Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality

A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics & optimization Ročník 73; číslo 2; s. 271 - 312
Hlavní autoři: Chiarolla, Maria B., De Angelis, Tiziano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2016
Springer Nature B.V
Témata:
ISSN:0095-4616, 1432-0606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain function Θ is time-dependent and fulfils mild regularity assumptions, the value function U of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient σ ( X ) is specified, the solution of the variational problem is found in a suitable Banach space V fully characterized in terms of a Gaussian measure μ . This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982 ), of well-known results on optimal stopping theory and variational inequalities in R n . These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-015-9302-8