Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method
Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material con...
Gespeichert in:
| Veröffentlicht in: | Earthquake engineering & structural dynamics Jg. 44; H. 10; S. 1495 - 1522 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bognor Regis
Blackwell Publishing Ltd
01.08.2015
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0098-8847, 1096-9845 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Summary
This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time-invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well-established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof-of-concept examples are presented. For each example, the FE-simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three-story three-bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd. Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time-invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well-established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof-of-concept examples are presented. For each example, the FE-simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three-story three-bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd. Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd. |
| Author | Conte, Joel P. Astroza, Rodrigo Ebrahimian, Hamed |
| Author_xml | – sequence: 1 givenname: Hamed surname: Ebrahimian fullname: Ebrahimian, Hamed organization: Department of Structural Engineering, University of California, CA,, San Diego, USA – sequence: 2 givenname: Rodrigo surname: Astroza fullname: Astroza, Rodrigo organization: Department of Structural Engineering, University of California, San Diego, CA,, USA – sequence: 3 givenname: Joel P. surname: Conte fullname: Conte, Joel P. email: Correspondence to: Joel P. Conte, Department of Structural Engineering, University of California, San Diego, CA, USA., jpconte@ucsd.edu organization: Department of Structural Engineering, University of California, CA,, San Diego, USA |
| BookMark | eNqNkdFuFCEUhompidvWxEcg8cabWWEYYObSbNausdE0seklYeGgVIbZAhPbV_CpZbumxqYmXh1y-M4P__mP0VGcIiD0ipIlJaR9CzewbDlrn6EFJYNohr7jR2hByNA3fd_JF-g452tCCBNELtDP9W2BaMHijzqMOmLnQ4GE3ZTwqOvJ64B3OukR9m3Ixde2nyL2Edeng4-gE84lzabMqcLOR18AQ4ARYsHjZCFkPGcfv2LrE5hSi3OQ6q0_SFXtb5M9Rc-dDhle_q4n6PL9-stq05x_PvuwenfemE6wttGt4VZrN0hrey6IoGIwUm87sRWcWcdEZ6Wp_qQmW911tAfREyq2XEphwLET9Oagu0vTzVwdqdFnAyHoCNOcFZW0H7qec_EfKOFEcElJRV8_Qq-nOcVqRNUPCtIOTLR_BE2ack7g1C7VhaY7RYna56dqfmqfX0WXj1Djy_2-StI-PDXQHAZ--AB3_xRW64v137zPBW4feJ2-KyGZ5Orq05kidLMR8mKlGPsFZ4--dw |
| CODEN | IJEEBG |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2019_02_040 crossref_primary_10_1002_eqe_3317 crossref_primary_10_1061__ASCE_ST_1943_541X_0003095 crossref_primary_10_1177_1475921721994740 crossref_primary_10_1002_eqe_3915 crossref_primary_10_1109_TIM_2020_2967138 crossref_primary_10_1177_14613484211014316 crossref_primary_10_1177_1077546320949115 crossref_primary_10_1002_stc_2297 crossref_primary_10_1002_stc_2373 crossref_primary_10_1016_j_ymssp_2020_107359 crossref_primary_10_1016_j_measurement_2022_110940 crossref_primary_10_1016_j_ymssp_2021_108602 crossref_primary_10_1016_j_soildyn_2017_10_017 crossref_primary_10_1016_j_ymssp_2021_108204 crossref_primary_10_1177_14759217241262972 crossref_primary_10_1016_j_ymssp_2021_108048 crossref_primary_10_3389_fbuil_2023_1143597 crossref_primary_10_1016_j_asoc_2019_105994 crossref_primary_10_3390_s22031278 crossref_primary_10_1016_j_ymssp_2016_07_020 crossref_primary_10_1016_j_ymssp_2016_02_002 crossref_primary_10_1016_j_engstruct_2023_117094 crossref_primary_10_1016_j_ymssp_2025_112361 crossref_primary_10_1002_stc_2128 crossref_primary_10_1016_j_probengmech_2025_103761 crossref_primary_10_1016_j_ymssp_2020_106779 crossref_primary_10_3390_buildings13010028 crossref_primary_10_1016_j_ymssp_2019_106582 crossref_primary_10_3390_app9020306 crossref_primary_10_1007_s13349_021_00496_7 crossref_primary_10_3390_buildings13020420 crossref_primary_10_1016_j_engstruct_2022_114901 crossref_primary_10_1016_j_engstruct_2022_113940 crossref_primary_10_1016_j_eswa_2023_122339 crossref_primary_10_1007_s00466_023_02403_x crossref_primary_10_1016_j_engstruct_2021_112278 crossref_primary_10_1016_j_engstruct_2023_116632 crossref_primary_10_1016_j_engstruct_2019_109724 crossref_primary_10_2514_1_J063611 crossref_primary_10_1016_j_jsv_2018_09_023 crossref_primary_10_1016_j_ymssp_2017_06_032 crossref_primary_10_3389_fbuil_2017_00056 crossref_primary_10_1061__ASCE_EM_1943_7889_0001590 crossref_primary_10_1002_eqe_4132 crossref_primary_10_1016_j_cma_2022_114578 crossref_primary_10_1016_j_ymssp_2018_06_014 crossref_primary_10_1016_j_ymssp_2018_09_041 crossref_primary_10_1061__ASCE_EM_1943_7889_0002084 crossref_primary_10_1016_j_jsv_2020_115741 crossref_primary_10_3390_met10091141 crossref_primary_10_1177_1077546320925604 crossref_primary_10_1002_stc_2597 crossref_primary_10_1016_j_ymssp_2023_110425 crossref_primary_10_1002_eqe_4063 crossref_primary_10_1051_matecconf_20152403002 crossref_primary_10_1155_2024_4930237 crossref_primary_10_1177_1475921720948207 crossref_primary_10_1016_j_oceaneng_2024_119458 crossref_primary_10_1016_j_jsv_2023_117712 crossref_primary_10_1016_j_jsv_2020_115690 crossref_primary_10_1007_s00366_022_01622_9 crossref_primary_10_1007_s42452_021_04522_7 crossref_primary_10_1016_j_ymssp_2020_106837 crossref_primary_10_1016_j_probengmech_2020_103083 crossref_primary_10_3390_met10070876 crossref_primary_10_1002_stc_2424 crossref_primary_10_1016_j_ymssp_2021_108517 crossref_primary_10_1016_j_ymssp_2022_108814 crossref_primary_10_1016_j_engstruct_2020_111413 crossref_primary_10_1002_stc_3116 crossref_primary_10_1016_j_compstruc_2016_09_001 crossref_primary_10_1155_stc_1167999 crossref_primary_10_1155_2020_8822239 crossref_primary_10_1016_j_ymssp_2017_01_040 crossref_primary_10_1016_j_ymssp_2024_111703 crossref_primary_10_1016_j_engstruct_2025_120509 crossref_primary_10_1016_j_engstruct_2019_109867 crossref_primary_10_1016_j_soildyn_2022_107496 crossref_primary_10_1002_stc_2908 crossref_primary_10_1016_j_engfracmech_2018_04_041 crossref_primary_10_1016_j_jsv_2022_117188 crossref_primary_10_1016_j_ymssp_2023_111048 |
| Cites_doi | 10.1002/stc.290 10.1061/(ASCE)0733-9399(2003)129:12(1380) 10.1007/978-3-642-61544-3 10.2172/249299 10.1061/(ASCE)0733-9399(1988)114:5(833) 10.1016/j.apm.2008.07.019 10.1002/0471221546 10.1016/j.mechrescom.2012.08.006 10.1061/(ASCE)0887-3801(2008)22:5(281) 10.1016/j.probengmech.2010.08.006 10.1061/(ASCE)ST.1943-541X.0000915 10.1061/(ASCE)EM.1943-7889.0000851 10.1061/(ASCE)ST.1943-541X.0000511 10.1002/stc.84 10.1016/j.cma.2004.04.011 10.1098/rspa.2007.1834 10.1002/eqe.4290200806 10.1016/j.ymssp.2006.10.002 10.1006/mssp.2000.1351 10.1061/(ASCE)0733-9445(2000)126:1(98) 10.1016/0045-7825(90)90109-Y 10.1002/0470045345 10.1016/j.cma.2004.02.003 10.1002/eqe.63 10.1016/0045-7949(94)90357-3 10.1061/(ASCE)EM.1943-7889.0000498 10.1016/0141-0296(88)90035-1 10.1016/j.probengmech.2005.08.003 10.1109/TAC.1972.1100100 10.1002/stc.186 10.1177/1077546304031166 10.1177/1475921704047500 10.1016/j.strusafe.2010.03.008 10.1061/(ASCE)0733-9399(1994)120:6(1219) 10.1061/(ASCE)0733-9399(1984)110%3A12(1757) 10.1061/(ASCE)0733-9399(1999)125:2(133) 10.1016/0045-7825(93)90151-M 10.1016/j.ymssp.2005.04.008 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7TV 7SM 7SU |
| DOI | 10.1002/eqe.2532 |
| DatabaseName | Istex CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Pollution Abstracts Earthquake Engineering Abstracts Environmental Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Pollution Abstracts Earthquake Engineering Abstracts Environmental Engineering Abstracts |
| DatabaseTitleList | Earthquake Engineering Abstracts CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-9845 |
| EndPage | 1522 |
| ExternalDocumentID | 3742468371 10_1002_eqe_2532 EQE2532 ark_67375_WNG_01HH67QC_3 |
| Genre | article |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHQN AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT ALUQN AAYXX CITATION O8X 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7TV 7SM 7SU |
| ID | FETCH-LOGICAL-c4632-a2c5daaf97dd85606169c7ab46b653df364d7c0037a0ba4418e68016b5776cef3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357973200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-8847 |
| IngestDate | Tue Oct 07 09:56:10 EDT 2025 Tue Oct 07 09:33:24 EDT 2025 Fri Jul 25 03:33:16 EDT 2025 Tue Nov 18 21:47:07 EST 2025 Sat Nov 29 03:40:47 EST 2025 Thu Sep 25 07:34:05 EDT 2025 Tue Nov 11 03:29:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4632-a2c5daaf97dd85606169c7ab46b653df364d7c0037a0ba4418e68016b5776cef3 |
| Notes | istex:A5FDFCD0900F5BEDAE14BC470329736D27B82E6D ark:/67375/WNG-01HH67QC-3 ArticleID:EQE2532 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1696029362 |
| PQPubID | 866380 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_1718948556 proquest_miscellaneous_1705065710 proquest_journals_1696029362 crossref_primary_10_1002_eqe_2532 crossref_citationtrail_10_1002_eqe_2532 wiley_primary_10_1002_eqe_2532_EQE2532 istex_primary_ark_67375_WNG_01HH67QC_3 |
| PublicationCentury | 2000 |
| PublicationDate | August 2015 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Earthquake engineering & structural dynamics |
| PublicationTitleAlternate | Earthquake Engng Struct. Dyn |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Kleiber M, Antunez H, Hien TD, Kowalczyk P. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. John Wiley & Sons Ltd: England, 1997. Eftekhar Azam S, Mariani S. Dual Estimation of Partially Observed Nonlinear Structural Systems: A Particle Filter Approach. Mechanics Research Communications 2012; 46: 54-61. DOI: 10.1016/j.mechrescom.2012.08.006. Gupta A, Krawinkler H. Behavior of Ductile SMRFs at Various Seismic Hazard Levels. ASCE Journal of Structural Engineering 2000; 126(1): 98-107. DOI: 10.1061/(ASCE)0733-9445(2000)126:1(98). Saha N, Roy D. Extended Kalman Filters using Explicit and Derivative-free Local Linearizations. Applied Mathematical Modelling 2009; 33(6): 2545-2563. DOI: 10.1016/j.apm.2008.07.019. Lin J, Zhang Y. Nonlinear Structural Identification Using Extended Kalman Filter. Computers & Structures 1994; 52(4): 757-764. DOI: 10.1016/0045-7949(94)90357-3. Sues RH, Mau ST, Wen Y-K. Systems Identification of Degrading Hysteretic Restoring Forces. ASCE Journal of Engineering Mechanics 1988; 114(5): 833-846. DOI: 10.1061/(ASCE)0733-9399(1988)114:5(833). Hemez FM, Doebling SW. Review and Assessment of Model Updating for Nonlinear Transient Analysis. Mechanical Systems and Signal Processing 2001; 15(1): 45-74. DOI: 10.1006/mssp.2000.1351. Edited by: Haykin S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.: New York, 2001. Barbato M, Conte JP. Finite Element Response Sensitivity Analysis: A Comparison between Force-based and Displacement-based Frame Element Models. Computer Methods in Applied Mechanics and Engineering 2005; 194(12-16): 1479-1512. DOI: 10.1016/j.cma.2004.04.011. Wu M, Smyth AW. Application of the Unscented Kalman Filter for Real-time Nonlinear Structural System Identification. Structural Control and Health Monitoring 2007; 14(7): 971-990. DOI: 10.1002/stc.186. Shahidi SG , Pakzad SN. Generalized Response Surface Model Updating Using Time Domain Data. ASCE Journal of Structural Engineering 2013: A4014001. DOI: 10.1061/(ASCE)ST.1943-541X.0000915. Smyth AW, Masri SF, Chassiakos AG, Caughey TK. On-line Parametric Identification of MDOF Nonlinear Hysteretic Systems. ASCE Journal of Engineering Mechanics 1999; 125(2): 133-142. DOI: 10.1061/(ASCE)0733-9399(1999)125:2(133). Loh C, Tsaur Y. Time Domain Estimation of Structural Parameters. Engineering Structures 1988; 10(2): 95-105. DOI: 10.1016/0141-0296(88)90035-1. Carden EP, Fanning P. Vibration Based Condition Monitoring: A Review. Structural Health Monitoring 2004; 3(4): 355-377. DOI: 10.1177/1475921704047500. Scott MH, Haukaas T. Software Framework for Parameter Updating and Finite-Element Response Sensitivity Analysis. ASCE Journal of Computing in Civil Engineering 2008; 22(5): 281-291. DOI: 10.1061/(ASCE)0887-3801(2008)22:5(281). Ching J, Beck JL, Porter KA. Bayesian State and Parameter Estimation of Uncertain Dynamical Systems. Probabilistic Engineering Mechanics 2006; 21: 81-96. DOI: 10.1016/j.probengmech.2005.08.003. Juang J. Applied System Identification. Prentice Hall PTR: Upper Saddle River, NJ, 1994. Tsay JJ, Arora JS. Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory. Computer Methods in Applied Mechanics and Engineering 1990; 81(2): 183-208. DOI: 10.1016/0045-7825(90)90109-Y. Koh CG, See LM. Estimation of Structural Parameters in Time Domain: A Substructure Approach. Earthquake Engineering & Structural Dynamics 1991; 20(8): 787-801. DOI: 10.1002/eqe.4290200806. Mehra RK. Approaches to Adaptive Filtering. IEEE Transactions on Automatic Control 1972; 17(5): 693-698. DOI: 10.1109/TAC.1972.1100100. Worden K, Farrar CR, Manson G, Park G. The Fundamental Axioms of Structural Health Monitoring. Proceedings of the Royal Society A 2007; 463(2082): 1639-1664. DOI: 10.1098/rspa.2007.1834. Corigliano A, Mariani S. Parameter Identification in Explicit Structural Dynamics: Performance of the Extended Kalman Filter. Computer Methods in Applied Mechanics and Engineering 2004; 193(36-38): 3807-3835. DOI: 10.1016/j.cma.2004.02.003. Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. Springer-Verlag: Berlin, 1989. Bucy RS, Joseph PD. Filtering for Stochastic Processes, with Applications to Guidance. John Wiley & Sons, Inc.: New York, 1968. Yang Y, Ma F. Constrained Kalman Filter for Nonlinear Structural Identification. Journal of Vibration and Control 2003; 9: 1343-1357. DOI: 10.1177/1077546304031166. Bathe KJ. Finite Element Procedures. Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 1996. AISC. Steel Construction Manual, 14th edn, Chicago, IL, 2011. Astroza R, Ebrahimian H, Conte JP. Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering. ASCE Journal of Engineering Mechanics 2014: 04014149. DOI: 10.1061/(ASCE)EM.1943-7889.0000851. Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2006. Gu Q, Barbato M, Conte JP, Gill PE, McKenna F. OpenSees-SNOPT Framework for Finite-Element-Based Optimization of Structural and Geotechnical Systems. ASCE Journal of Structural Engineering 2012; 138(6): 822-834. DOI: 10.1061/(ASCE)ST.1943-541X.0000511. Yan YJ, Cheng L, Wu ZY, Yam LH. Development in Vibration-based Structural Damage Detection Technique. Mechanical Systems and Signal Processing 200721(5): 2198-2211. DOI: 10.1016/j.ymssp.2006.10.002. Chatzi EN, Smyth AW, Masri SF. Experimental Application of On-line Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty. Structural Safety 2010; 32(5): 326-337. DOI: 10.1016/j.strusafe.2010.03.008. Chatzi EN, Smyth AW. The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification with Non-collocated Heterogeneous Sensing. Structural Control and Health Monitoring 2009; 16(1): 99-123. DOI: 10.1002/stc.290. Zhang Y, Der Kiureghian A. Dynamic Response Sensitivity of Inelastic Structures. Computer Methods in Applied Mechanics and Engineering 1993; 108(1-2): 23-36. DOI: 10.1016/0045-7825(93)90151-M. Hoshiya M, Saito E. Structural Identification by Extended Kalman Filter. ASCE Journal of Engineering Mechanics 1984; 110(12): 1757-1770. DOI: 10.1061/(ASCE)0733-9399(1984)110%3A12(1757). Lin J, Betti R, Smyth AW, Longman RW. On-line Identification of Non-linear Hysteretic Structural Systems Using a Variable Trace Approach. Earthquake Engineering and Structural Dynamics 2001; 30(9): 1279-1303. DOI: 10.1002/eqe.63. Omrani R, Hudson RE, Taciroglu E. Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter. ASCE Journal of Engineering Mechanics 2013; 139(4): 452-468. DOI: 10.1061/(ASCE)EM.1943-7889.0000498. Yang JN, Lin S, Huang H, Zhou L. An Adaptive Extended Kalman Filter for Structural Damage Identification. Structural Control and Health Monitoring 2006; 13(4: 849-867. DOI: 10.1002/stc.84. Nasrellah HA, Manohar CS. Finite Element Method Based Monte Carlo Filters for Structural System Identification. Probabilistic Engineering Mechanics 2011; 26(2): 294-307. DOI: 10.1016/j.probengmech.2010.08.006. Kerschen G, Worden K, Vakakis AF, Golinval J. Past, Present and Future of Nonlinear System Identification in Structural Dynamics. Mechanical Systems and Signal Processing 2006; 20: 505-592. DOI: 10.1016/j.ymssp.2005.04.008. Koh CG, See LM. Identification and Uncertainty Estimation of Structural Parameters. ASCE, Journal of Engineering Mechanics 1994; 120(6)1219-1236. DOI: 10.1061/(ASCE)0733-9399(1994)120:6(1219). Conte JP, Vijalapura PK, Meghella M. Consistent Finite-Element Response Sensitivity Analysis. ASCE Journal of Engineering Mechanics 2003; 129(12): 1380-1393. DOI: 10.1061/(ASCE)0733-9399(2003)129:12(1380). Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering (4th edn). Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 2012. 2010; 32 2005; 194 1993; 108 2012 2006; 13 2011 2007; 463 1988; 10 2004; 3 1997 1996 2006 1994 1999; 125 2004 1991 2007; 14 1990; 81 2009; 33 1984; 110 2006; 20 2003; 129 2001 2006; 21 2000; 126 1994; 120 1991; 20 2013; 139 2003; 9 2004; 193 1988; 114 2001; 15 1983 2008; 22 2014 2011; 26 2013 2007; 21 2012; 46 2012; 138 1994; 52 2009; 16 2001; 30 1968 1972; 17 1989 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 Bathe KJ (e_1_2_7_35_1) 1996 Chopra AK (e_1_2_7_45_1) 2012 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 AISC (e_1_2_7_48_1) 2011 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Filippou FC (e_1_2_7_37_1) 2004 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 Conte JP (e_1_2_7_40_1) 2001 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 Juang J (e_1_2_7_6_1) 1994 Bucy RS (e_1_2_7_32_1) 1968 Kleiber M (e_1_2_7_38_1) 1997 |
| References_xml | – reference: Chatzi EN, Smyth AW, Masri SF. Experimental Application of On-line Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty. Structural Safety 2010; 32(5): 326-337. DOI: 10.1016/j.strusafe.2010.03.008. – reference: Ching J, Beck JL, Porter KA. Bayesian State and Parameter Estimation of Uncertain Dynamical Systems. Probabilistic Engineering Mechanics 2006; 21: 81-96. DOI: 10.1016/j.probengmech.2005.08.003. – reference: Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2006. – reference: Zhang Y, Der Kiureghian A. Dynamic Response Sensitivity of Inelastic Structures. Computer Methods in Applied Mechanics and Engineering 1993; 108(1-2): 23-36. DOI: 10.1016/0045-7825(93)90151-M. – reference: Barbato M, Conte JP. Finite Element Response Sensitivity Analysis: A Comparison between Force-based and Displacement-based Frame Element Models. Computer Methods in Applied Mechanics and Engineering 2005; 194(12-16): 1479-1512. DOI: 10.1016/j.cma.2004.04.011. – reference: Gu Q, Barbato M, Conte JP, Gill PE, McKenna F. OpenSees-SNOPT Framework for Finite-Element-Based Optimization of Structural and Geotechnical Systems. ASCE Journal of Structural Engineering 2012; 138(6): 822-834. DOI: 10.1061/(ASCE)ST.1943-541X.0000511. – reference: Saha N, Roy D. Extended Kalman Filters using Explicit and Derivative-free Local Linearizations. Applied Mathematical Modelling 2009; 33(6): 2545-2563. DOI: 10.1016/j.apm.2008.07.019. – reference: AISC. Steel Construction Manual, 14th edn, Chicago, IL, 2011. – reference: Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. Springer-Verlag: Berlin, 1989. – reference: Gupta A, Krawinkler H. Behavior of Ductile SMRFs at Various Seismic Hazard Levels. ASCE Journal of Structural Engineering 2000; 126(1): 98-107. DOI: 10.1061/(ASCE)0733-9445(2000)126:1(98). – reference: Corigliano A, Mariani S. Parameter Identification in Explicit Structural Dynamics: Performance of the Extended Kalman Filter. Computer Methods in Applied Mechanics and Engineering 2004; 193(36-38): 3807-3835. DOI: 10.1016/j.cma.2004.02.003. – reference: Hoshiya M, Saito E. Structural Identification by Extended Kalman Filter. ASCE Journal of Engineering Mechanics 1984; 110(12): 1757-1770. DOI: 10.1061/(ASCE)0733-9399(1984)110%3A12(1757). – reference: Worden K, Farrar CR, Manson G, Park G. The Fundamental Axioms of Structural Health Monitoring. Proceedings of the Royal Society A 2007; 463(2082): 1639-1664. DOI: 10.1098/rspa.2007.1834. – reference: Yang Y, Ma F. Constrained Kalman Filter for Nonlinear Structural Identification. Journal of Vibration and Control 2003; 9: 1343-1357. DOI: 10.1177/1077546304031166. – reference: Scott MH, Haukaas T. Software Framework for Parameter Updating and Finite-Element Response Sensitivity Analysis. ASCE Journal of Computing in Civil Engineering 2008; 22(5): 281-291. DOI: 10.1061/(ASCE)0887-3801(2008)22:5(281). – reference: Koh CG, See LM. Identification and Uncertainty Estimation of Structural Parameters. ASCE, Journal of Engineering Mechanics 1994; 120(6)1219-1236. DOI: 10.1061/(ASCE)0733-9399(1994)120:6(1219). – reference: Yang JN, Lin S, Huang H, Zhou L. An Adaptive Extended Kalman Filter for Structural Damage Identification. Structural Control and Health Monitoring 2006; 13(4: 849-867. DOI: 10.1002/stc.84. – reference: Sues RH, Mau ST, Wen Y-K. Systems Identification of Degrading Hysteretic Restoring Forces. ASCE Journal of Engineering Mechanics 1988; 114(5): 833-846. DOI: 10.1061/(ASCE)0733-9399(1988)114:5(833). – reference: Kleiber M, Antunez H, Hien TD, Kowalczyk P. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. John Wiley & Sons Ltd: England, 1997. – reference: Hemez FM, Doebling SW. Review and Assessment of Model Updating for Nonlinear Transient Analysis. Mechanical Systems and Signal Processing 2001; 15(1): 45-74. DOI: 10.1006/mssp.2000.1351. – reference: Kerschen G, Worden K, Vakakis AF, Golinval J. Past, Present and Future of Nonlinear System Identification in Structural Dynamics. Mechanical Systems and Signal Processing 2006; 20: 505-592. DOI: 10.1016/j.ymssp.2005.04.008. – reference: Nasrellah HA, Manohar CS. Finite Element Method Based Monte Carlo Filters for Structural System Identification. Probabilistic Engineering Mechanics 2011; 26(2): 294-307. DOI: 10.1016/j.probengmech.2010.08.006. – reference: Carden EP, Fanning P. Vibration Based Condition Monitoring: A Review. Structural Health Monitoring 2004; 3(4): 355-377. DOI: 10.1177/1475921704047500. – reference: Eftekhar Azam S, Mariani S. Dual Estimation of Partially Observed Nonlinear Structural Systems: A Particle Filter Approach. Mechanics Research Communications 2012; 46: 54-61. DOI: 10.1016/j.mechrescom.2012.08.006. – reference: Mehra RK. Approaches to Adaptive Filtering. IEEE Transactions on Automatic Control 1972; 17(5): 693-698. DOI: 10.1109/TAC.1972.1100100. – reference: Lin J, Zhang Y. Nonlinear Structural Identification Using Extended Kalman Filter. Computers & Structures 1994; 52(4): 757-764. DOI: 10.1016/0045-7949(94)90357-3. – reference: Loh C, Tsaur Y. Time Domain Estimation of Structural Parameters. Engineering Structures 1988; 10(2): 95-105. DOI: 10.1016/0141-0296(88)90035-1. – reference: Wu M, Smyth AW. Application of the Unscented Kalman Filter for Real-time Nonlinear Structural System Identification. Structural Control and Health Monitoring 2007; 14(7): 971-990. DOI: 10.1002/stc.186. – reference: Juang J. Applied System Identification. Prentice Hall PTR: Upper Saddle River, NJ, 1994. – reference: Conte JP, Vijalapura PK, Meghella M. Consistent Finite-Element Response Sensitivity Analysis. ASCE Journal of Engineering Mechanics 2003; 129(12): 1380-1393. DOI: 10.1061/(ASCE)0733-9399(2003)129:12(1380). – reference: Bathe KJ. Finite Element Procedures. Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 1996. – reference: Bucy RS, Joseph PD. Filtering for Stochastic Processes, with Applications to Guidance. John Wiley & Sons, Inc.: New York, 1968. – reference: Edited by: Haykin S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.: New York, 2001. – reference: Lin J, Betti R, Smyth AW, Longman RW. On-line Identification of Non-linear Hysteretic Structural Systems Using a Variable Trace Approach. Earthquake Engineering and Structural Dynamics 2001; 30(9): 1279-1303. DOI: 10.1002/eqe.63. – reference: Omrani R, Hudson RE, Taciroglu E. Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter. ASCE Journal of Engineering Mechanics 2013; 139(4): 452-468. DOI: 10.1061/(ASCE)EM.1943-7889.0000498. – reference: Tsay JJ, Arora JS. Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory. Computer Methods in Applied Mechanics and Engineering 1990; 81(2): 183-208. DOI: 10.1016/0045-7825(90)90109-Y. – reference: Smyth AW, Masri SF, Chassiakos AG, Caughey TK. On-line Parametric Identification of MDOF Nonlinear Hysteretic Systems. ASCE Journal of Engineering Mechanics 1999; 125(2): 133-142. DOI: 10.1061/(ASCE)0733-9399(1999)125:2(133). – reference: Koh CG, See LM. Estimation of Structural Parameters in Time Domain: A Substructure Approach. Earthquake Engineering & Structural Dynamics 1991; 20(8): 787-801. DOI: 10.1002/eqe.4290200806. – reference: Yan YJ, Cheng L, Wu ZY, Yam LH. Development in Vibration-based Structural Damage Detection Technique. Mechanical Systems and Signal Processing 200721(5): 2198-2211. DOI: 10.1016/j.ymssp.2006.10.002. – reference: Shahidi SG , Pakzad SN. Generalized Response Surface Model Updating Using Time Domain Data. ASCE Journal of Structural Engineering 2013: A4014001. DOI: 10.1061/(ASCE)ST.1943-541X.0000915. – reference: Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering (4th edn). Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 2012. – reference: Astroza R, Ebrahimian H, Conte JP. Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering. ASCE Journal of Engineering Mechanics 2014: 04014149. DOI: 10.1061/(ASCE)EM.1943-7889.0000851. – reference: Chatzi EN, Smyth AW. The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification with Non-collocated Heterogeneous Sensing. Structural Control and Health Monitoring 2009; 16(1): 99-123. DOI: 10.1002/stc.290. – volume: 108 start-page: 23 issue: 1‐2 year: 1993 end-page: 36 article-title: Dynamic Response Sensitivity of Inelastic Structures publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2011 – year: 1983 – volume: 30 start-page: 1279 issue: 9 year: 2001 end-page: 1303 article-title: On‐line Identification of Non‐linear Hysteretic Structural Systems Using a Variable Trace Approach publication-title: Earthquake Engineering and Structural Dynamics – volume: 129 start-page: 1380 issue: 12 year: 2003 end-page: 1393 article-title: Consistent Finite‐Element Response Sensitivity Analysis publication-title: ASCE Journal of Engineering Mechanics – start-page: A4014001 year: 2013 article-title: Generalized Response Surface Model Updating Using Time Domain Data publication-title: ASCE Journal of Structural Engineering – volume: 138 start-page: 822 issue: 6 year: 2012 end-page: 834 article-title: OpenSees‐SNOPT Framework for Finite‐Element‐Based Optimization of Structural and Geotechnical Systems publication-title: ASCE Journal of Structural Engineering – volume: 125 start-page: 133 issue: 2 year: 1999 end-page: 142 article-title: On‐line Parametric Identification of MDOF Nonlinear Hysteretic Systems publication-title: ASCE Journal of Engineering Mechanics – year: 1968 – year: 2001 – year: 1989 – volume: 21 start-page: 2198 issue: 5 year: 2007 end-page: 2211 article-title: Development in Vibration‐based Structural Damage Detection Technique publication-title: Mechanical Systems and Signal Processing – year: 1996 – volume: 193 start-page: 3807 issue: 36‐38 year: 2004 end-page: 3835 article-title: Parameter Identification in Explicit Structural Dynamics: Performance of the Extended Kalman Filter publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 9 start-page: 1343 year: 2003 end-page: 1357 article-title: Constrained Kalman Filter for Nonlinear Structural Identification publication-title: Journal of Vibration and Control – volume: 46 start-page: 54 year: 2012 end-page: 61 article-title: Dual Estimation of Partially Observed Nonlinear Structural Systems: A Particle Filter Approach publication-title: Mechanics Research Communications – volume: 3 start-page: 355 issue: 4 year: 2004 end-page: 377 article-title: Vibration Based Condition Monitoring: A Review publication-title: Structural Health Monitoring – volume: 114 start-page: 833 issue: 5 year: 1988 end-page: 846 article-title: Systems Identification of Degrading Hysteretic Restoring Forces publication-title: ASCE Journal of Engineering Mechanics – year: 1994 – year: 2014 – volume: 26 start-page: 294 issue: 2 year: 2011 end-page: 307 article-title: Finite Element Method Based Monte Carlo Filters for Structural System Identification publication-title: Probabilistic Engineering Mechanics – volume: 21 start-page: 81 year: 2006 end-page: 96 article-title: Bayesian State and Parameter Estimation of Uncertain Dynamical Systems publication-title: Probabilistic Engineering Mechanics – year: 2012 – volume: 15 start-page: 45 issue: 1 year: 2001 end-page: 74 article-title: Review and Assessment of Model Updating for Nonlinear Transient Analysis publication-title: Mechanical Systems and Signal Processing – volume: 10 start-page: 95 issue: 2 year: 1988 end-page: 105 article-title: Time Domain Estimation of Structural Parameters publication-title: Engineering Structures – volume: 139 start-page: 452 issue: 4 year: 2013 end-page: 468 article-title: Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter publication-title: ASCE Journal of Engineering Mechanics – volume: 120 start-page: 1219 issue: 6 year: 1994 end-page: 1236 article-title: Identification and Uncertainty Estimation of Structural Parameters publication-title: ASCE, Journal of Engineering Mechanics – volume: 194 start-page: 1479 issue: 12‐16 year: 2005 end-page: 1512 article-title: Finite Element Response Sensitivity Analysis: A Comparison between Force‐based and Displacement‐based Frame Element Models publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2006 – year: 2004 – year: 2014 article-title: Material Parameter Identification in Distributed Plasticity FE Models of Frame‐Type Structures Using Nonlinear Stochastic Filtering publication-title: ASCE Journal of Engineering Mechanics – year: 1997 – volume: 463 start-page: 1639 issue: 2082 year: 2007 end-page: 1664 article-title: The Fundamental Axioms of Structural Health Monitoring publication-title: Proceedings of the Royal Society A – volume: 14 start-page: 971 issue: 7 year: 2007 end-page: 990 article-title: Application of the Unscented Kalman Filter for Real‐time Nonlinear Structural System Identification publication-title: Structural Control and Health Monitoring – volume: 126 start-page: 98 issue: 1 year: 2000 end-page: 107 article-title: Behavior of Ductile SMRFs at Various Seismic Hazard Levels publication-title: ASCE Journal of Structural Engineering – volume: 20 start-page: 787 issue: 8 year: 1991 end-page: 801 article-title: Estimation of Structural Parameters in Time Domain: A Substructure Approach publication-title: Earthquake Engineering & Structural Dynamics – volume: 33 start-page: 2545 issue: 6 year: 2009 end-page: 2563 article-title: Extended Kalman Filters using Explicit and Derivative‐free Local Linearizations publication-title: Applied Mathematical Modelling – volume: 32 start-page: 326 issue: 5 year: 2010 end-page: 337 article-title: Experimental Application of On‐line Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty publication-title: Structural Safety – volume: 13 start-page: 849 issue: 4 year: 2006 end-page: 867 article-title: An Adaptive Extended Kalman Filter for Structural Damage Identification publication-title: Structural Control and Health Monitoring – volume: 81 start-page: 183 issue: 2 year: 1990 end-page: 208 article-title: Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 52 start-page: 757 issue: 4 year: 1994 end-page: 764 article-title: Nonlinear Structural Identification Using Extended Kalman Filter publication-title: Computers & Structures – volume: 20 start-page: 505 year: 2006 end-page: 592 article-title: Past, Present and Future of Nonlinear System Identification in Structural Dynamics publication-title: Mechanical Systems and Signal Processing – year: 1991 – volume: 17 start-page: 693 issue: 5 year: 1972 end-page: 698 article-title: Approaches to Adaptive Filtering publication-title: IEEE Transactions on Automatic Control – volume: 16 start-page: 99 issue: 1 year: 2009 end-page: 123 article-title: The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification with Non‐collocated Heterogeneous Sensing publication-title: Structural Control and Health Monitoring – volume: 110 start-page: 1757 issue: 12 year: 1984 end-page: 1770 article-title: Structural Identification by Extended Kalman Filter publication-title: ASCE Journal of Engineering Mechanics – volume: 22 start-page: 281 issue: 5 year: 2008 end-page: 291 article-title: Software Framework for Parameter Updating and Finite‐Element Response Sensitivity Analysis publication-title: ASCE Journal of Computing in Civil Engineering – ident: e_1_2_7_25_1 doi: 10.1002/stc.290 – ident: e_1_2_7_43_1 doi: 10.1061/(ASCE)0733-9399(2003)129:12(1380) – volume-title: Dynamics of Structures: Theory and Applications to Earthquake Engineering year: 2012 ident: e_1_2_7_45_1 – ident: e_1_2_7_30_1 doi: 10.1007/978-3-642-61544-3 – ident: e_1_2_7_3_1 doi: 10.2172/249299 – ident: e_1_2_7_47_1 – ident: e_1_2_7_11_1 doi: 10.1061/(ASCE)0733-9399(1988)114:5(833) – ident: e_1_2_7_21_1 doi: 10.1016/j.apm.2008.07.019 – ident: e_1_2_7_33_1 doi: 10.1002/0471221546 – ident: e_1_2_7_26_1 doi: 10.1016/j.mechrescom.2012.08.006 – ident: e_1_2_7_42_1 doi: 10.1061/(ASCE)0887-3801(2008)22:5(281) – ident: e_1_2_7_34_1 doi: 10.1016/j.probengmech.2010.08.006 – ident: e_1_2_7_10_1 doi: 10.1061/(ASCE)ST.1943-541X.0000915 – volume-title: Filtering for Stochastic Processes, with Applications to Guidance year: 1968 ident: e_1_2_7_32_1 – ident: e_1_2_7_46_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_28_1 doi: 10.1061/(ASCE)EM.1943-7889.0000851 – volume-title: Applied System Identification year: 1994 ident: e_1_2_7_6_1 – volume-title: Steel Construction Manual year: 2011 ident: e_1_2_7_48_1 – ident: e_1_2_7_41_1 doi: 10.1061/(ASCE)ST.1943-541X.0000511 – ident: e_1_2_7_19_1 doi: 10.1002/stc.84 – ident: e_1_2_7_44_1 doi: 10.1016/j.cma.2004.04.011 – ident: e_1_2_7_2_1 doi: 10.1098/rspa.2007.1834 – ident: e_1_2_7_53_1 doi: 10.1002/eqe.4290200806 – volume-title: Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations year: 1997 ident: e_1_2_7_38_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.ymssp.2006.10.002 – ident: e_1_2_7_8_1 doi: 10.1006/mssp.2000.1351 – volume-title: Finite Element Procedures year: 1996 ident: e_1_2_7_35_1 – ident: e_1_2_7_52_1 doi: 10.1061/(ASCE)0733-9445(2000)126:1(98) – ident: e_1_2_7_27_1 doi: 10.1016/0045-7825(90)90109-Y – ident: e_1_2_7_31_1 doi: 10.1002/0470045345 – ident: e_1_2_7_20_1 doi: 10.1016/j.cma.2004.02.003 – ident: e_1_2_7_13_1 doi: 10.1002/eqe.63 – ident: e_1_2_7_16_1 doi: 10.1016/0045-7949(94)90357-3 – ident: e_1_2_7_36_1 – volume-title: Earthquake Engineering Frontiers in the New Millennium year: 2001 ident: e_1_2_7_40_1 – ident: e_1_2_7_9_1 doi: 10.1061/(ASCE)EM.1943-7889.0000498 – ident: e_1_2_7_15_1 doi: 10.1016/0141-0296(88)90035-1 – ident: e_1_2_7_24_1 doi: 10.1016/j.probengmech.2005.08.003 – ident: e_1_2_7_51_1 doi: 10.1109/TAC.1972.1100100 – ident: e_1_2_7_22_1 doi: 10.1002/stc.186 – volume-title: Earthquake Engineering: From Engineering Seismology to Performance‐Based Engineering year: 2004 ident: e_1_2_7_37_1 – ident: e_1_2_7_18_1 doi: 10.1177/1077546304031166 – ident: e_1_2_7_4_1 doi: 10.1177/1475921704047500 – ident: e_1_2_7_23_1 doi: 10.1016/j.strusafe.2010.03.008 – ident: e_1_2_7_50_1 – ident: e_1_2_7_17_1 doi: 10.1061/(ASCE)0733-9399(1994)120:6(1219) – ident: e_1_2_7_14_1 doi: 10.1061/(ASCE)0733-9399(1984)110%3A12(1757) – ident: e_1_2_7_12_1 doi: 10.1061/(ASCE)0733-9399(1999)125:2(133) – ident: e_1_2_7_39_1 doi: 10.1016/0045-7825(93)90151-M – ident: e_1_2_7_7_1 doi: 10.1016/j.ymssp.2005.04.008 |
| SSID | ssj0003607 |
| Score | 2.4554899 |
| Snippet | Summary
This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis... This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques... Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1495 |
| SubjectTerms | direct differentiation method Estimates Finite element method finite element model updating finite element response sensitivity Kalman filter Mathematical models Model updating Noise measurement nonlinear finite element Nonlinearity Parameter estimation Seismic phenomena structural health monitoring |
| Title | Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method |
| URI | https://api.istex.fr/ark:/67375/WNG-01HH67QC-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2532 https://www.proquest.com/docview/1696029362 https://www.proquest.com/docview/1705065710 https://www.proquest.com/docview/1718948556 |
| Volume | 44 |
| WOSCitedRecordID | wos000357973200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-9845 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003607 issn: 0098-8847 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXQ5w4I0otNUgoXIKdeLYTo5Vu9uVWq1oRUVvluPYaEUbYLet-A386s7ESWglQEiccsg4mTjz-GSPv2HsrQxa6CIVSS65T_Is6KT0WiRBBSVD4KKU7UHhIz2fF2dn5YeuqpLOwkR-iGHBjTyjjdfk4LZa7fwiDfXf_ftMCgy_4wzNVo7YeP9keno0xGGh-MCYWWAQ7qlnebbTj72TjMY0rz_uIM3beLVNONNH_6PqY_awg5mwG-3iCVvzzVP24Bb54DP2c9Ktf8OhPb-wDYQF7ZwDolhAGNtaJhAz-AVVzACxccRjjrBooIlq2SVEAloi78AHEIAFHyvSoW2yswKqrP8MMXVC34_lMloExAbWz9npdPJxb5Z0nRkSlyuRJTZzsrY2lLquC8RMKlWl07bKVaWkqINQea0dcdtYXllEXIVXmApVJbVWzgfxgo1QUf-SARdeitJqjDQOB4XCSe9EqLLUlxLz6zp71_8i4zracuqecW4i4XJmcHYNze46ezNIfotUHb-R2W7_8iBgl1-otE1L82l-YHg6myl9vGfwtRu9GZjOq1cGv1JxxEeK3jXcRn-kTRbb-K9XKKO5RFiHwO1vMmnRsvIo1Kc1nD8qbCbHE7q--lfB1-w-YjoZaxQ32AiNwG-ye-76crFabnU-cgOJqBcB |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqLhJw4I0oFBgkBKdQJ47tRJxQ2WVRlxVFrejNchwbrWgD7LYVv6G_ujNxEloJEBKnHDKJJ_Y8Pjnjbxh7LoMWukhFkkvukzwLOim9FklQQckQuChle1B4pufz4uCg_LjGXvdnYSI_xLDhRp7RxmtycNqQ3vrFGup_-FeZFBh_RzlaEZr36O2nyf5sCMRC8YEys8Ao3HPP8myrf_ZSNhrRxP68BDUvAtY240xu_peut9iNDmjCm2gZt9mab-6w6xfoB--ys3G3Aw479vDINhAW9O8cEMcCAtnWNoG4wY-oZgaIjyMedIRFA03Uyy4hUtASfQe-gCAs-FiTDm2bnRVQbf0XiMkT-o4sx9EmILawvsf2J-O97WnS9WZIHE52ltjMydraUOq6LhA1qVSVTtsqV5WSog5C5bV2xG5jeWURcxVeYTJUldRaOR_EfbaOivoHDLjwUpRWY6xx-FAonPROhCpLfSkxw26wl_0aGdcRl1P_jEMTKZczg7NraHY32LNB8nsk6_iNzIt2mQcBu_xKxW1ams_zd4an06nSu9sGh93s7cB0fr0y-JWKI0JSNNZwGz2SfrPYxn87QRnNJQI7hG5_k0mLlpdHoT6t5fxRYTPeHdP14b8KPmVXp3sfZmb2fr7ziF1DhCdjxeImW0eD8I_ZFXd6vFgtn3QOcw4rCBrx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXYTgwLuiUGCQEJxCnTi2E3FC7S6Lulq1iIreLMex0Yo2lN2C-A38ambiJLQSICROOWScTJx5fLLH3zD2TAYtdJGKJJfcJ3kWdFJ6LZKggpIhcFHK9qDwXC8WxfFxebDBXvVnYSI_xLDgRp7RxmtycH9Wh51frKH-i3-ZSYHxd5xTD5kRG--9mx7Nh0AsFB8oMwuMwj33LM92-rGXstGYJvb7Jah5EbC2GWd68790vcVudEATXkfLuM02fHOHXb9AP3iX_Zh0K-Cwb09ObQNhSXvngDgWEMi2tgnEDX5KNTNAfBzxoCMsG2iiXnYFkYKW6DvwAQRhwceadGjb7KyBaus_Qkye0HdkOY82AbGF9T12NJ28350lXW-GxOVKZInNnKytDaWu6wJRk0pV6bStclUpKeogVF5rR-w2llcWMVfhFSZDVUmtlfNBbLIRKurvM-DCS1FajbHG4aBQOOmdCFWW-lJiht1iL_p_ZFxHXE79M05MpFzODM6uodndYk8HybNI1vEbmeftbx4E7OoTFbdpaT4s3hiezmZKH-4afO12bwem8-u1wa9UHBGSoncNt9EjaZvFNv7zV5TRXCKwQ-j2N5m0aHl5FOrTWs4fFTaTwwldH_yr4BN29WBvauZvF_sP2TUEeDIWLG6zEdqDf8SuuG_ny_XqcecvPwGPrBps |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Kalman+filter+for+material+parameter+estimation+in+nonlinear+structural+finite+element+models+using+direct+differentiation+method&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Ebrahimian%2C+Hamed&rft.au=Astroza%2C+Rodrigo&rft.au=Conte%2C+Joel+P&rft.date=2015-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=44&rft.issue=10&rft.spage=1495&rft_id=info:doi/10.1002%2Feqe.2532&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3742468371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |