. DOI: 10.1177/1077546304031166.
Bathe KJ. Finite Element Procedures. Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 1996.
AISC. Steel Construction Manual, 14th edn, Chicago, IL, 2011.
Astroza R, Ebrahimian H, Conte JP. Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering. ASCE Journal of Engineering Mechanics 2014: 04014149. DOI: 10.1061/(ASCE)EM.1943-7889.0000851.
Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2006.
Gu Q, Barbato M, Conte JP, Gill PE, McKenna F. OpenSees-SNOPT Framework for Finite-Element-Based Optimization of Structural and Geotechnical Systems. ASCE Journal of Structural Engineering 2012; 138(6): 822-834. DOI: 10.1061/(ASCE)ST.1943-541X.0000511.
Yan YJ, Cheng L, Wu ZY, Yam LH. Development in Vibration-based Structural Damage Detection Technique. Mechanical Systems and Signal Processing 200721(5): 2198-2211. DOI: 10.1016/j.ymssp.2006.10.002.
Chatzi EN, Smyth AW, Masri SF. Experimental Application of On-line Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty. Structural Safety 2010; 32(5): 326-337. DOI: 10.1016/j.strusafe.2010.03.008.
Chatzi EN, Smyth AW. The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification with Non-collocated Heterogeneous Sensing. Structural Control and Health Monitoring 2009; 16(1): 99-123. DOI: 10.1002/stc.290.
Zhang Y, Der Kiureghian A. Dynamic Response Sensitivity of Inelastic Structures. Computer Methods in Applied Mechanics and Engineering 1993; 108(1-2): 23-36. DOI: 10.1016/0045-7825(93)90151-M.
Hoshiya M, Saito E. Structural Identification by Extended Kalman Filter. ASCE Journal of Engineering Mechanics 1984; 110(12): 1757-1770. DOI: 10.1061/(ASCE)0733-9399(1984)110%3A12(1757).
Lin J, Betti R, Smyth AW, Longman RW. On-line Identification of Non-linear Hysteretic Structural Systems Using a Variable Trace Approach. Earthquake Engineering and Structural Dynamics 2001; 30(9): 1279-1303. DOI: 10.1002/eqe.63.
Omrani R, Hudson RE, Taciroglu E. Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter. ASCE Journal of Engineering Mechanics 2013; 139(4): 452-468. DOI: 10.1061/(ASCE)EM.1943-7889.0000498.
Yang JN, Lin S, Huang H, Zhou L. An Adaptive Extended Kalman Filter for Structural Damage Identification. Structural Control and Health Monitoring 2006; 13(4: 849-867. DOI: 10.1002/stc.84.
Nasrellah HA, Manohar CS. Finite Element Method Based Monte Carlo Filters for Structural System Identification. Probabilistic Engineering Mechanics 2011; 26(2): 294-307. DOI: 10.1016/j.probengmech.2010.08.006.
Kerschen G, Worden K, Vakakis AF, Golinval J. Past, Present and Future of Nonlinear System Identification in Structural Dynamics. Mechanical Systems and Signal Processing 2006; 20: 505-592. DOI: 10.1016/j.ymssp.2005.04.008.
Koh CG, See LM. Identification and Uncertainty Estimation of Structural Parameters. ASCE, Journal of Engineering Mechanics 1994; 120(6)1219-1236. DOI: 10.1061/(ASCE)0733-9399(1994)120:6(1219).
Conte JP, Vijalapura PK, Meghella M. Consistent Finite-Element Response Sensitivity Analysis. ASCE Journal of Engineering Mechanics 2003; 129(12): 1380-1393. DOI: 10.1061/(ASCE)0733-9399(2003)129:12(1380).
Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering (4th edn). Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 2012.
2010; 32
2005; 194
1993; 108
2012
2006; 13
2011
2007; 463
1988; 10
2004; 3
1997
1996
2006
1994
1999; 125
2004
1991
2007; 14
1990; 81
2009; 33
1984; 110
2006; 20
2003; 129
2001
2006; 21
2000; 126
1994; 120
1991; 20
2013; 139
2003; 9
2004; 193
1988; 114
2001; 15
1983
2008; 22
2014
2011; 26
2013
2007; 21
2012; 46
2012; 138
1994; 52
2009; 16
2001; 30
1968
1972; 17
1989
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
Bathe KJ (e_1_2_7_35_1) 1996
Chopra AK (e_1_2_7_45_1) 2012
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
AISC (e_1_2_7_48_1) 2011
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Filippou FC (e_1_2_7_37_1) 2004
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
Conte JP (e_1_2_7_40_1) 2001
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Juang J (e_1_2_7_6_1) 1994
Bucy RS (e_1_2_7_32_1) 1968
Kleiber M (e_1_2_7_38_1) 1997
References_xml – reference: Chatzi EN, Smyth AW, Masri SF. Experimental Application of On-line Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty. Structural Safety 2010; 32(5): 326-337. DOI: 10.1016/j.strusafe.2010.03.008.
– reference: Ching J, Beck JL, Porter KA. Bayesian State and Parameter Estimation of Uncertain Dynamical Systems. Probabilistic Engineering Mechanics 2006; 21: 81-96. DOI: 10.1016/j.probengmech.2005.08.003.
– reference: Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2006.
– reference: Zhang Y, Der Kiureghian A. Dynamic Response Sensitivity of Inelastic Structures. Computer Methods in Applied Mechanics and Engineering 1993; 108(1-2): 23-36. DOI: 10.1016/0045-7825(93)90151-M.
– reference: Barbato M, Conte JP. Finite Element Response Sensitivity Analysis: A Comparison between Force-based and Displacement-based Frame Element Models. Computer Methods in Applied Mechanics and Engineering 2005; 194(12-16): 1479-1512. DOI: 10.1016/j.cma.2004.04.011.
– reference: Gu Q, Barbato M, Conte JP, Gill PE, McKenna F. OpenSees-SNOPT Framework for Finite-Element-Based Optimization of Structural and Geotechnical Systems. ASCE Journal of Structural Engineering 2012; 138(6): 822-834. DOI: 10.1061/(ASCE)ST.1943-541X.0000511.
– reference: Saha N, Roy D. Extended Kalman Filters using Explicit and Derivative-free Local Linearizations. Applied Mathematical Modelling 2009; 33(6): 2545-2563. DOI: 10.1016/j.apm.2008.07.019.
– reference: AISC. Steel Construction Manual, 14th edn, Chicago, IL, 2011.
– reference: Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. Springer-Verlag: Berlin, 1989.
– reference: Gupta A, Krawinkler H. Behavior of Ductile SMRFs at Various Seismic Hazard Levels. ASCE Journal of Structural Engineering 2000; 126(1): 98-107. DOI: 10.1061/(ASCE)0733-9445(2000)126:1(98).
– reference: Corigliano A, Mariani S. Parameter Identification in Explicit Structural Dynamics: Performance of the Extended Kalman Filter. Computer Methods in Applied Mechanics and Engineering 2004; 193(36-38): 3807-3835. DOI: 10.1016/j.cma.2004.02.003.
– reference: Hoshiya M, Saito E. Structural Identification by Extended Kalman Filter. ASCE Journal of Engineering Mechanics 1984; 110(12): 1757-1770. DOI: 10.1061/(ASCE)0733-9399(1984)110%3A12(1757).
– reference: Worden K, Farrar CR, Manson G, Park G. The Fundamental Axioms of Structural Health Monitoring. Proceedings of the Royal Society A 2007; 463(2082): 1639-1664. DOI: 10.1098/rspa.2007.1834.
– reference: Yang Y, Ma F. Constrained Kalman Filter for Nonlinear Structural Identification. Journal of Vibration and Control 2003; 9: 1343-1357. DOI: 10.1177/1077546304031166.
– reference: Scott MH, Haukaas T. Software Framework for Parameter Updating and Finite-Element Response Sensitivity Analysis. ASCE Journal of Computing in Civil Engineering 2008; 22(5): 281-291. DOI: 10.1061/(ASCE)0887-3801(2008)22:5(281).
– reference: Koh CG, See LM. Identification and Uncertainty Estimation of Structural Parameters. ASCE, Journal of Engineering Mechanics 1994; 120(6)1219-1236. DOI: 10.1061/(ASCE)0733-9399(1994)120:6(1219).
– reference: Yang JN, Lin S, Huang H, Zhou L. An Adaptive Extended Kalman Filter for Structural Damage Identification. Structural Control and Health Monitoring 2006; 13(4: 849-867. DOI: 10.1002/stc.84.
– reference: Sues RH, Mau ST, Wen Y-K. Systems Identification of Degrading Hysteretic Restoring Forces. ASCE Journal of Engineering Mechanics 1988; 114(5): 833-846. DOI: 10.1061/(ASCE)0733-9399(1988)114:5(833).
– reference: Kleiber M, Antunez H, Hien TD, Kowalczyk P. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. John Wiley & Sons Ltd: England, 1997.
– reference: Hemez FM, Doebling SW. Review and Assessment of Model Updating for Nonlinear Transient Analysis. Mechanical Systems and Signal Processing 2001; 15(1): 45-74. DOI: 10.1006/mssp.2000.1351.
– reference: Kerschen G, Worden K, Vakakis AF, Golinval J. Past, Present and Future of Nonlinear System Identification in Structural Dynamics. Mechanical Systems and Signal Processing 2006; 20: 505-592. DOI: 10.1016/j.ymssp.2005.04.008.
– reference: Nasrellah HA, Manohar CS. Finite Element Method Based Monte Carlo Filters for Structural System Identification. Probabilistic Engineering Mechanics 2011; 26(2): 294-307. DOI: 10.1016/j.probengmech.2010.08.006.
– reference: Carden EP, Fanning P. Vibration Based Condition Monitoring: A Review. Structural Health Monitoring 2004; 3(4): 355-377. DOI: 10.1177/1475921704047500.
– reference: Eftekhar Azam S, Mariani S. Dual Estimation of Partially Observed Nonlinear Structural Systems: A Particle Filter Approach. Mechanics Research Communications 2012; 46: 54-61. DOI: 10.1016/j.mechrescom.2012.08.006.
– reference: Mehra RK. Approaches to Adaptive Filtering. IEEE Transactions on Automatic Control 1972; 17(5): 693-698. DOI: 10.1109/TAC.1972.1100100.
– reference: Lin J, Zhang Y. Nonlinear Structural Identification Using Extended Kalman Filter. Computers & Structures 1994; 52(4): 757-764. DOI: 10.1016/0045-7949(94)90357-3.
– reference: Loh C, Tsaur Y. Time Domain Estimation of Structural Parameters. Engineering Structures 1988; 10(2): 95-105. DOI: 10.1016/0141-0296(88)90035-1.
– reference: Wu M, Smyth AW. Application of the Unscented Kalman Filter for Real-time Nonlinear Structural System Identification. Structural Control and Health Monitoring 2007; 14(7): 971-990. DOI: 10.1002/stc.186.
– reference: Juang J. Applied System Identification. Prentice Hall PTR: Upper Saddle River, NJ, 1994.
– reference: Conte JP, Vijalapura PK, Meghella M. Consistent Finite-Element Response Sensitivity Analysis. ASCE Journal of Engineering Mechanics 2003; 129(12): 1380-1393. DOI: 10.1061/(ASCE)0733-9399(2003)129:12(1380).
– reference: Bathe KJ. Finite Element Procedures. Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 1996.
– reference: Bucy RS, Joseph PD. Filtering for Stochastic Processes, with Applications to Guidance. John Wiley & Sons, Inc.: New York, 1968.
– reference: Edited by: Haykin S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.: New York, 2001.
– reference: Lin J, Betti R, Smyth AW, Longman RW. On-line Identification of Non-linear Hysteretic Structural Systems Using a Variable Trace Approach. Earthquake Engineering and Structural Dynamics 2001; 30(9): 1279-1303. DOI: 10.1002/eqe.63.
– reference: Omrani R, Hudson RE, Taciroglu E. Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter. ASCE Journal of Engineering Mechanics 2013; 139(4): 452-468. DOI: 10.1061/(ASCE)EM.1943-7889.0000498.
– reference: Tsay JJ, Arora JS. Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory. Computer Methods in Applied Mechanics and Engineering 1990; 81(2): 183-208. DOI: 10.1016/0045-7825(90)90109-Y.
– reference: Smyth AW, Masri SF, Chassiakos AG, Caughey TK. On-line Parametric Identification of MDOF Nonlinear Hysteretic Systems. ASCE Journal of Engineering Mechanics 1999; 125(2): 133-142. DOI: 10.1061/(ASCE)0733-9399(1999)125:2(133).
– reference: Koh CG, See LM. Estimation of Structural Parameters in Time Domain: A Substructure Approach. Earthquake Engineering & Structural Dynamics 1991; 20(8): 787-801. DOI: 10.1002/eqe.4290200806.
– reference: Yan YJ, Cheng L, Wu ZY, Yam LH. Development in Vibration-based Structural Damage Detection Technique. Mechanical Systems and Signal Processing 200721(5): 2198-2211. DOI: 10.1016/j.ymssp.2006.10.002.
– reference: Shahidi SG , Pakzad SN. Generalized Response Surface Model Updating Using Time Domain Data. ASCE Journal of Structural Engineering 2013: A4014001. DOI: 10.1061/(ASCE)ST.1943-541X.0000915.
– reference: Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering (4th edn). Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 2012.
– reference: Astroza R, Ebrahimian H, Conte JP. Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering. ASCE Journal of Engineering Mechanics 2014: 04014149. DOI: 10.1061/(ASCE)EM.1943-7889.0000851.
– reference: Chatzi EN, Smyth AW. The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification with Non-collocated Heterogeneous Sensing. Structural Control and Health Monitoring 2009; 16(1): 99-123. DOI: 10.1002/stc.290.
– volume: 108
  start-page: 23
  issue: 1‐2
  year: 1993
  end-page: 36
  article-title: Dynamic Response Sensitivity of Inelastic Structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2011
– year: 1983
– volume: 30
  start-page: 1279
  issue: 9
  year: 2001
  end-page: 1303
  article-title: On‐line Identification of Non‐linear Hysteretic Structural Systems Using a Variable Trace Approach
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 129
  start-page: 1380
  issue: 12
  year: 2003
  end-page: 1393
  article-title: Consistent Finite‐Element Response Sensitivity Analysis
  publication-title: ASCE Journal of Engineering Mechanics
– start-page: A4014001
  year: 2013
  article-title: Generalized Response Surface Model Updating Using Time Domain Data
  publication-title: ASCE Journal of Structural Engineering
– volume: 138
  start-page: 822
  issue: 6
  year: 2012
  end-page: 834
  article-title: OpenSees‐SNOPT Framework for Finite‐Element‐Based Optimization of Structural and Geotechnical Systems
  publication-title: ASCE Journal of Structural Engineering
– volume: 125
  start-page: 133
  issue: 2
  year: 1999
  end-page: 142
  article-title: On‐line Parametric Identification of MDOF Nonlinear Hysteretic Systems
  publication-title: ASCE Journal of Engineering Mechanics
– year: 1968
– year: 2001
– year: 1989
– volume: 21
  start-page: 2198
  issue: 5
  year: 2007
  end-page: 2211
  article-title: Development in Vibration‐based Structural Damage Detection Technique
  publication-title: Mechanical Systems and Signal Processing
– year: 1996
– volume: 193
  start-page: 3807
  issue: 36‐38
  year: 2004
  end-page: 3835
  article-title: Parameter Identification in Explicit Structural Dynamics: Performance of the Extended Kalman Filter
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 9
  start-page: 1343
  year: 2003
  end-page: 1357
  article-title: Constrained Kalman Filter for Nonlinear Structural Identification
  publication-title: Journal of Vibration and Control
– volume: 46
  start-page: 54
  year: 2012
  end-page: 61
  article-title: Dual Estimation of Partially Observed Nonlinear Structural Systems: A Particle Filter Approach
  publication-title: Mechanics Research Communications
– volume: 3
  start-page: 355
  issue: 4
  year: 2004
  end-page: 377
  article-title: Vibration Based Condition Monitoring: A Review
  publication-title: Structural Health Monitoring
– volume: 114
  start-page: 833
  issue: 5
  year: 1988
  end-page: 846
  article-title: Systems Identification of Degrading Hysteretic Restoring Forces
  publication-title: ASCE Journal of Engineering Mechanics
– year: 1994
– year: 2014
– volume: 26
  start-page: 294
  issue: 2
  year: 2011
  end-page: 307
  article-title: Finite Element Method Based Monte Carlo Filters for Structural System Identification
  publication-title: Probabilistic Engineering Mechanics
– volume: 21
  start-page: 81
  year: 2006
  end-page: 96
  article-title: Bayesian State and Parameter Estimation of Uncertain Dynamical Systems
  publication-title: Probabilistic Engineering Mechanics
– year: 2012
– volume: 15
  start-page: 45
  issue: 1
  year: 2001
  end-page: 74
  article-title: Review and Assessment of Model Updating for Nonlinear Transient Analysis
  publication-title: Mechanical Systems and Signal Processing
– volume: 10
  start-page: 95
  issue: 2
  year: 1988
  end-page: 105
  article-title: Time Domain Estimation of Structural Parameters
  publication-title: Engineering Structures
– volume: 139
  start-page: 452
  issue: 4
  year: 2013
  end-page: 468
  article-title: Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter
  publication-title: ASCE Journal of Engineering Mechanics
– volume: 120
  start-page: 1219
  issue: 6
  year: 1994
  end-page: 1236
  article-title: Identification and Uncertainty Estimation of Structural Parameters
  publication-title: ASCE, Journal of Engineering Mechanics
– volume: 194
  start-page: 1479
  issue: 12‐16
  year: 2005
  end-page: 1512
  article-title: Finite Element Response Sensitivity Analysis: A Comparison between Force‐based and Displacement‐based Frame Element Models
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2006
– year: 2004
– year: 2014
  article-title: Material Parameter Identification in Distributed Plasticity FE Models of Frame‐Type Structures Using Nonlinear Stochastic Filtering
  publication-title: ASCE Journal of Engineering Mechanics
– year: 1997
– volume: 463
  start-page: 1639
  issue: 2082
  year: 2007
  end-page: 1664
  article-title: The Fundamental Axioms of Structural Health Monitoring
  publication-title: Proceedings of the Royal Society A
– volume: 14
  start-page: 971
  issue: 7
  year: 2007
  end-page: 990
  article-title: Application of the Unscented Kalman Filter for Real‐time Nonlinear Structural System Identification
  publication-title: Structural Control and Health Monitoring
– volume: 126
  start-page: 98
  issue: 1
  year: 2000
  end-page: 107
  article-title: Behavior of Ductile SMRFs at Various Seismic Hazard Levels
  publication-title: ASCE Journal of Structural Engineering
– volume: 20
  start-page: 787
  issue: 8
  year: 1991
  end-page: 801
  article-title: Estimation of Structural Parameters in Time Domain: A Substructure Approach
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 33
  start-page: 2545
  issue: 6
  year: 2009
  end-page: 2563
  article-title: Extended Kalman Filters using Explicit and Derivative‐free Local Linearizations
  publication-title: Applied Mathematical Modelling
– volume: 32
  start-page: 326
  issue: 5
  year: 2010
  end-page: 337
  article-title: Experimental Application of On‐line Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty
  publication-title: Structural Safety
– volume: 13
  start-page: 849
  issue: 4
  year: 2006
  end-page: 867
  article-title: An Adaptive Extended Kalman Filter for Structural Damage Identification
  publication-title: Structural Control and Health Monitoring
– volume: 81
  start-page: 183
  issue: 2
  year: 1990
  end-page: 208
  article-title: Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 52
  start-page: 757
  issue: 4
  year: 1994
  end-page: 764
  article-title: Nonlinear Structural Identification Using Extended Kalman Filter
  publication-title: Computers & Structures
– volume: 20
  start-page: 505
  year: 2006
  end-page: 592
  article-title: Past, Present and Future of Nonlinear System Identification in Structural Dynamics
  publication-title: Mechanical Systems and Signal Processing
– year: 1991
– volume: 17
  start-page: 693
  issue: 5
  year: 1972
  end-page: 698
  article-title: Approaches to Adaptive Filtering
  publication-title: IEEE Transactions on Automatic Control
– volume: 16
  start-page: 99
  issue: 1
  year: 2009
  end-page: 123
  article-title: The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification with Non‐collocated Heterogeneous Sensing
  publication-title: Structural Control and Health Monitoring
– volume: 110
  start-page: 1757
  issue: 12
  year: 1984
  end-page: 1770
  article-title: Structural Identification by Extended Kalman Filter
  publication-title: ASCE Journal of Engineering Mechanics
– volume: 22
  start-page: 281
  issue: 5
  year: 2008
  end-page: 291
  article-title: Software Framework for Parameter Updating and Finite‐Element Response Sensitivity Analysis
  publication-title: ASCE Journal of Computing in Civil Engineering
– ident: e_1_2_7_25_1
  doi: 10.1002/stc.290
– ident: e_1_2_7_43_1
  doi: 10.1061/(ASCE)0733-9399(2003)129:12(1380)
– volume-title: Dynamics of Structures: Theory and Applications to Earthquake Engineering
  year: 2012
  ident: e_1_2_7_45_1
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-642-61544-3
– ident: e_1_2_7_3_1
  doi: 10.2172/249299
– ident: e_1_2_7_47_1
– ident: e_1_2_7_11_1
  doi: 10.1061/(ASCE)0733-9399(1988)114:5(833)
– ident: e_1_2_7_21_1
  doi: 10.1016/j.apm.2008.07.019
– ident: e_1_2_7_33_1
  doi: 10.1002/0471221546
– ident: e_1_2_7_26_1
  doi: 10.1016/j.mechrescom.2012.08.006
– ident: e_1_2_7_42_1
  doi: 10.1061/(ASCE)0887-3801(2008)22:5(281)
– ident: e_1_2_7_34_1
  doi: 10.1016/j.probengmech.2010.08.006
– ident: e_1_2_7_10_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000915
– volume-title: Filtering for Stochastic Processes, with Applications to Guidance
  year: 1968
  ident: e_1_2_7_32_1
– ident: e_1_2_7_46_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_28_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000851
– volume-title: Applied System Identification
  year: 1994
  ident: e_1_2_7_6_1
– volume-title: Steel Construction Manual
  year: 2011
  ident: e_1_2_7_48_1
– ident: e_1_2_7_41_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000511
– ident: e_1_2_7_19_1
  doi: 10.1002/stc.84
– ident: e_1_2_7_44_1
  doi: 10.1016/j.cma.2004.04.011
– ident: e_1_2_7_2_1
  doi: 10.1098/rspa.2007.1834
– ident: e_1_2_7_53_1
  doi: 10.1002/eqe.4290200806
– volume-title: Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations
  year: 1997
  ident: e_1_2_7_38_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ymssp.2006.10.002
– ident: e_1_2_7_8_1
  doi: 10.1006/mssp.2000.1351
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_7_35_1
– ident: e_1_2_7_52_1
  doi: 10.1061/(ASCE)0733-9445(2000)126:1(98)
– ident: e_1_2_7_27_1
  doi: 10.1016/0045-7825(90)90109-Y
– ident: e_1_2_7_31_1
  doi: 10.1002/0470045345
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cma.2004.02.003
– ident: e_1_2_7_13_1
  doi: 10.1002/eqe.63
– ident: e_1_2_7_16_1
  doi: 10.1016/0045-7949(94)90357-3
– ident: e_1_2_7_36_1
– volume-title: Earthquake Engineering Frontiers in the New Millennium
  year: 2001
  ident: e_1_2_7_40_1
– ident: e_1_2_7_9_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000498
– ident: e_1_2_7_15_1
  doi: 10.1016/0141-0296(88)90035-1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.probengmech.2005.08.003
– ident: e_1_2_7_51_1
  doi: 10.1109/TAC.1972.1100100
– ident: e_1_2_7_22_1
  doi: 10.1002/stc.186
– volume-title: Earthquake Engineering: From Engineering Seismology to Performance‐Based Engineering
  year: 2004
  ident: e_1_2_7_37_1
– ident: e_1_2_7_18_1
  doi: 10.1177/1077546304031166
– ident: e_1_2_7_4_1
  doi: 10.1177/1475921704047500
– ident: e_1_2_7_23_1
  doi: 10.1016/j.strusafe.2010.03.008
– ident: e_1_2_7_50_1
– ident: e_1_2_7_17_1
  doi: 10.1061/(ASCE)0733-9399(1994)120:6(1219)
– ident: e_1_2_7_14_1
  doi: 10.1061/(ASCE)0733-9399(1984)110%3A12(1757)
– ident: e_1_2_7_12_1
  doi: 10.1061/(ASCE)0733-9399(1999)125:2(133)
– ident: e_1_2_7_39_1
  doi: 10.1016/0045-7825(93)90151-M
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ymssp.2005.04.008
SSID ssj0003607
Score 2.4554899
Snippet Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis...
This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques...
Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1495
SubjectTerms direct differentiation method
Estimates
Finite element method
finite element model updating
finite element response sensitivity
Kalman filter
Mathematical models
Model updating
Noise measurement
nonlinear finite element
Nonlinearity
Parameter estimation
Seismic phenomena
structural health monitoring
Title Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method
URI https://api.istex.fr/ark:/67375/WNG-01HH67QC-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2532
https://www.proquest.com/docview/1696029362
https://www.proquest.com/docview/1705065710
https://www.proquest.com/docview/1718948556
Volume 44
WOSCitedRecordID wos000357973200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-9845
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003607
  issn: 0098-8847
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXQ5w4I0otNUgoXIKdeLYTo5Vu9uVWq1oRUVvluPYaEUbYLet-A386s7ESWglQEiccsg4mTjz-GSPv2HsrQxa6CIVSS65T_Is6KT0WiRBBSVD4KKU7UHhIz2fF2dn5YeuqpLOwkR-iGHBjTyjjdfk4LZa7fwiDfXf_ftMCgy_4wzNVo7YeP9keno0xGGh-MCYWWAQ7qlnebbTj72TjMY0rz_uIM3beLVNONNH_6PqY_awg5mwG-3iCVvzzVP24Bb54DP2c9Ktf8OhPb-wDYQF7ZwDolhAGNtaJhAz-AVVzACxccRjjrBooIlq2SVEAloi78AHEIAFHyvSoW2yswKqrP8MMXVC34_lMloExAbWz9npdPJxb5Z0nRkSlyuRJTZzsrY2lLquC8RMKlWl07bKVaWkqINQea0dcdtYXllEXIVXmApVJbVWzgfxgo1QUf-SARdeitJqjDQOB4XCSe9EqLLUlxLz6zp71_8i4zracuqecW4i4XJmcHYNze46ezNIfotUHb-R2W7_8iBgl1-otE1L82l-YHg6myl9vGfwtRu9GZjOq1cGv1JxxEeK3jXcRn-kTRbb-K9XKKO5RFiHwO1vMmnRsvIo1Kc1nD8qbCbHE7q--lfB1-w-YjoZaxQ32AiNwG-ye-76crFabnU-cgOJqBcB
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqLhJw4I0oFBgkBKdQJ47tRJxQ2WVRlxVFrejNchwbrWgD7LYVv6G_ujNxEloJEBKnHDKJJ_Y8Pjnjbxh7LoMWukhFkkvukzwLOim9FklQQckQuChle1B4pufz4uCg_LjGXvdnYSI_xLDhRp7RxmtycNqQ3vrFGup_-FeZFBh_RzlaEZr36O2nyf5sCMRC8YEys8Ao3HPP8myrf_ZSNhrRxP68BDUvAtY240xu_peut9iNDmjCm2gZt9mab-6w6xfoB--ys3G3Aw479vDINhAW9O8cEMcCAtnWNoG4wY-oZgaIjyMedIRFA03Uyy4hUtASfQe-gCAs-FiTDm2bnRVQbf0XiMkT-o4sx9EmILawvsf2J-O97WnS9WZIHE52ltjMydraUOq6LhA1qVSVTtsqV5WSog5C5bV2xG5jeWURcxVeYTJUldRaOR_EfbaOivoHDLjwUpRWY6xx-FAonPROhCpLfSkxw26wl_0aGdcRl1P_jEMTKZczg7NraHY32LNB8nsk6_iNzIt2mQcBu_xKxW1ams_zd4an06nSu9sGh93s7cB0fr0y-JWKI0JSNNZwGz2SfrPYxn87QRnNJQI7hG5_k0mLlpdHoT6t5fxRYTPeHdP14b8KPmVXp3sfZmb2fr7ziF1DhCdjxeImW0eD8I_ZFXd6vFgtn3QOcw4rCBrx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXYTgwLuiUGCQEJxCnTi2E3FC7S6Lulq1iIreLMex0Yo2lN2C-A38ambiJLQSICROOWScTJx5fLLH3zD2TAYtdJGKJJfcJ3kWdFJ6LZKggpIhcFHK9qDwXC8WxfFxebDBXvVnYSI_xLDgRp7RxmtycH9Wh51frKH-i3-ZSYHxd5xTD5kRG--9mx7Nh0AsFB8oMwuMwj33LM92-rGXstGYJvb7Jah5EbC2GWd68790vcVudEATXkfLuM02fHOHXb9AP3iX_Zh0K-Cwb09ObQNhSXvngDgWEMi2tgnEDX5KNTNAfBzxoCMsG2iiXnYFkYKW6DvwAQRhwceadGjb7KyBaus_Qkye0HdkOY82AbGF9T12NJ28350lXW-GxOVKZInNnKytDaWu6wJRk0pV6bStclUpKeogVF5rR-w2llcWMVfhFSZDVUmtlfNBbLIRKurvM-DCS1FajbHG4aBQOOmdCFWW-lJiht1iL_p_ZFxHXE79M05MpFzODM6uodndYk8HybNI1vEbmeftbx4E7OoTFbdpaT4s3hiezmZKH-4afO12bwem8-u1wa9UHBGSoncNt9EjaZvFNv7zV5TRXCKwQ-j2N5m0aHl5FOrTWs4fFTaTwwldH_yr4BN29WBvauZvF_sP2TUEeDIWLG6zEdqDf8SuuG_ny_XqcecvPwGPrBps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Kalman+filter+for+material+parameter+estimation+in+nonlinear+structural+finite+element+models+using+direct+differentiation+method&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Ebrahimian%2C+Hamed&rft.au=Astroza%2C+Rodrigo&rft.au=Conte%2C+Joel+P&rft.date=2015-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=44&rft.issue=10&rft.spage=1495&rft_id=info:doi/10.1002%2Feqe.2532&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3742468371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon