Exploring the lead-free halide Cs2MGaBr6 (M = Li, Na) double perovskites for sustainable energy applications
In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this cont...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 5520 - 18 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
06.03.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs
2
MGaBr
6
(X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs
2
LiGaBr
6
and Cs
2
NaGaBr
6
reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs
2
LiGaBr
6
and Cs
2
NaGaBr
6
, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of
30
×
10
4
cm
-
1
for Cs
2
LiGaBr
6
and
40
×
10
4
cm
-
1
for Cs
2
NaGaBr
6
are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies. |
|---|---|
| AbstractList | In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs
2
MGaBr
6
(X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs
2
LiGaBr
6
and Cs
2
NaGaBr
6
reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs
2
LiGaBr
6
and Cs
2
NaGaBr
6
, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of
$$30\times 10$$
30
×
10
4
$${{\text{cm}}}^{-1}$$
cm
-
1
for Cs
2
LiGaBr
6
and
$$40\times 10$$
40
×
10
4
$${{\text{cm}}}^{-1}$$
cm
-
1
for Cs
2
NaGaBr
6
are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies. Abstract In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of $$30\times 10$$ 30 × 10 4 $${{\text{cm}}}^{-1}$$ cm - 1 for Cs2LiGaBr6 and $$40\times 10$$ 40 × 10 4 $${{\text{cm}}}^{-1}$$ cm - 1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies. In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin-orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron-phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron-phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs2LiGaBr6 and 40 × 10 4 cm - 1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies.In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin-orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron-phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron-phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs2LiGaBr6 and 40 × 10 4 cm - 1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies. In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs 2 MGaBr 6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs 2 LiGaBr 6 and Cs 2 NaGaBr 6 , respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30 × 10 4 cm - 1 for Cs 2 LiGaBr 6 and 40 × 10 4 cm - 1 for Cs 2 NaGaBr 6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies. In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited. In this systematic investigation, we employ density functional theory (DFT) and post-DFT techniques to elucidate the essential stability parameters, transport properties, and carrier-lattice interactions of the metal halide-based Cs2MGaBr6 (X = Li, Ga) double perovskites. Our assessment of structural stability involves a meticulous description of stability index parameters and the optimization of pristine structures using the GGA-PBE potential. Additionally, we calibrate the electronic structure while taking spin–orbit coupling (SOC) effects into consideration by using a combination of GGA and GGA + mBJ potentials. Our findings reveal that the TB-mBJ derived band gaps of 1.82 eV and 1.78 eV for Cs2LiGaBr6 and Cs2NaGaBr6 reside within the visible spectrum, prompting further investigation into their thermal transport characteristics. Moreover, we analyze the phonon characteristics and vibrational modes, extending our investigation to examine the electron–phonon coupling strength. The scrutiny of the Fröhlich coupling constant and the Feynman polaron radius unveils a stronger electron–phonon coupling strength. In the domain of thermoelectrics, the significant figure of merit (zT) values of 1.08 and 1.04 for Cs2LiGaBr6 and Cs2NaGaBr6, respectively, emphasize the considerable potential of these materials for deployment in renewable energy applications. Furthermore, our computational investigation into optical properties, including the dielectric constant, optical absorption, and refractive index, demonstrates optimal performance within the visible spectrum. Specifically, elevated absorption coefficient values of 30×104cm-1 for Cs2LiGaBr6 and 40×104cm-1 for Cs2NaGaBr6 are noted across visible and infrared spectra, highlighting their promising potential in optoelectronic and solar cell technologies. |
| ArticleNumber | 5520 |
| Author | Sofi, Mudasir Younis Ali, Javid Khan, Mohd Shahid Khan, M. Ajmal |
| Author_xml | – sequence: 1 givenname: Mudasir Younis surname: Sofi fullname: Sofi, Mudasir Younis organization: Department of Physics, Jamia Millia Islamia – sequence: 2 givenname: Mohd Shahid surname: Khan fullname: Khan, Mohd Shahid organization: Department of Physics, Jamia Millia Islamia – sequence: 3 givenname: Javid surname: Ali fullname: Ali, Javid organization: Department of Physics, Jamia Millia Islamia – sequence: 4 givenname: M. Ajmal surname: Khan fullname: Khan, M. Ajmal email: majkhan@jmi.ac.in organization: Department of Physics, Jamia Millia Islamia |
| BookMark | eNp9UcFu1DAQjVCRKKU_wMkSlyIRsB3HsQ8cYFVKpS1c4GxNnPHWixsHO4vojSu_yZfg3SBAPdSS5dH4vaeZ9x5XR2McsaqeMvqS0Ua9yoK1WtWUi7oVjZI1e1AdcyramjecH_1XP6pOc97SclquBdPH1XT-fQox-XFD5mskAWGoXUIk1xD8gGSV-dUFvE2SnF39-vHzdblr_4J8gOdkiLs-IJkwxW_5i58xExcTybs8gx9h_4cjps0tgWkK3sLs45ifVA8dhIynf96T6vO780-r9_X648Xl6s26tkLyuXZt01ErXE_7ttE9SN4p0Wk7CKFxsB3VTLuGaaS2c7y4AIKCVoOlTCLX0JxUl4vuEGFrpuRvIN2aCN4cGjFtDKTZ24DGKUvbTvZycL3o1NAzxySTSlLHW4p7rbNFa0rx6w7zbG58thgCjBh32RQvOVOtpLxAn92BbuMujWXTgmoUE0JKUVB8QdkUc07o_g7IqNlnapZMTcnUHDI1rJDUHZL188HUOYEP91ObhZqnfdSY_k11D-s3LS23sA |
| CitedBy_id | crossref_primary_10_1016_j_jpcs_2024_112332 crossref_primary_10_1016_j_renene_2025_123491 crossref_primary_10_1016_j_jpcs_2024_112298 crossref_primary_10_1088_1402_4896_ad63e4 crossref_primary_10_1016_j_jallcom_2025_180139 crossref_primary_10_1002_advs_202408149 crossref_primary_10_1016_j_mssp_2025_109367 crossref_primary_10_1016_j_nxmate_2025_101179 crossref_primary_10_1016_j_mseb_2025_118133 crossref_primary_10_1016_j_mssp_2024_109023 crossref_primary_10_1016_j_jmgm_2024_108834 crossref_primary_10_1039_D5NR00437C crossref_primary_10_1007_s10904_024_03339_2 crossref_primary_10_1016_j_physb_2024_416245 crossref_primary_10_1039_D4CP04662E crossref_primary_10_1016_j_cocom_2025_e01141 crossref_primary_10_1039_D5RA02730F crossref_primary_10_1007_s10904_025_03903_4 crossref_primary_10_1016_j_commatsci_2025_114103 crossref_primary_10_1016_j_mssp_2024_108925 crossref_primary_10_1016_j_mtcomm_2025_111940 crossref_primary_10_1007_s11082_025_08342_6 crossref_primary_10_1016_j_jpcs_2024_112022 crossref_primary_10_1016_j_ssc_2024_115701 crossref_primary_10_1007_s10904_025_03666_y crossref_primary_10_1007_s43207_025_00484_3 crossref_primary_10_1016_j_comptc_2024_114894 crossref_primary_10_1016_j_nexres_2025_100300 crossref_primary_10_1002_slct_202501001 crossref_primary_10_1007_s10904_025_03625_7 crossref_primary_10_1016_j_inoche_2024_112840 crossref_primary_10_1016_j_inoche_2024_112961 crossref_primary_10_1016_j_jpcs_2024_112489 crossref_primary_10_1007_s11696_025_04183_5 crossref_primary_10_1039_D4RA05308G crossref_primary_10_1007_s10904_024_03579_2 crossref_primary_10_1016_j_surfin_2025_107394 |
| Cites_doi | 10.1080/00018735400101213 10.1021/acsenergylett.6b00499 10.1016/j.mtcomm.2022.104083 10.1038/natrevmats.2016.99 10.1007/s40820-019-0244-6 10.1088/0370-1298/65/5/307 10.1103/PhysRevLett.77.3865 10.1088/1742-6596/1299/1/012129 10.1016/j.cpc.2011.05.009 10.1016/j.cap.2020.10.007 10.1039/C7NR00459A 10.1016/j.mssp.2022.106993 10.1038/164084b0 10.1103/PhysRev.97.660 10.1007/s00339-020-04178-x 10.1039/C5SC04845A 10.1021/cm5026766 10.1103/PhysRevB.60.299 10.1016/j.mseb.2021.115456 10.1080/14786440808520496 10.1007/BF01507527 10.1021/ja809598r 10.1016/S1359-6454(01)00002-7 10.1039/C9RA10775D 10.1088/0953-8984/21/39/395502 10.1038/s41598-022-22633-y 10.1119/1.19116 10.1016/j.cpc.2006.03.007 10.1038/nenergy.2015.1 10.1103/PhysRevB.85.155109 10.1126/science.1228604 10.1073/pnas.30.9.244 10.1021/acs.jpclett.9b00134 10.1016/j.jmrt.2021.05.080 10.1088/0953-8984/28/27/275201 10.1039/C9TC02402F 10.1039/D3MA00311F 10.1002/zamm.19290090104 10.3390/met8090667 10.1002/andp.19123441404 10.1017/S0305004100017138 10.1103/PhysRevLett.101.055504 10.1002/cphc.201600230 10.1038/s41467-021-26192-0 10.1039/D0RA01764G 10.1016/j.jechem.2017.10.010 10.1016/j.scriptamat.2016.09.034 10.1088/1674-1056/ac05a5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-024-54386-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_f8c0576b6dfb478db1f1616860f250ea 10_1038_s41598_024_54386_1 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c462t-f5370c4fb0b539ba6278479cd449edc70919f319e0c7f2038a40a98dc016e29a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180936100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:07:19 EDT 2025 Fri Sep 05 09:38:20 EDT 2025 Tue Oct 07 07:46:21 EDT 2025 Tue Nov 18 20:02:49 EST 2025 Sat Nov 29 01:58:07 EST 2025 Fri Feb 21 02:40:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Electronic properties Electron–phonon coupling Optical parameters Thermoelectric coefficients Structural and thermodynamic stability |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-f5370c4fb0b539ba6278479cd449edc70919f319e0c7f2038a40a98dc016e29a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f8c0576b6dfb478db1f1616860f250ea |
| PQID | 2938144664 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f8c0576b6dfb478db1f1616860f250ea proquest_miscellaneous_2942185602 proquest_journals_2938144664 crossref_primary_10_1038_s41598_024_54386_1 crossref_citationtrail_10_1038_s41598_024_54386_1 springer_journals_10_1038_s41598_024_54386_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-06 |
| PublicationDateYYYYMMDD | 2024-03-06 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Hill (CR35) 1952; 65 Sofi, Gupta (CR21) 2022; 12 Kim, Lee, Im (CR5) 2012; 2 Zelewski (CR8) 2019; 7 Reuss (CR34) 1929; 9 Aslam, Ullah, Hassan (CR14) 2021; 274 Ranganathan, Ostoja-Starzewski (CR37) 2008; 101 Frantsevich, Voronov, Bakuta (CR39) 1982 CR31 Iaru, Brodu, van Hoof, terHuurne, Buhot, Montanarella, Buhbut, Christianen, Vanmaekelbergh, de Mello Donega, Rivas, Koenraad, Silov (CR55) 2021; 12 Albalawi, Mustafa, Saba, Kattan, Mahmood, Somaily, Morsi, Alharthi, Amin (CR25) 2022; 32 Chu, Ahmad, Liu (CR9) 2019; 11 Feynman (CR54) 1955; 97 Perdew, Burke, Ernzerhof (CR57) 1996; 77 tero-de-la-Roza, Abbasi-Pérez, Luaña (CR43) 2011; 182 Meyer, Mutukwa, Zingwe, Taziwa (CR11) 2018; 8 Petit, Dulong (CR47) 1819; 10 Wang, Liu, Guo, Ma, Liu, Zhou, Yu, Zhao (CR30) 2020; 397 He, Galli (CR42) 2014; 26 Murnaghan (CR29) 1944; 30 Ziaur Rehman, Abdelmohsen, Mahmoud, Usman Saeed, Idress, Shafiq, Ami, Saeed (CR16) 2022; 151 Lee, Teuscher, Miyasaka, Murakami, Snaith (CR1) 2012; 338 Gaillac, Pullumbi, Coudert (CR40) 2016; 28 Saeed, Amin, Khalil, Rehmana, Alia, Imtiaz Khana, Mahmood, Shafiqa (CR26) 2020; 10 Fröhlich (CR52) 1954; 3 Giustino, Snaith (CR6) 2016; 1 Chen, Sundman (CR44) 2001; 49 Hume-rothery (CR36) 1949; 164 Zhang (CR7) 2019; 10 Li, Wang, Deschler, Gao, Friend, Cheetham (CR2) 2017; 2 Bhandari (CR22) 2020; 10 Kibbou, Haman, Bouziani, Khossossi, Benhouria, Essaoudi, Ainane, Ahuja (CR19) 2021; 21 Kojima, Teshima, Shirai, Miyasaka (CR3) 2009; 131 Aslam, Sabir, Hassan (CR24) 2021; 127 Travis, Glover, Bronstein, Scanlon, Palgrave (CR28) 2016; 7 Noor, Iqbal, Zelai, Mahmood, Shaikh, Ramay, AlMasry (CR12) 2021; 13 Al-Daraghmeh, Zayed, Zelai, Saba, Mustafa, Hakami, Albalawi, Bouzgarrou, Mahmoud, Mahmood (CR17) 2023; 322 Sedighi, Tajabadi, Shahbazi, Gholipour, Taghaviniachem (CR41) 2016; 17 Madsen, Singh (CR48) 2006; 175 Shao, Yuan, Huang (CR4) 2016; 1 Aktary, Kamruzzaman, Afrose (CR50) 2023; 4 Koller, Tran, Blaha (CR58) 2012; 85 Schroeder, Pribram (CR45) 1999; 67 Zhou, Jankowska, Dong, Prezhdo (CR13) 2018; 27 Pugh (CR38) 1954; 45 Giannozzi (CR51) 2009; 21 Sofi, Khan, Ali, Ajmal Khan, Khan, Jackson, Salah (CR20) 2023 Born (CR32) 1940; 36 Goldschmidt (CR27) 1926; 14 Hellwarth, Biaggio (CR53) 1999; 60 Shi, Cai, Wang, Chen (CR15) 2020; 153 Voigt (CR33) 1928 Debye (CR46) 1912; 344 Blaha, Schwarz, Madsen, Kvasnicka, Luitz, Laskowsk, Tran, Marks, Marks (CR56) 2019 Singh, Kottokkaran, Dalal, Balasubramanian (CR23) 2017; 9 Johnson, Olutuase, Oyewande (CR59) 2019; 1299 Liu (CR18) 2021; 30 Nath (CR49) 2017; 129 Li, Duan, Yang, Duan, Yang, Tang (CR10) 2021; 80 C Wang (54386_CR30) 2020; 397 TM Al-Daraghmeh (54386_CR17) 2023; 322 CM Iaru (54386_CR55) 2021; 12 J Li (54386_CR10) 2021; 80 MM Lee (54386_CR1) 2012; 338 MY Sofi (54386_CR20) 2023 X Zhou (54386_CR13) 2018; 27 H Albalawi (54386_CR25) 2022; 32 RT Hill (54386_CR35) 1952; 65 M Ziaur Rehman (54386_CR16) 2022; 151 Y Saeed (54386_CR26) 2020; 10 F Aslam (54386_CR24) 2021; 127 IN Frantsevich (54386_CR39) 1982 F Giustino (54386_CR6) 2016; 1 W Li (54386_CR2) 2017; 2 P Nath (54386_CR49) 2017; 129 AT Petit (54386_CR47) 1819; 10 L Chu (54386_CR9) 2019; 11 SI Ranganathan (54386_CR37) 2008; 101 RW Hellwarth (54386_CR53) 1999; 60 R Gaillac (54386_CR40) 2016; 28 F Aslam (54386_CR14) 2021; 274 OO Johnson (54386_CR59) 2019; 1299 FD Murnaghan (54386_CR29) 1944; 30 SF Pugh (54386_CR38) 1954; 45 DV Schroeder (54386_CR45) 1999; 67 RP Feynman (54386_CR54) 1955; 97 SR Bhandari (54386_CR22) 2020; 10 Z Zhang (54386_CR7) 2019; 10 A Reuss (54386_CR34) 1929; 9 GK Madsen (54386_CR48) 2006; 175 A Kojima (54386_CR3) 2009; 131 E Meyer (54386_CR11) 2018; 8 H Fröhlich (54386_CR52) 1954; 3 VM Goldschmidt (54386_CR27) 1926; 14 P Debye (54386_CR46) 1912; 344 SJ Zelewski (54386_CR8) 2019; 7 M Born (54386_CR32) 1940; 36 H-S Kim (54386_CR5) 2012; 2 R Sedighi (54386_CR41) 2016; 17 P Giannozzi (54386_CR51) 2009; 21 W Voigt (54386_CR33) 1928 Blaha (54386_CR56) 2019 W Hume-rothery (54386_CR36) 1949; 164 M Kibbou (54386_CR19) 2021; 21 MY Sofi (54386_CR21) 2022; 12 54386_CR31 Y He (54386_CR42) 2014; 26 JP Perdew (54386_CR57) 1996; 77 M Aktary (54386_CR50) 2023; 4 D Koller (54386_CR58) 2012; 85 NA Noor (54386_CR12) 2021; 13 Q Chen (54386_CR44) 2001; 49 Y Liu (54386_CR18) 2021; 30 R Singh (54386_CR23) 2017; 9 A tero-de-la-Roza (54386_CR43) 2011; 182 Y Shao (54386_CR4) 2016; 1 W Shi (54386_CR15) 2020; 153 W Travis (54386_CR28) 2016; 7 |
| References_xml | – volume: 1 start-page: 1233 year: 2016 end-page: 1240 ident: CR6 article-title: Toward lead-free perovskite solar cells publication-title: ACS Energy Lett. – year: 2023 ident: CR20 publication-title: Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials – volume: 14 start-page: 477 year: 1926 end-page: 485 ident: CR27 article-title: Die gesetze der krystallochemie publication-title: Sci. Nat. – volume: 7 start-page: 8350 year: 2019 end-page: 8356 ident: CR8 article-title: Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs AgBiBr publication-title: J. Mater. Chem. C – volume: 129 start-page: 88 year: 2017 end-page: 93 ident: CR49 article-title: High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity publication-title: Scr. Mater. – volume: 127 start-page: 1 issue: 2 year: 2021 end-page: 12 ident: CR24 article-title: Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs InAgX (X= Cl, Br, I) for energy applications publication-title: J. Appl. Phys. A – volume: 10 start-page: 395 year: 1819 ident: CR47 article-title: Study on the measurement of specific heat of solids publication-title: Ann. Chim. Phys. – volume: 30 start-page: 244 issue: 9 year: 1944 end-page: 247 ident: CR29 article-title: The compressibility of media under extreme pressures publication-title: Proc. Natl. Acad. Sci. USA – volume: 80 year: 2021 ident: CR10 article-title: Review on recent progress of lead-free halide perovskites in optoelectronic applications publication-title: Nano Energy – volume: 30 start-page: 108102 year: 2021 ident: CR18 article-title: Stability and optoelectronic property of lead-free halide double perovskite Cs B'BiI (B' = Li, Na and K) publication-title: Chin. Phys. B – volume: 27 start-page: 637 year: 2018 end-page: 649 ident: CR13 article-title: Recent theoretical progress in the development of perovskite photovoltaic materials publication-title: J. Energy Chem. – volume: 32 start-page: 104083 year: 2022 ident: CR25 article-title: Study of optical and thermoelectric properties of double perovskites Cs KTlX (X = Cl, Br, I) for solar cell and energy harvesting publication-title: Mater. Today Commun. – volume: 164 start-page: 84 issue: 4159 year: 1949 end-page: 85 ident: CR36 article-title: Elasticity and anelasticity of metals publication-title: Nature – volume: 274 year: 2021 ident: CR14 article-title: Theoretical investigation of Cs InBiX (X= Cl, Br, I) double perovskite halides using first-principles calculations publication-title: Mater. Sci. Eng. B – volume: 36 start-page: 160 year: 1940 ident: CR32 article-title: On the stability of crystal lattices. I publication-title: Math. Proc. Camb. Philos. Soc. – volume: 28 start-page: 275201 issue: 27 year: 2016 ident: CR40 article-title: ELATE: An open-source online application for analysis and visualization of elastic tensors publication-title: J. Phys. Condens. Matter – volume: 12 start-page: 19476 year: 2022 ident: CR21 article-title: Scrutinized the inherent spin half-metallicity and thermoelectric response of -electron-based RbMO (M = Np, Pu) perovskites: A computational assessment publication-title: Sci. Rep. – volume: 45 start-page: 823 year: 1954 end-page: 843 ident: CR38 article-title: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals publication-title: Philos. Mag. – volume: 21 year: 2009 ident: CR51 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter. – volume: 2 start-page: 16099 issue: 3 year: 2017 ident: CR2 article-title: Chemically diverse and multifunctional hybrid organic–inorganic perovskites publication-title: Nat. Rev. Mater. – volume: 9 start-page: 49 year: 1929 end-page: 58 ident: CR34 article-title: Berechnung Der Fließgrenze von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle publication-title: ZAMMZ. Angew. Math. Mech. – volume: 4 start-page: 4494 year: 2023 end-page: 4508 ident: CR50 article-title: Pressure-dependent comparative study of the mechanical, electronic, and optical properties of CsPbX (X = Cl, Br, I): A DFT study for optoelectronic applications publication-title: Mater. Adv. – volume: 1 start-page: 15001 year: 2016 ident: CR4 article-title: Correlation of energy disorder and open circuit voltage in hybrid perovskite solar cells publication-title: Nat. Energy – volume: 26 start-page: 5394 year: 2014 end-page: 5400 ident: CR42 article-title: Perovskites for solar thermoelectric applications: A first principles study of CH NH AI (A = Pb and Sn) publication-title: Chem. Mater. – volume: 9 start-page: 8600 year: 2017 end-page: 8607 ident: CR23 article-title: Engineering band gap and electronic transport in organic–inorganic halide perovskites by superlattices publication-title: Nanoscale – volume: 21 start-page: 50 year: 2021 end-page: 57 ident: CR19 article-title: Cs InGaX (X=Cl, Br, or I): Emergent inorganic halide double perovskites with enhanced optoelectronic characteristics publication-title: Curr. Appl. Phys. – volume: 49 start-page: 947 year: 2001 end-page: 961 ident: CR44 article-title: Calculation of Debye temperature for crystalline structures case study on Ti, Zr, and Hf publication-title: Acta Mater. – volume: 338 start-page: 643 issue: 6107 year: 2012 end-page: 647 ident: CR1 article-title: Efficient hybrid solar cells based on meso-super structured organometal halide perovskites publication-title: Science – volume: 10 start-page: 1120 year: 2019 end-page: 1125 ident: CR7 article-title: Potential applications of halide double perovskite Cs AgInX (X = Cl, Br) in flexible optoelectronics: Unusual effects of uniaxial strains publication-title: J. Phys. Chem. Lett. – volume: 1299 year: 2019 ident: CR59 publication-title: J. Phys. Conf. Ser. – volume: 2 start-page: 1 issue: 1 year: 2012 end-page: 7 ident: CR5 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. – volume: 10 start-page: 16179 year: 2020 end-page: 16186 ident: CR22 article-title: Electronic, magnetic, optical and thermoelectric properties of Ca Cr Ni O O double perovskites publication-title: RSC Adv. – volume: 10 start-page: 17444 year: 2020 end-page: 17451 ident: CR26 article-title: Cs NaGaBr : A new lead-free and direct band gap halide double perovskite publication-title: RSC Adv. – volume: 12 start-page: 5844 year: 2021 ident: CR55 publication-title: Nat. Commun. – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: CR57 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 397 year: 2020 ident: CR30 article-title: Lead-free sodium bismuth halide Cs NaBiX double perovskite nanocrystals with highly efficient photoluminescence publication-title: Chem. Eng. J. – volume: 101 issue: 5 year: 2008 ident: CR37 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. – volume: 7 start-page: 4548 year: 2016 end-page: 4556 ident: CR28 article-title: On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system publication-title: Chem. Sci. – year: 1928 ident: CR33 publication-title: Textbook of Crystal Physics – year: 1982 ident: CR39 publication-title: Elastic Constants and Moduli of Elasticity of Metals and Nonmetals – volume: 85 issue: 15 year: 2012 ident: CR58 article-title: Improving the modified Becke-Johnson exchange potential publication-title: Phys. Rev. B – volume: 131 start-page: 6050 issue: 17 year: 2009 end-page: 6051 ident: CR3 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2491 year: 2021 end-page: 2500 ident: CR12 article-title: Analysis of direct band gap A ScInI (A= Rb, Cs) double perovskite halides using DFT approach for renewable energy devices publication-title: J. Mater. Res. Technol. – volume: 8 start-page: 667 issue: 9 year: 2018 ident: CR11 article-title: Lead-free halide double perovskites: A review of the structural, optical, and stability properties as well as their viability to replace lead halide perovskites publication-title: Metals – volume: 182 start-page: 2232 issue: 10 year: 2011 end-page: 2248 ident: CR43 article-title: Gibbs2: A new version of the quasi-harmonic model code. II. Models for solid state thermodynamics, features and implementation publication-title: Comput. Phys. Commun. – volume: 153 year: 2020 ident: CR15 article-title: The effects of monovalent metal cations on the crystal and electronic structures of Cs MBiCl (M= Ag, Cu, Na, K, Rb, and Cs) perovskites publication-title: J. Chem. Phys. – volume: 322 year: 2023 ident: CR17 article-title: Study of mechanical, optical and transport aspirants of double perovskites Cs XInI (X = Li, Na) for solar cells and clean energy applications publication-title: J. Solid-State Chem. – start-page: 287 year: 2019 ident: CR56 publication-title: WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties – volume: 65 start-page: 349 year: 1952 ident: CR35 article-title: Te elastic behaviour of a crystalline aggregate publication-title: Proc. Phys. Soc. Sect. A – ident: CR31 – volume: 3 start-page: 325 year: 1954 end-page: 361 ident: CR52 article-title: Electrons in lattice fields publication-title: Adv. Phys. – volume: 97 start-page: 660 year: 1955 ident: CR54 article-title: Slow electrons in a polar crystal publication-title: Phys. Rev. – volume: 17 start-page: 2382 issue: 1 year: 2016 end-page: 2388 ident: CR41 article-title: Mixed-halide CH NH PbI X (X=Cl, Br, I) perovskites: Vapor-assisted solution deposition and application as solar cell absorber publication-title: Chem. Phys. Chem. – volume: 67 start-page: 1284 year: 1999 end-page: 1285 ident: CR45 article-title: An introduction to thermal physics publication-title: Am. J. Phys. – volume: 344 start-page: 789 year: 1912 end-page: 839 ident: CR46 article-title: Zur Theorie der spezifischen Warmen publication-title: Annalen der Physik – volume: 175 start-page: 67 issue: 1 year: 2006 end-page: 71 ident: CR48 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. – volume: 151 start-page: 106993 issue: 15 year: 2022 ident: CR16 article-title: First principles study of structural, electronic, elastic and optical properties of Cs LiTlBr and Cs NaTlBr publication-title: Mater. Sci. Semi. Proc. – volume: 60 start-page: 299 year: 1999 ident: CR53 article-title: Mobility of an electron in a multimode polar lattice publication-title: Phys. Rev. B – volume: 11 start-page: 16 year: 2019 ident: CR9 article-title: Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications publication-title: Nano-Micro Lett. – volume: 3 start-page: 325 year: 1954 ident: 54386_CR52 publication-title: Adv. Phys. doi: 10.1080/00018735400101213 – volume: 1 start-page: 1233 year: 2016 ident: 54386_CR6 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00499 – volume: 2 start-page: 1 issue: 1 year: 2012 ident: 54386_CR5 publication-title: Sci. Rep. – volume: 32 start-page: 104083 year: 2022 ident: 54386_CR25 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104083 – volume: 2 start-page: 16099 issue: 3 year: 2017 ident: 54386_CR2 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.99 – volume-title: Textbook of Crystal Physics year: 1928 ident: 54386_CR33 – volume: 11 start-page: 16 year: 2019 ident: 54386_CR9 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0244-6 – volume: 322 year: 2023 ident: 54386_CR17 publication-title: J. Solid-State Chem. – volume: 65 start-page: 349 year: 1952 ident: 54386_CR35 publication-title: Proc. Phys. Soc. Sect. A doi: 10.1088/0370-1298/65/5/307 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 54386_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 1299 year: 2019 ident: 54386_CR59 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1299/1/012129 – volume-title: Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials year: 2023 ident: 54386_CR20 – volume: 182 start-page: 2232 issue: 10 year: 2011 ident: 54386_CR43 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.05.009 – volume: 21 start-page: 50 year: 2021 ident: 54386_CR19 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2020.10.007 – volume: 9 start-page: 8600 year: 2017 ident: 54386_CR23 publication-title: Nanoscale doi: 10.1039/C7NR00459A – volume: 151 start-page: 106993 issue: 15 year: 2022 ident: 54386_CR16 publication-title: Mater. Sci. Semi. Proc. doi: 10.1016/j.mssp.2022.106993 – volume: 164 start-page: 84 issue: 4159 year: 1949 ident: 54386_CR36 publication-title: Nature doi: 10.1038/164084b0 – volume: 97 start-page: 660 year: 1955 ident: 54386_CR54 publication-title: Phys. Rev. doi: 10.1103/PhysRev.97.660 – volume: 127 start-page: 1 issue: 2 year: 2021 ident: 54386_CR24 publication-title: J. Appl. Phys. A doi: 10.1007/s00339-020-04178-x – volume: 7 start-page: 4548 year: 2016 ident: 54386_CR28 publication-title: Chem. Sci. doi: 10.1039/C5SC04845A – ident: 54386_CR31 – start-page: 287 volume-title: WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties year: 2019 ident: 54386_CR56 – volume: 26 start-page: 5394 year: 2014 ident: 54386_CR42 publication-title: Chem. Mater. doi: 10.1021/cm5026766 – volume: 60 start-page: 299 year: 1999 ident: 54386_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.299 – volume: 274 year: 2021 ident: 54386_CR14 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2021.115456 – volume: 45 start-page: 823 year: 1954 ident: 54386_CR38 publication-title: Philos. Mag. doi: 10.1080/14786440808520496 – volume: 14 start-page: 477 year: 1926 ident: 54386_CR27 publication-title: Sci. Nat. doi: 10.1007/BF01507527 – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: 54386_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 49 start-page: 947 year: 2001 ident: 54386_CR44 publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00002-7 – volume: 10 start-page: 16179 year: 2020 ident: 54386_CR22 publication-title: RSC Adv. doi: 10.1039/C9RA10775D – volume: 21 year: 2009 ident: 54386_CR51 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/21/39/395502 – volume: 12 start-page: 19476 year: 2022 ident: 54386_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-022-22633-y – volume: 153 year: 2020 ident: 54386_CR15 publication-title: J. Chem. Phys. – volume: 67 start-page: 1284 year: 1999 ident: 54386_CR45 publication-title: Am. J. Phys. doi: 10.1119/1.19116 – volume: 175 start-page: 67 issue: 1 year: 2006 ident: 54386_CR48 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.007 – volume: 1 start-page: 15001 year: 2016 ident: 54386_CR4 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.1 – volume: 85 issue: 15 year: 2012 ident: 54386_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.155109 – volume: 338 start-page: 643 issue: 6107 year: 2012 ident: 54386_CR1 publication-title: Science doi: 10.1126/science.1228604 – volume: 30 start-page: 244 issue: 9 year: 1944 ident: 54386_CR29 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.30.9.244 – volume: 10 start-page: 1120 year: 2019 ident: 54386_CR7 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00134 – volume: 13 start-page: 2491 year: 2021 ident: 54386_CR12 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.05.080 – volume: 28 start-page: 275201 issue: 27 year: 2016 ident: 54386_CR40 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/28/27/275201 – volume: 7 start-page: 8350 year: 2019 ident: 54386_CR8 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02402F – volume: 4 start-page: 4494 year: 2023 ident: 54386_CR50 publication-title: Mater. Adv. doi: 10.1039/D3MA00311F – volume: 10 start-page: 395 year: 1819 ident: 54386_CR47 publication-title: Ann. Chim. Phys. – volume: 9 start-page: 49 year: 1929 ident: 54386_CR34 publication-title: ZAMMZ. Angew. Math. Mech. doi: 10.1002/zamm.19290090104 – volume-title: Elastic Constants and Moduli of Elasticity of Metals and Nonmetals year: 1982 ident: 54386_CR39 – volume: 8 start-page: 667 issue: 9 year: 2018 ident: 54386_CR11 publication-title: Metals doi: 10.3390/met8090667 – volume: 344 start-page: 789 year: 1912 ident: 54386_CR46 publication-title: Annalen der Physik doi: 10.1002/andp.19123441404 – volume: 36 start-page: 160 year: 1940 ident: 54386_CR32 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100017138 – volume: 101 issue: 5 year: 2008 ident: 54386_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.055504 – volume: 17 start-page: 2382 issue: 1 year: 2016 ident: 54386_CR41 publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.201600230 – volume: 12 start-page: 5844 year: 2021 ident: 54386_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26192-0 – volume: 10 start-page: 17444 year: 2020 ident: 54386_CR26 publication-title: RSC Adv. doi: 10.1039/D0RA01764G – volume: 27 start-page: 637 year: 2018 ident: 54386_CR13 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.10.010 – volume: 129 start-page: 88 year: 2017 ident: 54386_CR49 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.09.034 – volume: 30 start-page: 108102 year: 2021 ident: 54386_CR18 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac05a5 – volume: 397 year: 2020 ident: 54386_CR30 publication-title: Chem. Eng. J. – volume: 80 year: 2021 ident: 54386_CR10 publication-title: Nano Energy |
| SSID | ssj0000529419 |
| Score | 2.5720057 |
| Snippet | In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the... Abstract In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5520 |
| SubjectTerms | 639/301/1034/1037 639/301/1034/1038 639/301/299/2736 639/766 Absorption Alternative energy Crystal structure Dielectric constant Efficiency Electronic properties Electrons Electron–phonon coupling Humanities and Social Sciences Investigations Lead multidisciplinary Optical parameters Optical properties Renewable energy Science Science (multidisciplinary) Solar cells Structural and thermodynamic stability Sustainable energy Thermoelectric coefficients |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWggMSGNyJQkJFYgKhVJ3Yce4EQrSgsmFEXIHVn-VkqjSZDMlOJHVt-ky_h2pPJUCS6YZFN4iRWjq_vyX0i9EJaTpkXFTGcRcK5U0RK3xARXBOpcCxam5tNNNOpPDlRx4PBrR_CKjd7Yt6ofeuSjXwf1JJM_y6Cv118I6lrVPKuDi00rqJrwGzKFNI1qY5HG0vyYvFSDbkylMn9HvRVyimrOKk5k4KUF_RRLtt_gWv-5R7NWufo9v_O9w66NfBN_G69QO6iK2F-D91Yd6D8fh8txhg8DEwQzwBxErsQ8Ffg5z7gw76afDAHncAvJ79-_HwDx6ezPTw1r7BvV3YWcCo0ft4nG3CPgQDjfpuRhUNOLMR_OskfoC9H7z8ffiRDEwbiuKiWJNasoY5HS23NlDUieSob5TznKnjXAN9QEeQ4UAC3gm9sODVKegdcMlTKsIdoZ97OwyOEaeDcMsaElAFYXG24Z9ZYVzelLWmIBSo3UGg3VChPjTJmOnvKmdRr-DTApzN8uizQ6_Gexbo-x6WjDxLC48hUWzufaLtTPYiqjtIBiRVW-Gh5I70tI9BiIQWNwBeDKdDuBnE9CHyvt3AX6Pl4GUQ1-V_MPLSrNIYDoQKKWRVob7Outo_497QfX_7GJ-hmlVZ07gu5i3aW3So8Rdfd-fKs755lkfgNn3kSYg priority: 102 providerName: ProQuest |
| Title | Exploring the lead-free halide Cs2MGaBr6 (M = Li, Na) double perovskites for sustainable energy applications |
| URI | https://link.springer.com/article/10.1038/s41598-024-54386-1 https://www.proquest.com/docview/2938144664 https://www.proquest.com/docview/2942185602 https://doaj.org/article/f8c0576b6dfb478db1f1616860f250ea |
| Volume | 14 |
| WOSCitedRecordID | wos001180936100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixNBEG50V8GL-MTRNbTgQXGb7Znu6cfBg1l2VTAhiEI8NdMvXAjJkkkWvHn1b_pLrO6ZZLOCevEwdZjpGYp6UF9PdVUh9FxZTpkXFWk4i4Rzp4lSXhIRnIxUOBatzcMm5HisplM92Rn1lc6Ede2BO8EdReUAUggrfLRcKm_LCCBFKEEjRO-QoRGVemcz1XX1rjQvdV8lQ5k6aiFSpWqyipOaMyVIeSUS5Yb9V1Dmb4nRHG9O76DbPVDEbzoG76JrYX4P3exGR367j863h-cwQDg8A1WRuAwBfwVg7QM-bqvR22a4FPjF6Of3H6_h-nB2iMfNS-wXazsLOHUIv2jTz9sWA3LF7WUpFQ65IhDvZrcfoM-nJ5-O35F-egJxXFQrEmsmqePRUlszbRuRUoxSO8-5Dt5JAAo6ggMGClqpQEQNp41W3gEIDJVu2EO0N1_MwyOEaeDcMsaEUgHgV91wz2xjXS1LW9IQC1RuJGlc31o8TbiYmZziZsp00jcgfZOlb8oCvdq-c9411vjr6mFS0HZlaoqdb4CpmN5UzL9MpUAHG_Wa3lNbA3BHpT2x4AV6tn0MPpYSJ808LNZpDQckBNiwKtDhxiwuP_Fnth__D7afoFtVMts89vEA7a2W6_AU3XAXq7N2OUDX5VRmqgZof3gynnwcZF8AOqomiUqg-5P3o8mXX6KIC2g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGNyJQwEgggajVxPY4zqJCtFBadWbURZG6M35CpdFkSGaKumPLz_BRfAnXmWSGItFdFyyySezESY7vPfZ9IfRcGp4yJyjRnAXCuS2IlC4nwts8pMKyYExTbCIfDuXRUXGwgn52sTDRrbKTiY2gdqWNe-QboJZkXLsI_mbylcSqUdG62pXQmMNi359-gyVbvbn3Dv7vC0p33h9u75K2qgCxXNApCT2Wp5YHk5oeK4wW0fSWF9ZxXnhnc1CgRQBg-hRGS1MmNU91IZ0FcuRpoRnc9xK6zGNmsegqSA8WezrRasazoo3Nga4bNejHGMNGOelxJgXJzui_pkzAGW77lzm20XI7N_-373ML3Wj5NH47nwC30Yof30FX5xU2T--iycLHEAPTxSNANAmV9_gLrD-cx9s1HXzQW5XALwe_vv_YhKN_vI6H-hV25cyMPI6J1E_quMddYyD4uF5GnGHfBE7iP50A7qGPF_K699HquBz7BwinnnPDGBNSemCpPc0dM9rYXp6ZLPUhQVn365VtM7DHQiAj1XgCMKnmcFEAF9XARWUJer3oM5nnHzm39VZE1KJlzB3enCirz6oVRSpICyRdGOGC4bl0JgtA-4UUaQA-7HWC1jqEqVag1WoJrwQ9W1wGURTtS3rsy1lsw4EwAoWmCVrvcLy8xb-H_fD8Jz5F13YPB33V3xvuP0LXaZxNTQ3MNbQ6rWb-MbpiT6bHdfWkmY4YfbpofP8GQO9t9w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGBxMX_iMKA4wEEohZTWzXcQ4TYhuFamvVA0jbyfjvmFS1pWmHduPKV-Lj8El4TpOWIbHbDhxySezESX5-7_f83vND6Lk0PGFOUKI5C4RzmxMpXUaEt1lIhGXBmLLYRNbvy8PDfLCGfta5MDGsspaJpaB2YxvXyFuglmS0XQRvhSosYrDXeTP5SmIFqehprctpLCCy78--gflWbHf34F-_oLTz7uPuB1JVGCCWCzojoc2yxPJgEtNmudEiuuGy3DrOc-9sBso0DwBSn8DIacKk5onOpbNAlDzNNYP7XkHrQMk5baD1Qbc3OFqu8EQfGk_zKlMHOrcK0JYxo41y0uZMCpKe04Zl0YBzTPcv52yp8zo3_-evdQvdqJg2fruYGrfRmh_dQdcWtTfP7qLJMvoQAwfGQ8A6CVPv8RewTJzHuwXtvdc7U4Ff9n59_7ENx8HJFu7rV9iN52bocdxi_bSIq98FBuqPi1UuGvZlSiX-MzzgHvp0Ka97HzVG45F_gHDiOTeMMSGlB_7a1twxo41tZ6lJEx-aKK1hoGy1N3ssETJUZYwAk2oBHQXQUSV0VNpEr5d9JoudSS5svRPRtWwZdxUvT4ynx6oSUipIC_RdGOGC4Zl0Jg1gEAgpkgBM2esm2qzRpipRV6gV1Jro2fIyCKnoedIjP57HNhyoJJBr2kRbNaZXt_j3sB9e_MSnaANgrQ66_f1H6DqNE6ssjrmJGrPp3D9GV-3p7KSYPqnmJkafLxvgvwEvCnhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+lead-free+halide+Cs2MGaBr6+%28M%E2%80%89%3D%E2%80%89Li%2C+Na%29+double+perovskites+for+sustainable+energy+applications&rft.jtitle=Scientific+reports&rft.au=Sofi%2C+Mudasir+Younis&rft.au=Khan%2C+Mohd+Shahid&rft.au=Ali%2C+Javid&rft.au=Khan%2C+M.+Ajmal&rft.date=2024-03-06&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-54386-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_54386_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |