Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality
A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain...
Uloženo v:
| Vydáno v: | Applied mathematics & optimization Ročník 73; číslo 2; s. 271 - 312 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 0095-4616, 1432-0606 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A finite horizon optimal stopping problem for an infinite dimensional diffusion
X
is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space
H
with a non-linear diffusion coefficient
σ
(
X
)
and a generic unbounded operator
A
in the drift term. When the gain function
Θ
is time-dependent and fulfils mild regularity assumptions, the value function
U
of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient
σ
(
X
)
is specified, the solution of the variational problem is found in a suitable Banach space
V
fully characterized in terms of a Gaussian measure
μ
. This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control,
1982
), of well-known results on optimal stopping theory and variational inequalities in
R
n
. These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space ... with a non-linear diffusion coefficient ... and a generic unbounded operator A in the drift term. When the gain function ... is time-dependent and fulfils mild regularity assumptions, the value function ... of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient ... is specified, the solution of the variational problem is found in a suitable Banach space ... fully characterized in terms of a Gaussian measure ... This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982 ), of well-known results on optimal stopping theory and variational inequalities in ... These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model. A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain function Θ is time-dependent and fulfils mild regularity assumptions, the value function U of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient σ ( X ) is specified, the solution of the variational problem is found in a suitable Banach space V fully characterized in terms of a Gaussian measure μ . This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982 ), of well-known results on optimal stopping theory and variational inequalities in R n . These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model. |
| Author | Chiarolla, Maria B. De Angelis, Tiziano |
| Author_xml | – sequence: 1 givenname: Maria B. surname: Chiarolla fullname: Chiarolla, Maria B. organization: Dipartimento di Metodi e Modelli per l’Economia, il Territorio e la Finanza (MEMOTEF), Università di Roma ‘La Sapienza’ – sequence: 2 givenname: Tiziano surname: De Angelis fullname: De Angelis, Tiziano email: tiziano.deangelis@manchester.ac.uk organization: School of Mathematics, University of Manchester |
| BookMark | eNp9kE1PAyEURYnRxFr9Ae5I3LgZBYb5ctf41SZNuqh2SyjzaDBTZgrMwn8v47gwTXQFvJz7uDkX6NS2FhC6puSOElLce0IYzxJCs6RKCUvKEzShPGUJyUl-iiaEVFnCc5qfowvvP0jE0zydoHrVBbOXDV6HtuuM3eFWY4nnptmCC3jdSQV4I5seavxktO69ae0Dnlm8sNpYEyCO92CHcdyykc7IMN4XFg69bEz4vERnWjYern7OKXp_eX57nCfL1evicbZMFM9ZSDTXkmlQipWZYlDKlG_zOGS6hrSSvGZMbVUGZa4ZL-uqJkXBZXzTQpcVlOkU3Y57O9ceevBB7I1X0DTSQtt7QUtCeMV5wSJ6c4R-tL2LtSNVFIwzltE0UnSklGu9d6BF56It9ykoEYN3MXoX0bsYvIuhRHGUUSZ8OwlOmubfJBuTPv5id-B-dfoz9AWgYplS |
| CODEN | AMOMBN |
| CitedBy_id | crossref_primary_10_1007_s00780_019_00407_1 crossref_primary_10_1137_23M1579558 crossref_primary_10_1137_19M1296288 crossref_primary_10_1111_mafi_12339 crossref_primary_10_1142_S021902571850025X |
| Cites_doi | 10.1007/978-0-387-70914-7 10.1007/BFb0083943 10.1017/CBO9780511666223 10.1007/BF02392299 10.1007/s10915-007-9168-2 10.1007/978-1-4612-5561-1 10.1007/s001860050040 10.1016/0022-1236(89)90062-1 10.1007/s00245-003-0764-8 10.1007/BFb0004053 10.1090/surv/062 10.1016/j.spa.2014.09.021 10.1007/BFb0097499 10.1002/cpa.3160250603 10.1137/0318052 10.1007/3-540-29021-4 10.1007/BFb0083935 10.1016/j.na.2005.05.054 10.1007/s00245-007-9021-x |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2016 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2016 |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 88I 8AO 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7SC 8FD L7M L~C L~D |
| DOI | 10.1007/s00245-015-9302-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Computer and Information Systems Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1432-0606 |
| EndPage | 312 |
| ExternalDocumentID | 3982194961 10_1007_s00245_015_9302_8 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TH9 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WHG WJK WK8 YLTOR Z45 Z81 Z8U ZL0 ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7XB 8FK JQ2 L.- L.0 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7SC 8FD L7M L~C L~D PUEGO |
| ID | FETCH-LOGICAL-c462t-f4fa2fecc285c2e8a34b6f4f2fde39a4d22cbc5e86f248d9d0774a5e817f89e83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372254900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0095-4616 |
| IngestDate | Thu Oct 02 05:12:11 EDT 2025 Wed Nov 05 15:01:29 EST 2025 Sat Nov 29 02:47:06 EST 2025 Tue Nov 18 21:23:13 EST 2025 Fri Feb 21 02:26:27 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Optimal stopping Infinite-dimensional stochastic analysis 60G40 49J40 Degenerate variational inequalities 35R15 Parabolic partial differential equations |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-f4fa2fecc285c2e8a34b6f4f2fde39a4d22cbc5e86f248d9d0774a5e817f89e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/2318/1761959 |
| PQID | 1772422513 |
| PQPubID | 47316 |
| PageCount | 42 |
| ParticipantIDs | proquest_miscellaneous_1800494472 proquest_journals_1772422513 crossref_primary_10_1007_s00245_015_9302_8 crossref_citationtrail_10_1007_s00245_015_9302_8 springer_journals_10_1007_s00245_015_9302_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-01 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied mathematics & optimization |
| PublicationTitleAbbrev | Appl Math Optim |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Da PratoGZabczykJSecond Order Partial Differential Equations in Hilbert Spaces2004CambridgeCambridge University Press1012.35001 MenaldiJLOn the optimal stopping time problem for degenerate diffusionsSIAM J. Control Optim.198018669772159292810.1137/03180520462.93045 BarbuVMarinelliCVariational inequalities in Hilbert spaces with measures and optimal stopping problemsAppl. Math. Optim.200857237262238610510.1007/s00245-007-9021-x1144.49006 Da PratoGZabczykJStochastic Equations in Infinite Dimensions1992CambridgeCambridge University Press10.1017/CBO97805116662230761.60052 Menaldi, J.L.: On Degenerate Variational and Quasi-Variational Inequalities of parabolic Type. Analysis and Optimization of Systems, Lecture notes in Control and Information Sciences, vol. 28, pp. 338–356 (1980) LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutionsActa Math.19883–424327897179710.1007/BF023922990757.93082 KrylovNVControlled Diffusion Processes2009BerlinSpringer1171.93004 Chow, P.L., Menaldi, J.L.: Variational Inequalities for the Control of Stochastic Partial Differential Equations. Stochastic Partial Differential Equations and Applications II, Lecture Notes in Mathematics, Springer, Berlin, pp. 42–52 (1989) El Karoui, N.: Les Aspects Probabilistes du Contrôle Stochastique. In: 9th Saint Flour Probability Summer School, Lecture Notes in Math. 876, Springer, Berlin, pp. 73–238 (1979) Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25, Springer, New York Zabczyk, J.: Stopping Problems on Polish Spaces. Ann. Univ. Mariae Curie-Sklodowska, 51 Vol. 1.18 pp. 181–199 (1997) StroockDVaradhanSRSOn degenerate elliptic-parabolic operators of second order and their associated diffusionsComm. Pure Appl. Math.19722565171338781210.1002/cpa.31602506030344.35041 ChiarollaMBDe AngelisTAnalytical pricing of American put options on a zero coupon bond in the Heath-Jarrow-Morton modelStoch. Process.2015125678707329329910.1016/j.spa.2014.09.0211307.91173 DieudonnéJFoundations of Modern Analysis1969LondonAcademic Press0176.00502 Da PratoGAn Introduction to Infinite-Dimensional Analysis2006BerlinSpringer10.1007/3-540-29021-41109.46001 Bogachev, V.I.: Gaussian Measures. American Mathematical Society (1997) LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equationsJ. Funct. Anal.1989861118101393110.1016/0022-1236(89)90062-10757.93084 KelomeDŚwiȩchAViscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equationAppl. Math. Optim.200347253278197438910.1007/s00245-003-0764-81025.49019 PazyASemigroups of Linear Operator and Applications to Partial Differential Equations1983New YorkSpringer10.1007/978-1-4612-5561-10516.47023 AdamsRASobolev Spaces1975LondonAcademic Press0314.46030 ShiryaevANOptimal Stopping Rules1978BerlinSpringer0391.60002 MaZMRöcknerMIntroduction to the theory of (non-symmetric) dirichlet forms1992BerlinSpringer10.1007/978-3-642-77739-40826.31001 ŚwiȩchA“Unbounded” second order partial differential equations in infinite-dimensional Hilbert spacesComm. Partial Differ. Equ.19941911–121999203613011800812.35154 Zabczyk, J.: Stopping Problems in Stochastic Control. In: Proceedings of the International Congress of Mathematicians, vol. 1–2, PWN, Warsaw, pp. 1425–1437 (1984) Ga̧tarekDŚwiȩchAOptimal stopping in Hilbert spaces and pricing of American optionsMath. Methods Oper. Res.199950135147171117710.1007/s0018600500400991.91033 ZabczykJBellman’s inclusions and excessive measuresProbab. Math. Statist.200121110112218697240992.60077 Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2010) MarcozziMDOn the approximation of infinite dimensional optimal stopping problems with application to mathematical financeJ. Sci Comput.200834287307237762110.1007/s10915-007-9168-21133.91502 BensoussanALionsJLApplications of Variational Inequalities in Stochastic Control1982AmsterdamNorth-Holland0478.49002 Lions, P.L.: Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s equation. Lecture Notes in Math., 1390, Springer, Berlin, pp. 147–170 (1989) De Angelis, T.: Pricing American Bond Options under HJM: An Infinite Dimensional Variational Inequality. Ph.D thesis (2012) BarbuVSritharanSSOptimal stopping-time problem for stochastic Navier-Stokes equations and infinite-dimensional variational inequalitiesNonlinear Anal.20066410181024219680910.1016/j.na.2005.05.0541091.60005 9302_CR20 JL Menaldi (9302_CR24) 1980; 18 MB Chiarolla (9302_CR7) 2015; 125 9302_CR25 J Zabczyk (9302_CR32) 2001; 21 9302_CR8 A Świȩch (9302_CR29) 1994; 19 9302_CR6 9302_CR5 D Stroock (9302_CR28) 1972; 25 PL Lions (9302_CR21) 1989; 86 A Bensoussan (9302_CR4) 1982 9302_CR31 9302_CR12 9302_CR14 9302_CR15 V Barbu (9302_CR3) 2006; 64 RA Adams (9302_CR1) 1975 AN Shiryaev (9302_CR27) 1978 G Prato Da (9302_CR9) 2006 D Ga̧tarek (9302_CR16) 1999; 50 G Da Prato (9302_CR10) 1992 J Dieudonné (9302_CR13) 1969 NV Krylov (9302_CR18) 2009 V Barbu (9302_CR2) 2008; 57 G Da Prato (9302_CR11) 2004 PL Lions (9302_CR19) 1988; 3–4 MD Marcozzi (9302_CR23) 2008; 34 D Kelome (9302_CR17) 2003; 47 ZM Ma (9302_CR22) 1992 A Pazy (9302_CR26) 1983 9302_CR30 |
| References_xml | – reference: Da PratoGAn Introduction to Infinite-Dimensional Analysis2006BerlinSpringer10.1007/3-540-29021-41109.46001 – reference: BarbuVSritharanSSOptimal stopping-time problem for stochastic Navier-Stokes equations and infinite-dimensional variational inequalitiesNonlinear Anal.20066410181024219680910.1016/j.na.2005.05.0541091.60005 – reference: BensoussanALionsJLApplications of Variational Inequalities in Stochastic Control1982AmsterdamNorth-Holland0478.49002 – reference: MarcozziMDOn the approximation of infinite dimensional optimal stopping problems with application to mathematical financeJ. Sci Comput.200834287307237762110.1007/s10915-007-9168-21133.91502 – reference: ZabczykJBellman’s inclusions and excessive measuresProbab. Math. Statist.200121110112218697240992.60077 – reference: Da PratoGZabczykJStochastic Equations in Infinite Dimensions1992CambridgeCambridge University Press10.1017/CBO97805116662230761.60052 – reference: LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutionsActa Math.19883–424327897179710.1007/BF023922990757.93082 – reference: Bogachev, V.I.: Gaussian Measures. American Mathematical Society (1997) – reference: Zabczyk, J.: Stopping Problems on Polish Spaces. Ann. Univ. Mariae Curie-Sklodowska, 51 Vol. 1.18 pp. 181–199 (1997) – reference: AdamsRASobolev Spaces1975LondonAcademic Press0314.46030 – reference: Zabczyk, J.: Stopping Problems in Stochastic Control. In: Proceedings of the International Congress of Mathematicians, vol. 1–2, PWN, Warsaw, pp. 1425–1437 (1984) – reference: Da PratoGZabczykJSecond Order Partial Differential Equations in Hilbert Spaces2004CambridgeCambridge University Press1012.35001 – reference: Chow, P.L., Menaldi, J.L.: Variational Inequalities for the Control of Stochastic Partial Differential Equations. Stochastic Partial Differential Equations and Applications II, Lecture Notes in Mathematics, Springer, Berlin, pp. 42–52 (1989) – reference: Lions, P.L.: Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s equation. Lecture Notes in Math., 1390, Springer, Berlin, pp. 147–170 (1989) – reference: StroockDVaradhanSRSOn degenerate elliptic-parabolic operators of second order and their associated diffusionsComm. Pure Appl. Math.19722565171338781210.1002/cpa.31602506030344.35041 – reference: BarbuVMarinelliCVariational inequalities in Hilbert spaces with measures and optimal stopping problemsAppl. Math. Optim.200857237262238610510.1007/s00245-007-9021-x1144.49006 – reference: Ga̧tarekDŚwiȩchAOptimal stopping in Hilbert spaces and pricing of American optionsMath. Methods Oper. Res.199950135147171117710.1007/s0018600500400991.91033 – reference: LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equationsJ. Funct. Anal.1989861118101393110.1016/0022-1236(89)90062-10757.93084 – reference: KrylovNVControlled Diffusion Processes2009BerlinSpringer1171.93004 – reference: MaZMRöcknerMIntroduction to the theory of (non-symmetric) dirichlet forms1992BerlinSpringer10.1007/978-3-642-77739-40826.31001 – reference: PazyASemigroups of Linear Operator and Applications to Partial Differential Equations1983New YorkSpringer10.1007/978-1-4612-5561-10516.47023 – reference: El Karoui, N.: Les Aspects Probabilistes du Contrôle Stochastique. In: 9th Saint Flour Probability Summer School, Lecture Notes in Math. 876, Springer, Berlin, pp. 73–238 (1979) – reference: Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2010) – reference: MenaldiJLOn the optimal stopping time problem for degenerate diffusionsSIAM J. Control Optim.198018669772159292810.1137/03180520462.93045 – reference: Menaldi, J.L.: On Degenerate Variational and Quasi-Variational Inequalities of parabolic Type. Analysis and Optimization of Systems, Lecture notes in Control and Information Sciences, vol. 28, pp. 338–356 (1980) – reference: DieudonnéJFoundations of Modern Analysis1969LondonAcademic Press0176.00502 – reference: Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25, Springer, New York – reference: KelomeDŚwiȩchAViscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equationAppl. Math. Optim.200347253278197438910.1007/s00245-003-0764-81025.49019 – reference: ChiarollaMBDe AngelisTAnalytical pricing of American put options on a zero coupon bond in the Heath-Jarrow-Morton modelStoch. Process.2015125678707329329910.1016/j.spa.2014.09.0211307.91173 – reference: ŚwiȩchA“Unbounded” second order partial differential equations in infinite-dimensional Hilbert spacesComm. Partial Differ. Equ.19941911–121999203613011800812.35154 – reference: De Angelis, T.: Pricing American Bond Options under HJM: An Infinite Dimensional Variational Inequality. Ph.D thesis (2012) – reference: ShiryaevANOptimal Stopping Rules1978BerlinSpringer0391.60002 – volume-title: Sobolev Spaces year: 1975 ident: 9302_CR1 – ident: 9302_CR6 doi: 10.1007/978-0-387-70914-7 – volume-title: Introduction to the theory of (non-symmetric) dirichlet forms year: 1992 ident: 9302_CR22 – ident: 9302_CR20 doi: 10.1007/BFb0083943 – ident: 9302_CR31 – ident: 9302_CR12 – ident: 9302_CR15 – volume-title: Stochastic Equations in Infinite Dimensions year: 1992 ident: 9302_CR10 doi: 10.1017/CBO9780511666223 – volume: 3–4 start-page: 243 year: 1988 ident: 9302_CR19 publication-title: Acta Math. doi: 10.1007/BF02392299 – volume: 19 start-page: 1999 issue: 11–12 year: 1994 ident: 9302_CR29 publication-title: Comm. Partial Differ. Equ. – volume-title: Foundations of Modern Analysis year: 1969 ident: 9302_CR13 – volume: 34 start-page: 287 year: 2008 ident: 9302_CR23 publication-title: J. Sci Comput. doi: 10.1007/s10915-007-9168-2 – volume-title: Semigroups of Linear Operator and Applications to Partial Differential Equations year: 1983 ident: 9302_CR26 doi: 10.1007/978-1-4612-5561-1 – volume: 50 start-page: 135 year: 1999 ident: 9302_CR16 publication-title: Math. Methods Oper. Res. doi: 10.1007/s001860050040 – volume-title: Controlled Diffusion Processes year: 2009 ident: 9302_CR18 – volume: 86 start-page: 1 issue: 1 year: 1989 ident: 9302_CR21 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(89)90062-1 – volume: 21 start-page: 101 issue: 1 year: 2001 ident: 9302_CR32 publication-title: Probab. Math. Statist. – volume: 47 start-page: 253 year: 2003 ident: 9302_CR17 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-003-0764-8 – ident: 9302_CR25 doi: 10.1007/BFb0004053 – ident: 9302_CR5 doi: 10.1090/surv/062 – volume: 125 start-page: 678 year: 2015 ident: 9302_CR7 publication-title: Stoch. Process. doi: 10.1016/j.spa.2014.09.021 – ident: 9302_CR14 doi: 10.1007/BFb0097499 – volume-title: Applications of Variational Inequalities in Stochastic Control year: 1982 ident: 9302_CR4 – volume: 25 start-page: 651 year: 1972 ident: 9302_CR28 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160250603 – volume: 18 start-page: 697 issue: 6 year: 1980 ident: 9302_CR24 publication-title: SIAM J. Control Optim. doi: 10.1137/0318052 – volume-title: An Introduction to Infinite-Dimensional Analysis year: 2006 ident: 9302_CR9 doi: 10.1007/3-540-29021-4 – ident: 9302_CR30 – ident: 9302_CR8 doi: 10.1007/BFb0083935 – volume-title: Second Order Partial Differential Equations in Hilbert Spaces year: 2004 ident: 9302_CR11 – volume-title: Optimal Stopping Rules year: 1978 ident: 9302_CR27 – volume: 64 start-page: 1018 year: 2006 ident: 9302_CR3 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2005.05.054 – volume: 57 start-page: 237 year: 2008 ident: 9302_CR2 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-007-9021-x |
| SSID | ssj0002363 |
| Score | 2.1083124 |
| Snippet | A finite horizon optimal stopping problem for an infinite dimensional diffusion
X
is analyzed by means of variational techniques. The diffusion is driven by a... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A finite horizon optimal stopping problem for an infinite dimensional diffusion X... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A finite horizon optimal stopping problem for an infinite dimensional diffusion X... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 271 |
| SubjectTerms | Approximation Calculus of Variations and Optimal Control; Optimization Control Diffusion Drift Hilbert space Inequalities Inequality Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematics Mathematics and Statistics Numerical and Computational Physics Optimization Partial differential equations Pricing Simulation Stochastic models Studies Systems Theory Theoretical Viscosity |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB1R6KEcWmipui1FRuqpVURiO47TS4VaEBx2QaKt9hY5jo0iQQK7CRJ_33HiBFqpe-Fox04szXj8PDN5A_ApjxTNEQYEPJYq4IKjHUylxlsr0zJMVExV2BWbSGYzOZ-n597htvRplYNN7Ax1UWvnIz-IEAZyVL6Ifbu5DVzVKBdd9SU0nsEGIpvIpXRN6floiSnzldRSXIuIxBDVDDsSUcpd2locpMwZhb_PpQew-U98tDt2jl89dcFb8NIDTnLYa8g2rJnqNWw-oiHE1nTkbl2-geIMrcg1TrloakfecElqSxQ5KR0bVkMu8JJtyG911ZqC_CitbZ2_7Ss5rMhpZUsHYbH72uXFO5CPIxeldzjiANP_xHm_A7-Oj35-Pwl8LYZAc0GbwHKrqEV5UxlraqRiPBfYSW1hWKp4QanOdWyksJTLIi1CxJUK21FiZWokewvrVV2Zd0BCxqVKRK40M1zGeD1XEvVZCpXHjGszgXCQRKY9Ubmrl3GVjRTLnfAyFF7mhJfJCXwep9z0LB2rBu8OAsv8hl1mD9KawP74GLeai5-oytQtjpEdmw5P6AS-DGrx6BX_--D71R_8AC8QhYk-HWgX1ptFaz7Cc33XlMvFXqfRfwAcNPsa priority: 102 providerName: ProQuest |
| Title | Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality |
| URI | https://link.springer.com/article/10.1007/s00245-015-9302-8 https://www.proquest.com/docview/1772422513 https://www.proquest.com/docview/1800494472 |
| Volume | 73 |
| WOSCitedRecordID | wos000372254900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: M0C dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection ProQuest customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: 7WY dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: P5Z dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database ProQuest customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: K7- dateStart: 20020101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: M7S dateStart: 20020101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: M2O dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1432-0606 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: M2P dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0606 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9QwzGIfD-xhwGDixnYK0p6GKrVJmrq8jbFpCO122sEYvFRpmqBKW2-66yHx73F6bTcQIMGLpaROGjmxY8eJDbCfR5rnpAYEMkYdSCVJDqZoyGoVBsNEx1yHTbKJZDTCq6t03L7jnne33TuXZCOp-8dujZeQOomDVHg2XoE12u3Q52u4mFz24peLNn1aSgNQkepcmb_r4ufN6E7D_MUp2uw1J4_-a5SPYbNVLdnhci08gQe22oKNewEHqXTWR2mdP4XinOTFDTWZ1FMfpuErmzqm2Wnp417VbELmtGWX-nphC_a2dG7hT9Zes8OKvatc6ZVVqr7xN-C9Ok-Ys7I9WiQEu3yu-f0ZfDw5_nB0GrRZFwIjFa8DJ53mjmaWY2y4RS1krqiSu8KKVMuCc5Ob2KJyXGKRFiFpkJrKUeIwtSi2YbWaVvY5sFBI1InKtRFWYkyGuEZauah0Hgtp7ADCjvyZaUOS-8wY11kfTLkhZ0bkzDw5MxzAQd_kdhmP42_Iu92cZi1rzrOI7AlJUiwSA3jZfyam8p4SXdnpgnCwiZsjEz6AV9083-viTz_c-SfsF_CQ1C-1vAe0C6v1bGH3YN18q8v5bAgryafPQ1h7czwaX1DpfRIQPAuPPOTnDRx7mEwIjuMvw4YPfgANDPi6 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD9BNFEfxA8MV0Broi-aha3tus6EECKSewNcSUDD2-i6liyB7XrvroR_yr_R032BJvLGg4_rTtt1_fX0tD39HYB3aaBoimaAx0OpPC446sFYaly1Mi39SIVU-XWwiWg8licn8eEC_Oruwji3yk4n1oo6K7XbI98I0AzkCL6AbU1-eC5qlDtd7UJoNLDYM1eXuGSbbY52sH_fU7r75fjz0GujCniaC1p5lltFLX45laGmRirGU4GJ1GaGxYpnlOpUh0YKS7nM4sxHC0nhcxBZGRvJsNx7cJ87ZjHnKkgPe81PWRu5Lca2i0B0p6h-TVpKuXOTC72YOSX05zx4bdz-dR5bT3O7S__bD3oKT1qDmmw3I-AZLJjiOTy-QbOITwc9N-3sBWRfUUteYJajqnTkFGektESRYe7YvipyNFHakO_qfG4yspNbO3f7iZ_IdkFGhc2diY7JF87v3y1iUHKatxuqKGCaS6pXy_DtThr9EhaLsjArQHzGpYpEqjQzXIYi9pXE8SqFSkPGtRmA3_V8olsidhcP5DzpKaRrsCQIlsSBJZED-NBnmTQsJLcJr3UASVqFNEuu0TGAt_1rVCXufEgVppyjjKzZgnhEB_Cxg-GNIv5V4avbK3wDD4fHB_vJ_mi8twqP0OIUjevTGixW07lZhwf6Z5XPpq_r0UTg9K7R-Rv7kVrz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE4UJ5ioS1GggsoamI7jlMJVVWXVVeFZaUCqrgEx7FRpDZZdrOg_rX-OsZ5tSDRWw8c7fghO5_HM_b4G4CXaaBoimqAx0OpPC44ysFYarRamZZ-pEKq_DrYRDSZyOPjeLoC591bGOdW2cnEWlBnpXZn5NsBqoEcwRewbdu6RUyHo93ZD89FkHI3rV04jQYih-bsF5pvi7fjIf7rV5SO3n3aP_DaCAOe5oJWnuVWUYujoDLU1EjFeCowk9rMsFjxjFKd6tBIYSmXWZz5qC0pTAeRlbGRDNu9AWsR2pjOnXAafu13AcraKG4xzoMIRHej6tcEppQ7l7nQi5kTSH_uiReK7l93s_WWN1r_nyfrHtxtFW2y16yM-7Biigdw5xL9IqY-9Jy1i4eQfUTpeYpVjqrSkVZ8J6UlihzkjgWsIkczpQ35ok6WJiPD3NqlO2fcIXsFGRc2d6o7Zp-69wDOuMGS87w9aMUCpnm8evYIPl_LoB_DalEW5gkQn3GpIpEqzQyXoYh9JXEdS6HSkHFtBuB3KEh0S9Du4oScJD21dA2cBIGTOOAkcgCv-yqzhp3kqsIbHViSVlAtkgukDOBF_xlFjLs3UoUpl1hG1ixCPKIDeNNB8lIT_-rw6dUdPodbCMrk_Xhy-AxuoyIqGo-oDVit5kuzCTf1zypfzLfqhUXg23WD8zdQIGPf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Stopping+of+a+Hilbert+Space+Valued+Diffusion%3A+An+Infinite+Dimensional+Variational+Inequality&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Chiarolla%2C+Maria+B&rft.au=Angelis%2C+Tiziano&rft.date=2016-04-01&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=73&rft.issue=2&rft.spage=271&rft.epage=312&rft_id=info:doi/10.1007%2Fs00245-015-9302-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon |