Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method

Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material con...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Earthquake engineering & structural dynamics Ročník 44; číslo 10; s. 1495 - 1522
Hlavní autori: Ebrahimian, Hamed, Astroza, Rodrigo, Conte, Joel P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bognor Regis Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Predmet:
ISSN:0098-8847, 1096-9845
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Summary This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd.
Bibliografia:istex:A5FDFCD0900F5BEDAE14BC470329736D27B82E6D
ark:/67375/WNG-01HH67QC-3
ArticleID:EQE2532
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0098-8847
1096-9845
DOI:10.1002/eqe.2532