Exploring the lead-free halide Cs2MGaBr6 (M = Li, Na) double perovskites for sustainable energy applications

In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this cont...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 5520 - 18
Hlavní autori: Sofi, Mudasir Younis, Khan, Mohd Shahid, Ali, Javid, Khan, M. Ajmal
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 06.03.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs 2 MGaBr 6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 , respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs 2 LiGaBr 6 and 40 × 10 4 cm - 1 for Cs 2 NaGaBr 6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.
AbstractList In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs 2 MGaBr 6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 , respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of $$30\times 10$$ 30 × 10 4 $${{\text{cm}}}^{-1}$$ cm - 1 for Cs 2 LiGaBr 6 and $$40\times 10$$ 40 × 10 4 $${{\text{cm}}}^{-1}$$ cm - 1 for Cs 2 NaGaBr 6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.
Abstract In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of $$30\times 10$$ 30 × 10 4 $${{\text{cm}}}^{-1}$$ cm - 1 for Cs2LiGaBr6 and $$40\times 10$$ 40 × 10 4 $${{\text{cm}}}^{-1}$$ cm - 1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.
In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin-orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron-phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron-phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs2LiGaBr6 and 40 × 10 4 cm - 1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin-orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron-phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron-phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs2LiGaBr6 and 40 × 10 4 cm - 1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.
In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs 2 MGaBr 6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 , respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs 2 LiGaBr 6 and 40 × 10 4 cm - 1 for Cs 2 NaGaBr 6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.
In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30×104cm-1 for Cs2LiGaBr6 and 40×104cm-1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.
ArticleNumber 5520
Author Sofi, Mudasir Younis
Ali, Javid
Khan, Mohd Shahid
Khan, M. Ajmal
Author_xml – sequence: 1
  givenname: Mudasir Younis
  surname: Sofi
  fullname: Sofi, Mudasir Younis
  organization: Department of Physics, Jamia Millia Islamia
– sequence: 2
  givenname: Mohd Shahid
  surname: Khan
  fullname: Khan, Mohd Shahid
  organization: Department of Physics, Jamia Millia Islamia
– sequence: 3
  givenname: Javid
  surname: Ali
  fullname: Ali, Javid
  organization: Department of Physics, Jamia Millia Islamia
– sequence: 4
  givenname: M. Ajmal
  surname: Khan
  fullname: Khan, M. Ajmal
  email: majkhan@jmi.ac.in
  organization: Department of Physics, Jamia Millia Islamia
BookMark eNp9UcFu1DAQjVCRKKU_wMkSlyIRsB3HsQ8cYFVKpS1c4GxNnPHWixsHO4vojSu_yZfg3SBAPdSS5dH4vaeZ9x5XR2McsaqeMvqS0Ua9yoK1WtWUi7oVjZI1e1AdcyramjecH_1XP6pOc97SclquBdPH1XT-fQox-XFD5mskAWGoXUIk1xD8gGSV-dUFvE2SnF39-vHzdblr_4J8gOdkiLs-IJkwxW_5i58xExcTybs8gx9h_4cjps0tgWkK3sLs45ifVA8dhIynf96T6vO780-r9_X648Xl6s26tkLyuXZt01ErXE_7ttE9SN4p0Wk7CKFxsB3VTLuGaaS2c7y4AIKCVoOlTCLX0JxUl4vuEGFrpuRvIN2aCN4cGjFtDKTZ24DGKUvbTvZycL3o1NAzxySTSlLHW4p7rbNFa0rx6w7zbG58thgCjBh32RQvOVOtpLxAn92BbuMujWXTgmoUE0JKUVB8QdkUc07o_g7IqNlnapZMTcnUHDI1rJDUHZL188HUOYEP91ObhZqnfdSY_k11D-s3LS23sA
CitedBy_id crossref_primary_10_1016_j_jpcs_2024_112332
crossref_primary_10_1016_j_renene_2025_123491
crossref_primary_10_1016_j_jpcs_2024_112298
crossref_primary_10_1088_1402_4896_ad63e4
crossref_primary_10_1016_j_jallcom_2025_180139
crossref_primary_10_1002_advs_202408149
crossref_primary_10_1016_j_mssp_2025_109367
crossref_primary_10_1016_j_nxmate_2025_101179
crossref_primary_10_1016_j_mseb_2025_118133
crossref_primary_10_1016_j_mssp_2024_109023
crossref_primary_10_1016_j_jmgm_2024_108834
crossref_primary_10_1039_D5NR00437C
crossref_primary_10_1007_s10904_024_03339_2
crossref_primary_10_1016_j_physb_2024_416245
crossref_primary_10_1039_D4CP04662E
crossref_primary_10_1016_j_cocom_2025_e01141
crossref_primary_10_1039_D5RA02730F
crossref_primary_10_1007_s10904_025_03903_4
crossref_primary_10_1016_j_commatsci_2025_114103
crossref_primary_10_1016_j_mssp_2024_108925
crossref_primary_10_1016_j_mtcomm_2025_111940
crossref_primary_10_1007_s11082_025_08342_6
crossref_primary_10_1016_j_jpcs_2024_112022
crossref_primary_10_1016_j_ssc_2024_115701
crossref_primary_10_1007_s10904_025_03666_y
crossref_primary_10_1007_s43207_025_00484_3
crossref_primary_10_1016_j_comptc_2024_114894
crossref_primary_10_1016_j_nexres_2025_100300
crossref_primary_10_1002_slct_202501001
crossref_primary_10_1007_s10904_025_03625_7
crossref_primary_10_1016_j_inoche_2024_112840
crossref_primary_10_1016_j_inoche_2024_112961
crossref_primary_10_1016_j_jpcs_2024_112489
crossref_primary_10_1007_s11696_025_04183_5
crossref_primary_10_1039_D4RA05308G
crossref_primary_10_1007_s10904_024_03579_2
crossref_primary_10_1016_j_surfin_2025_107394
Cites_doi 10.1080/00018735400101213
10.1021/acsenergylett.6b00499
10.1016/j.mtcomm.2022.104083
10.1038/natrevmats.2016.99
10.1007/s40820-019-0244-6
10.1088/0370-1298/65/5/307
10.1103/PhysRevLett.77.3865
10.1088/1742-6596/1299/1/012129
10.1016/j.cpc.2011.05.009
10.1016/j.cap.2020.10.007
10.1039/C7NR00459A
10.1016/j.mssp.2022.106993
10.1038/164084b0
10.1103/PhysRev.97.660
10.1007/s00339-020-04178-x
10.1039/C5SC04845A
10.1021/cm5026766
10.1103/PhysRevB.60.299
10.1016/j.mseb.2021.115456
10.1080/14786440808520496
10.1007/BF01507527
10.1021/ja809598r
10.1016/S1359-6454(01)00002-7
10.1039/C9RA10775D
10.1088/0953-8984/21/39/395502
10.1038/s41598-022-22633-y
10.1119/1.19116
10.1016/j.cpc.2006.03.007
10.1038/nenergy.2015.1
10.1103/PhysRevB.85.155109
10.1126/science.1228604
10.1073/pnas.30.9.244
10.1021/acs.jpclett.9b00134
10.1016/j.jmrt.2021.05.080
10.1088/0953-8984/28/27/275201
10.1039/C9TC02402F
10.1039/D3MA00311F
10.1002/zamm.19290090104
10.3390/met8090667
10.1002/andp.19123441404
10.1017/S0305004100017138
10.1103/PhysRevLett.101.055504
10.1002/cphc.201600230
10.1038/s41467-021-26192-0
10.1039/D0RA01764G
10.1016/j.jechem.2017.10.010
10.1016/j.scriptamat.2016.09.034
10.1088/1674-1056/ac05a5
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-54386-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_f8c0576b6dfb478db1f1616860f250ea
10_1038_s41598_024_54386_1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c462t-f5370c4fb0b539ba6278479cd449edc70919f319e0c7f2038a40a98dc016e29a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180936100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:07:19 EDT 2025
Fri Sep 05 09:38:20 EDT 2025
Tue Oct 07 07:46:21 EDT 2025
Tue Nov 18 20:02:49 EST 2025
Sat Nov 29 01:58:07 EST 2025
Fri Feb 21 02:40:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electronic properties
Electron–phonon coupling
Optical parameters
Thermoelectric coefficients
Structural and thermodynamic stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-f5370c4fb0b539ba6278479cd449edc70919f319e0c7f2038a40a98dc016e29a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f8c0576b6dfb478db1f1616860f250ea
PQID 2938144664
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_f8c0576b6dfb478db1f1616860f250ea
proquest_miscellaneous_2942185602
proquest_journals_2938144664
crossref_primary_10_1038_s41598_024_54386_1
crossref_citationtrail_10_1038_s41598_024_54386_1
springer_journals_10_1038_s41598_024_54386_1
PublicationCentury 2000
PublicationDate 2024-03-06
PublicationDateYYYYMMDD 2024-03-06
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hill (CR35) 1952; 65
Sofi, Gupta (CR21) 2022; 12
Kim, Lee, Im (CR5) 2012; 2
Zelewski (CR8) 2019; 7
Reuss (CR34) 1929; 9
Aslam, Ullah, Hassan (CR14) 2021; 274
Ranganathan, Ostoja-Starzewski (CR37) 2008; 101
Frantsevich, Voronov, Bakuta (CR39) 1982
CR31
Iaru, Brodu, van Hoof, terHuurne, Buhot, Montanarella, Buhbut, Christianen, Vanmaekelbergh, de Mello Donega, Rivas, Koenraad, Silov (CR55) 2021; 12
Albalawi, Mustafa, Saba, Kattan, Mahmood, Somaily, Morsi, Alharthi, Amin (CR25) 2022; 32
Chu, Ahmad, Liu (CR9) 2019; 11
Feynman (CR54) 1955; 97
Perdew, Burke, Ernzerhof (CR57) 1996; 77
tero-de-la-Roza, Abbasi-Pérez, Luaña (CR43) 2011; 182
Meyer, Mutukwa, Zingwe, Taziwa (CR11) 2018; 8
Petit, Dulong (CR47) 1819; 10
Wang, Liu, Guo, Ma, Liu, Zhou, Yu, Zhao (CR30) 2020; 397
He, Galli (CR42) 2014; 26
Murnaghan (CR29) 1944; 30
Ziaur Rehman, Abdelmohsen, Mahmoud, Usman Saeed, Idress, Shafiq, Ami, Saeed (CR16) 2022; 151
Lee, Teuscher, Miyasaka, Murakami, Snaith (CR1) 2012; 338
Gaillac, Pullumbi, Coudert (CR40) 2016; 28
Saeed, Amin, Khalil, Rehmana, Alia, Imtiaz Khana, Mahmood, Shafiqa (CR26) 2020; 10
Fröhlich (CR52) 1954; 3
Giustino, Snaith (CR6) 2016; 1
Chen, Sundman (CR44) 2001; 49
Hume-rothery (CR36) 1949; 164
Zhang (CR7) 2019; 10
Li, Wang, Deschler, Gao, Friend, Cheetham (CR2) 2017; 2
Bhandari (CR22) 2020; 10
Kibbou, Haman, Bouziani, Khossossi, Benhouria, Essaoudi, Ainane, Ahuja (CR19) 2021; 21
Kojima, Teshima, Shirai, Miyasaka (CR3) 2009; 131
Aslam, Sabir, Hassan (CR24) 2021; 127
Travis, Glover, Bronstein, Scanlon, Palgrave (CR28) 2016; 7
Noor, Iqbal, Zelai, Mahmood, Shaikh, Ramay, AlMasry (CR12) 2021; 13
Al-Daraghmeh, Zayed, Zelai, Saba, Mustafa, Hakami, Albalawi, Bouzgarrou, Mahmoud, Mahmood (CR17) 2023; 322
Sedighi, Tajabadi, Shahbazi, Gholipour, Taghaviniachem (CR41) 2016; 17
Madsen, Singh (CR48) 2006; 175
Shao, Yuan, Huang (CR4) 2016; 1
Aktary, Kamruzzaman, Afrose (CR50) 2023; 4
Koller, Tran, Blaha (CR58) 2012; 85
Schroeder, Pribram (CR45) 1999; 67
Zhou, Jankowska, Dong, Prezhdo (CR13) 2018; 27
Pugh (CR38) 1954; 45
Giannozzi (CR51) 2009; 21
Sofi, Khan, Ali, Ajmal Khan, Khan, Jackson, Salah (CR20) 2023
Born (CR32) 1940; 36
Goldschmidt (CR27) 1926; 14
Hellwarth, Biaggio (CR53) 1999; 60
Shi, Cai, Wang, Chen (CR15) 2020; 153
Voigt (CR33) 1928
Debye (CR46) 1912; 344
Blaha, Schwarz, Madsen, Kvasnicka, Luitz, Laskowsk, Tran, Marks, Marks (CR56) 2019
Singh, Kottokkaran, Dalal, Balasubramanian (CR23) 2017; 9
Johnson, Olutuase, Oyewande (CR59) 2019; 1299
Liu (CR18) 2021; 30
Nath (CR49) 2017; 129
Li, Duan, Yang, Duan, Yang, Tang (CR10) 2021; 80
C Wang (54386_CR30) 2020; 397
TM Al-Daraghmeh (54386_CR17) 2023; 322
CM Iaru (54386_CR55) 2021; 12
J Li (54386_CR10) 2021; 80
MM Lee (54386_CR1) 2012; 338
MY Sofi (54386_CR20) 2023
X Zhou (54386_CR13) 2018; 27
H Albalawi (54386_CR25) 2022; 32
RT Hill (54386_CR35) 1952; 65
M Ziaur Rehman (54386_CR16) 2022; 151
Y Saeed (54386_CR26) 2020; 10
F Aslam (54386_CR24) 2021; 127
IN Frantsevich (54386_CR39) 1982
F Giustino (54386_CR6) 2016; 1
W Li (54386_CR2) 2017; 2
P Nath (54386_CR49) 2017; 129
AT Petit (54386_CR47) 1819; 10
L Chu (54386_CR9) 2019; 11
SI Ranganathan (54386_CR37) 2008; 101
RW Hellwarth (54386_CR53) 1999; 60
R Gaillac (54386_CR40) 2016; 28
F Aslam (54386_CR14) 2021; 274
OO Johnson (54386_CR59) 2019; 1299
FD Murnaghan (54386_CR29) 1944; 30
SF Pugh (54386_CR38) 1954; 45
DV Schroeder (54386_CR45) 1999; 67
RP Feynman (54386_CR54) 1955; 97
SR Bhandari (54386_CR22) 2020; 10
Z Zhang (54386_CR7) 2019; 10
A Reuss (54386_CR34) 1929; 9
GK Madsen (54386_CR48) 2006; 175
A Kojima (54386_CR3) 2009; 131
E Meyer (54386_CR11) 2018; 8
H Fröhlich (54386_CR52) 1954; 3
VM Goldschmidt (54386_CR27) 1926; 14
P Debye (54386_CR46) 1912; 344
SJ Zelewski (54386_CR8) 2019; 7
M Born (54386_CR32) 1940; 36
H-S Kim (54386_CR5) 2012; 2
R Sedighi (54386_CR41) 2016; 17
P Giannozzi (54386_CR51) 2009; 21
W Voigt (54386_CR33) 1928
Blaha (54386_CR56) 2019
W Hume-rothery (54386_CR36) 1949; 164
M Kibbou (54386_CR19) 2021; 21
MY Sofi (54386_CR21) 2022; 12
54386_CR31
Y He (54386_CR42) 2014; 26
JP Perdew (54386_CR57) 1996; 77
M Aktary (54386_CR50) 2023; 4
D Koller (54386_CR58) 2012; 85
NA Noor (54386_CR12) 2021; 13
Q Chen (54386_CR44) 2001; 49
Y Liu (54386_CR18) 2021; 30
R Singh (54386_CR23) 2017; 9
A tero-de-la-Roza (54386_CR43) 2011; 182
Y Shao (54386_CR4) 2016; 1
W Shi (54386_CR15) 2020; 153
W Travis (54386_CR28) 2016; 7
References_xml – volume: 1
  start-page: 1233
  year: 2016
  end-page: 1240
  ident: CR6
  article-title: Toward lead-free perovskite solar cells
  publication-title: ACS Energy Lett.
– year: 2023
  ident: CR20
  publication-title: Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials
– volume: 14
  start-page: 477
  year: 1926
  end-page: 485
  ident: CR27
  article-title: Die gesetze der krystallochemie
  publication-title: Sci. Nat.
– volume: 7
  start-page: 8350
  year: 2019
  end-page: 8356
  ident: CR8
  article-title: Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs AgBiBr
  publication-title: J. Mater. Chem. C
– volume: 129
  start-page: 88
  year: 2017
  end-page: 93
  ident: CR49
  article-title: High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity
  publication-title: Scr. Mater.
– volume: 127
  start-page: 1
  issue: 2
  year: 2021
  end-page: 12
  ident: CR24
  article-title: Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs InAgX (X= Cl, Br, I) for energy applications
  publication-title: J. Appl. Phys. A
– volume: 10
  start-page: 395
  year: 1819
  ident: CR47
  article-title: Study on the measurement of specific heat of solids
  publication-title: Ann. Chim. Phys.
– volume: 30
  start-page: 244
  issue: 9
  year: 1944
  end-page: 247
  ident: CR29
  article-title: The compressibility of media under extreme pressures
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 80
  year: 2021
  ident: CR10
  article-title: Review on recent progress of lead-free halide perovskites in optoelectronic applications
  publication-title: Nano Energy
– volume: 30
  start-page: 108102
  year: 2021
  ident: CR18
  article-title: Stability and optoelectronic property of lead-free halide double perovskite Cs B'BiI (B' = Li, Na and K)
  publication-title: Chin. Phys. B
– volume: 27
  start-page: 637
  year: 2018
  end-page: 649
  ident: CR13
  article-title: Recent theoretical progress in the development of perovskite photovoltaic materials
  publication-title: J. Energy Chem.
– volume: 32
  start-page: 104083
  year: 2022
  ident: CR25
  article-title: Study of optical and thermoelectric properties of double perovskites Cs KTlX (X = Cl, Br, I) for solar cell and energy harvesting
  publication-title: Mater. Today Commun.
– volume: 164
  start-page: 84
  issue: 4159
  year: 1949
  end-page: 85
  ident: CR36
  article-title: Elasticity and anelasticity of metals
  publication-title: Nature
– volume: 274
  year: 2021
  ident: CR14
  article-title: Theoretical investigation of Cs InBiX (X= Cl, Br, I) double perovskite halides using first-principles calculations
  publication-title: Mater. Sci. Eng. B
– volume: 36
  start-page: 160
  year: 1940
  ident: CR32
  article-title: On the stability of crystal lattices. I
  publication-title: Math. Proc. Camb. Philos. Soc.
– volume: 28
  start-page: 275201
  issue: 27
  year: 2016
  ident: CR40
  article-title: ELATE: An open-source online application for analysis and visualization of elastic tensors
  publication-title: J. Phys. Condens. Matter
– volume: 12
  start-page: 19476
  year: 2022
  ident: CR21
  article-title: Scrutinized the inherent spin half-metallicity and thermoelectric response of -electron-based RbMO (M = Np, Pu) perovskites: A computational assessment
  publication-title: Sci. Rep.
– volume: 45
  start-page: 823
  year: 1954
  end-page: 843
  ident: CR38
  article-title: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
  publication-title: Philos. Mag.
– volume: 21
  year: 2009
  ident: CR51
  article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter.
– volume: 2
  start-page: 16099
  issue: 3
  year: 2017
  ident: CR2
  article-title: Chemically diverse and multifunctional hybrid organic–inorganic perovskites
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 49
  year: 1929
  end-page: 58
  ident: CR34
  article-title: Berechnung Der Fließgrenze von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle
  publication-title: ZAMMZ. Angew. Math. Mech.
– volume: 4
  start-page: 4494
  year: 2023
  end-page: 4508
  ident: CR50
  article-title: Pressure-dependent comparative study of the mechanical, electronic, and optical properties of CsPbX (X = Cl, Br, I): A DFT study for optoelectronic applications
  publication-title: Mater. Adv.
– volume: 1
  start-page: 15001
  year: 2016
  ident: CR4
  article-title: Correlation of energy disorder and open circuit voltage in hybrid perovskite solar cells
  publication-title: Nat. Energy
– volume: 26
  start-page: 5394
  year: 2014
  end-page: 5400
  ident: CR42
  article-title: Perovskites for solar thermoelectric applications: A first principles study of CH NH AI (A = Pb and Sn)
  publication-title: Chem. Mater.
– volume: 9
  start-page: 8600
  year: 2017
  end-page: 8607
  ident: CR23
  article-title: Engineering band gap and electronic transport in organic–inorganic halide perovskites by superlattices
  publication-title: Nanoscale
– volume: 21
  start-page: 50
  year: 2021
  end-page: 57
  ident: CR19
  article-title: Cs InGaX (X=Cl, Br, or I): Emergent inorganic halide double perovskites with enhanced optoelectronic characteristics
  publication-title: Curr. Appl. Phys.
– volume: 49
  start-page: 947
  year: 2001
  end-page: 961
  ident: CR44
  article-title: Calculation of Debye temperature for crystalline structures case study on Ti, Zr, and Hf
  publication-title: Acta Mater.
– volume: 338
  start-page: 643
  issue: 6107
  year: 2012
  end-page: 647
  ident: CR1
  article-title: Efficient hybrid solar cells based on meso-super structured organometal halide perovskites
  publication-title: Science
– volume: 10
  start-page: 1120
  year: 2019
  end-page: 1125
  ident: CR7
  article-title: Potential applications of halide double perovskite Cs AgInX (X = Cl, Br) in flexible optoelectronics: Unusual effects of uniaxial strains
  publication-title: J. Phys. Chem. Lett.
– volume: 1299
  year: 2019
  ident: CR59
  publication-title: J. Phys. Conf. Ser.
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  end-page: 7
  ident: CR5
  article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
  publication-title: Sci. Rep.
– volume: 10
  start-page: 16179
  year: 2020
  end-page: 16186
  ident: CR22
  article-title: Electronic, magnetic, optical and thermoelectric properties of Ca Cr Ni O O double perovskites
  publication-title: RSC Adv.
– volume: 10
  start-page: 17444
  year: 2020
  end-page: 17451
  ident: CR26
  article-title: Cs NaGaBr : A new lead-free and direct band gap halide double perovskite
  publication-title: RSC Adv.
– volume: 12
  start-page: 5844
  year: 2021
  ident: CR55
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: CR57
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 397
  year: 2020
  ident: CR30
  article-title: Lead-free sodium bismuth halide Cs NaBiX double perovskite nanocrystals with highly efficient photoluminescence
  publication-title: Chem. Eng. J.
– volume: 101
  issue: 5
  year: 2008
  ident: CR37
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 4548
  year: 2016
  end-page: 4556
  ident: CR28
  article-title: On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system
  publication-title: Chem. Sci.
– year: 1928
  ident: CR33
  publication-title: Textbook of Crystal Physics
– year: 1982
  ident: CR39
  publication-title: Elastic Constants and Moduli of Elasticity of Metals and Nonmetals
– volume: 85
  issue: 15
  year: 2012
  ident: CR58
  article-title: Improving the modified Becke-Johnson exchange potential
  publication-title: Phys. Rev. B
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  end-page: 6051
  ident: CR3
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2491
  year: 2021
  end-page: 2500
  ident: CR12
  article-title: Analysis of direct band gap A ScInI (A= Rb, Cs) double perovskite halides using DFT approach for renewable energy devices
  publication-title: J. Mater. Res. Technol.
– volume: 8
  start-page: 667
  issue: 9
  year: 2018
  ident: CR11
  article-title: Lead-free halide double perovskites: A review of the structural, optical, and stability properties as well as their viability to replace lead halide perovskites
  publication-title: Metals
– volume: 182
  start-page: 2232
  issue: 10
  year: 2011
  end-page: 2248
  ident: CR43
  article-title: Gibbs2: A new version of the quasi-harmonic model code. II. Models for solid state thermodynamics, features and implementation
  publication-title: Comput. Phys. Commun.
– volume: 153
  year: 2020
  ident: CR15
  article-title: The effects of monovalent metal cations on the crystal and electronic structures of Cs MBiCl (M= Ag, Cu, Na, K, Rb, and Cs) perovskites
  publication-title: J. Chem. Phys.
– volume: 322
  year: 2023
  ident: CR17
  article-title: Study of mechanical, optical and transport aspirants of double perovskites Cs XInI (X = Li, Na) for solar cells and clean energy applications
  publication-title: J. Solid-State Chem.
– start-page: 287
  year: 2019
  ident: CR56
  publication-title: WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
– volume: 65
  start-page: 349
  year: 1952
  ident: CR35
  article-title: Te elastic behaviour of a crystalline aggregate
  publication-title: Proc. Phys. Soc. Sect. A
– ident: CR31
– volume: 3
  start-page: 325
  year: 1954
  end-page: 361
  ident: CR52
  article-title: Electrons in lattice fields
  publication-title: Adv. Phys.
– volume: 97
  start-page: 660
  year: 1955
  ident: CR54
  article-title: Slow electrons in a polar crystal
  publication-title: Phys. Rev.
– volume: 17
  start-page: 2382
  issue: 1
  year: 2016
  end-page: 2388
  ident: CR41
  article-title: Mixed-halide CH NH PbI X (X=Cl, Br, I) perovskites: Vapor-assisted solution deposition and application as solar cell absorber
  publication-title: Chem. Phys. Chem.
– volume: 67
  start-page: 1284
  year: 1999
  end-page: 1285
  ident: CR45
  article-title: An introduction to thermal physics
  publication-title: Am. J. Phys.
– volume: 344
  start-page: 789
  year: 1912
  end-page: 839
  ident: CR46
  article-title: Zur Theorie der spezifischen Warmen
  publication-title: Annalen der Physik
– volume: 175
  start-page: 67
  issue: 1
  year: 2006
  end-page: 71
  ident: CR48
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Comput. Phys. Commun.
– volume: 151
  start-page: 106993
  issue: 15
  year: 2022
  ident: CR16
  article-title: First principles study of structural, electronic, elastic and optical properties of Cs LiTlBr and Cs NaTlBr
  publication-title: Mater. Sci. Semi. Proc.
– volume: 60
  start-page: 299
  year: 1999
  ident: CR53
  article-title: Mobility of an electron in a multimode polar lattice
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 16
  year: 2019
  ident: CR9
  article-title: Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications
  publication-title: Nano-Micro Lett.
– volume: 3
  start-page: 325
  year: 1954
  ident: 54386_CR52
  publication-title: Adv. Phys.
  doi: 10.1080/00018735400101213
– volume: 1
  start-page: 1233
  year: 2016
  ident: 54386_CR6
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00499
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  ident: 54386_CR5
  publication-title: Sci. Rep.
– volume: 32
  start-page: 104083
  year: 2022
  ident: 54386_CR25
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104083
– volume: 2
  start-page: 16099
  issue: 3
  year: 2017
  ident: 54386_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.99
– volume-title: Textbook of Crystal Physics
  year: 1928
  ident: 54386_CR33
– volume: 11
  start-page: 16
  year: 2019
  ident: 54386_CR9
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0244-6
– volume: 322
  year: 2023
  ident: 54386_CR17
  publication-title: J. Solid-State Chem.
– volume: 65
  start-page: 349
  year: 1952
  ident: 54386_CR35
  publication-title: Proc. Phys. Soc. Sect. A
  doi: 10.1088/0370-1298/65/5/307
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 54386_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 1299
  year: 2019
  ident: 54386_CR59
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1299/1/012129
– volume-title: Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials
  year: 2023
  ident: 54386_CR20
– volume: 182
  start-page: 2232
  issue: 10
  year: 2011
  ident: 54386_CR43
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.05.009
– volume: 21
  start-page: 50
  year: 2021
  ident: 54386_CR19
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2020.10.007
– volume: 9
  start-page: 8600
  year: 2017
  ident: 54386_CR23
  publication-title: Nanoscale
  doi: 10.1039/C7NR00459A
– volume: 151
  start-page: 106993
  issue: 15
  year: 2022
  ident: 54386_CR16
  publication-title: Mater. Sci. Semi. Proc.
  doi: 10.1016/j.mssp.2022.106993
– volume: 164
  start-page: 84
  issue: 4159
  year: 1949
  ident: 54386_CR36
  publication-title: Nature
  doi: 10.1038/164084b0
– volume: 97
  start-page: 660
  year: 1955
  ident: 54386_CR54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.97.660
– volume: 127
  start-page: 1
  issue: 2
  year: 2021
  ident: 54386_CR24
  publication-title: J. Appl. Phys. A
  doi: 10.1007/s00339-020-04178-x
– volume: 7
  start-page: 4548
  year: 2016
  ident: 54386_CR28
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04845A
– ident: 54386_CR31
– start-page: 287
  volume-title: WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
  year: 2019
  ident: 54386_CR56
– volume: 26
  start-page: 5394
  year: 2014
  ident: 54386_CR42
  publication-title: Chem. Mater.
  doi: 10.1021/cm5026766
– volume: 60
  start-page: 299
  year: 1999
  ident: 54386_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.299
– volume: 274
  year: 2021
  ident: 54386_CR14
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2021.115456
– volume: 45
  start-page: 823
  year: 1954
  ident: 54386_CR38
  publication-title: Philos. Mag.
  doi: 10.1080/14786440808520496
– volume: 14
  start-page: 477
  year: 1926
  ident: 54386_CR27
  publication-title: Sci. Nat.
  doi: 10.1007/BF01507527
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: 54386_CR3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 49
  start-page: 947
  year: 2001
  ident: 54386_CR44
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00002-7
– volume: 10
  start-page: 16179
  year: 2020
  ident: 54386_CR22
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10775D
– volume: 21
  year: 2009
  ident: 54386_CR51
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/21/39/395502
– volume: 12
  start-page: 19476
  year: 2022
  ident: 54386_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22633-y
– volume: 153
  year: 2020
  ident: 54386_CR15
  publication-title: J. Chem. Phys.
– volume: 67
  start-page: 1284
  year: 1999
  ident: 54386_CR45
  publication-title: Am. J. Phys.
  doi: 10.1119/1.19116
– volume: 175
  start-page: 67
  issue: 1
  year: 2006
  ident: 54386_CR48
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.007
– volume: 1
  start-page: 15001
  year: 2016
  ident: 54386_CR4
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.1
– volume: 85
  issue: 15
  year: 2012
  ident: 54386_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.155109
– volume: 338
  start-page: 643
  issue: 6107
  year: 2012
  ident: 54386_CR1
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 30
  start-page: 244
  issue: 9
  year: 1944
  ident: 54386_CR29
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.30.9.244
– volume: 10
  start-page: 1120
  year: 2019
  ident: 54386_CR7
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00134
– volume: 13
  start-page: 2491
  year: 2021
  ident: 54386_CR12
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.05.080
– volume: 28
  start-page: 275201
  issue: 27
  year: 2016
  ident: 54386_CR40
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/28/27/275201
– volume: 7
  start-page: 8350
  year: 2019
  ident: 54386_CR8
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02402F
– volume: 4
  start-page: 4494
  year: 2023
  ident: 54386_CR50
  publication-title: Mater. Adv.
  doi: 10.1039/D3MA00311F
– volume: 10
  start-page: 395
  year: 1819
  ident: 54386_CR47
  publication-title: Ann. Chim. Phys.
– volume: 9
  start-page: 49
  year: 1929
  ident: 54386_CR34
  publication-title: ZAMMZ. Angew. Math. Mech.
  doi: 10.1002/zamm.19290090104
– volume-title: Elastic Constants and Moduli of Elasticity of Metals and Nonmetals
  year: 1982
  ident: 54386_CR39
– volume: 8
  start-page: 667
  issue: 9
  year: 2018
  ident: 54386_CR11
  publication-title: Metals
  doi: 10.3390/met8090667
– volume: 344
  start-page: 789
  year: 1912
  ident: 54386_CR46
  publication-title: Annalen der Physik
  doi: 10.1002/andp.19123441404
– volume: 36
  start-page: 160
  year: 1940
  ident: 54386_CR32
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100017138
– volume: 101
  issue: 5
  year: 2008
  ident: 54386_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.055504
– volume: 17
  start-page: 2382
  issue: 1
  year: 2016
  ident: 54386_CR41
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.201600230
– volume: 12
  start-page: 5844
  year: 2021
  ident: 54386_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26192-0
– volume: 10
  start-page: 17444
  year: 2020
  ident: 54386_CR26
  publication-title: RSC Adv.
  doi: 10.1039/D0RA01764G
– volume: 27
  start-page: 637
  year: 2018
  ident: 54386_CR13
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.10.010
– volume: 129
  start-page: 88
  year: 2017
  ident: 54386_CR49
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.09.034
– volume: 30
  start-page: 108102
  year: 2021
  ident: 54386_CR18
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac05a5
– volume: 397
  year: 2020
  ident: 54386_CR30
  publication-title: Chem. Eng. J.
– volume: 80
  year: 2021
  ident: 54386_CR10
  publication-title: Nano Energy
SSID ssj0000529419
Score 2.5720057
Snippet In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the...
Abstract In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5520
SubjectTerms 639/301/1034/1037
639/301/1034/1038
639/301/299/2736
639/766
Absorption
Alternative energy
Crystal structure
Dielectric constant
Efficiency
Electronic properties
Electrons
Electron–phonon coupling
Humanities and Social Sciences
Investigations
Lead
multidisciplinary
Optical parameters
Optical properties
Renewable energy
Science
Science (multidisciplinary)
Solar cells
Structural and thermodynamic stability
Sustainable energy
Thermoelectric coefficients
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWggMSGNyJQkJFYgKhVJ3Yce4EQrSgsmFEXIHVn-VkqjSZDMlOJHVt-ky_h2pPJUCS6YZFN4iRWjq_vyX0i9EJaTpkXFTGcRcK5U0RK3xARXBOpcCxam5tNNNOpPDlRx4PBrR_CKjd7Yt6ofeuSjXwf1JJM_y6Cv118I6lrVPKuDi00rqJrwGzKFNI1qY5HG0vyYvFSDbkylMn9HvRVyimrOKk5k4KUF_RRLtt_gWv-5R7NWufo9v_O9w66NfBN_G69QO6iK2F-D91Yd6D8fh8txhg8DEwQzwBxErsQ8Ffg5z7gw76afDAHncAvJ79-_HwDx6ezPTw1r7BvV3YWcCo0ft4nG3CPgQDjfpuRhUNOLMR_OskfoC9H7z8ffiRDEwbiuKiWJNasoY5HS23NlDUieSob5TznKnjXAN9QEeQ4UAC3gm9sODVKegdcMlTKsIdoZ97OwyOEaeDcMsaElAFYXG24Z9ZYVzelLWmIBSo3UGg3VChPjTJmOnvKmdRr-DTApzN8uizQ6_Gexbo-x6WjDxLC48hUWzufaLtTPYiqjtIBiRVW-Gh5I70tI9BiIQWNwBeDKdDuBnE9CHyvt3AX6Pl4GUQ1-V_MPLSrNIYDoQKKWRVob7Outo_497QfX_7GJ-hmlVZ07gu5i3aW3So8Rdfd-fKs755lkfgNn3kSYg
  priority: 102
  providerName: ProQuest
Title Exploring the lead-free halide Cs2MGaBr6 (M = Li, Na) double perovskites for sustainable energy applications
URI https://link.springer.com/article/10.1038/s41598-024-54386-1
https://www.proquest.com/docview/2938144664
https://www.proquest.com/docview/2942185602
https://doaj.org/article/f8c0576b6dfb478db1f1616860f250ea
Volume 14
WOSCitedRecordID wos001180936100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixNBEG50V8GL-MTRNbTgQXGb7Znu6cfBg1l2VTAhiEI8NdMvXAjJkkkWvHn1b_pLrO6ZZLOCevEwdZjpGYp6UF9PdVUh9FxZTpkXFWk4i4Rzp4lSXhIRnIxUOBatzcMm5HisplM92Rn1lc6Ede2BO8EdReUAUggrfLRcKm_LCCBFKEEjRO-QoRGVemcz1XX1rjQvdV8lQ5k6aiFSpWqyipOaMyVIeSUS5Yb9V1Dmb4nRHG9O76DbPVDEbzoG76JrYX4P3exGR367j863h-cwQDg8A1WRuAwBfwVg7QM-bqvR22a4FPjF6Of3H6_h-nB2iMfNS-wXazsLOHUIv2jTz9sWA3LF7WUpFQ65IhDvZrcfoM-nJ5-O35F-egJxXFQrEmsmqePRUlszbRuRUoxSO8-5Dt5JAAo6ggMGClqpQEQNp41W3gEIDJVu2EO0N1_MwyOEaeDcMsaEUgHgV91wz2xjXS1LW9IQC1RuJGlc31o8TbiYmZziZsp00jcgfZOlb8oCvdq-c9411vjr6mFS0HZlaoqdb4CpmN5UzL9MpUAHG_Wa3lNbA3BHpT2x4AV6tn0MPpYSJ808LNZpDQckBNiwKtDhxiwuP_Fnth__D7afoFtVMts89vEA7a2W6_AU3XAXq7N2OUDX5VRmqgZof3gynnwcZF8AOqomiUqg-5P3o8mXX6KIC2g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGNyJQwEgggajVxPY4zqJCtFBadWbURZG6M35CpdFkSGaKumPLz_BRfAnXmWSGItFdFyyySezESY7vPfZ9IfRcGp4yJyjRnAXCuS2IlC4nwts8pMKyYExTbCIfDuXRUXGwgn52sTDRrbKTiY2gdqWNe-QboJZkXLsI_mbylcSqUdG62pXQmMNi359-gyVbvbn3Dv7vC0p33h9u75K2qgCxXNApCT2Wp5YHk5oeK4wW0fSWF9ZxXnhnc1CgRQBg-hRGS1MmNU91IZ0FcuRpoRnc9xK6zGNmsegqSA8WezrRasazoo3Nga4bNejHGMNGOelxJgXJzui_pkzAGW77lzm20XI7N_-373ML3Wj5NH47nwC30Yof30FX5xU2T--iycLHEAPTxSNANAmV9_gLrD-cx9s1HXzQW5XALwe_vv_YhKN_vI6H-hV25cyMPI6J1E_quMddYyD4uF5GnGHfBE7iP50A7qGPF_K699HquBz7BwinnnPDGBNSemCpPc0dM9rYXp6ZLPUhQVn365VtM7DHQiAj1XgCMKnmcFEAF9XARWUJer3oM5nnHzm39VZE1KJlzB3enCirz6oVRSpICyRdGOGC4bl0JgtA-4UUaQA-7HWC1jqEqVag1WoJrwQ9W1wGURTtS3rsy1lsw4EwAoWmCVrvcLy8xb-H_fD8Jz5F13YPB33V3xvuP0LXaZxNTQ3MNbQ6rWb-MbpiT6bHdfWkmY4YfbpofP8GQO9t9w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGBxMX_iMKA4wEEohZTWzXcQ4TYhuFamvVA0jbyfjvmFS1pWmHduPKV-Lj8El4TpOWIbHbDhxySezESX5-7_f83vND6Lk0PGFOUKI5C4RzmxMpXUaEt1lIhGXBmLLYRNbvy8PDfLCGfta5MDGsspaJpaB2YxvXyFuglmS0XQRvhSosYrDXeTP5SmIFqehprctpLCCy78--gflWbHf34F-_oLTz7uPuB1JVGCCWCzojoc2yxPJgEtNmudEiuuGy3DrOc-9sBso0DwBSn8DIacKk5onOpbNAlDzNNYP7XkHrQMk5baD1Qbc3OFqu8EQfGk_zKlMHOrcK0JYxo41y0uZMCpKe04Zl0YBzTPcv52yp8zo3_-evdQvdqJg2fruYGrfRmh_dQdcWtTfP7qLJMvoQAwfGQ8A6CVPv8RewTJzHuwXtvdc7U4Ff9n59_7ENx8HJFu7rV9iN52bocdxi_bSIq98FBuqPi1UuGvZlSiX-MzzgHvp0Ka97HzVG45F_gHDiOTeMMSGlB_7a1twxo41tZ6lJEx-aKK1hoGy1N3ssETJUZYwAk2oBHQXQUSV0VNpEr5d9JoudSS5svRPRtWwZdxUvT4ynx6oSUipIC_RdGOGC4Zl0Jg1gEAgpkgBM2esm2qzRpipRV6gV1Jro2fIyCKnoedIjP57HNhyoJJBr2kRbNaZXt_j3sB9e_MSnaANgrQ66_f1H6DqNE6ssjrmJGrPp3D9GV-3p7KSYPqnmJkafLxvgvwEvCnhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+lead-free+halide+Cs2MGaBr6+%28M%E2%80%89%3D%E2%80%89Li%2C+Na%29+double+perovskites+for+sustainable+energy+applications&rft.jtitle=Scientific+reports&rft.au=Sofi%2C+Mudasir+Younis&rft.au=Khan%2C+Mohd+Shahid&rft.au=Ali%2C+Javid&rft.au=Khan%2C+M.+Ajmal&rft.date=2024-03-06&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-54386-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_54386_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon