Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality

A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization Jg. 73; H. 2; S. 271 - 312
Hauptverfasser: Chiarolla, Maria B., De Angelis, Tiziano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2016
Springer Nature B.V
Schlagworte:
ISSN:0095-4616, 1432-0606
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain function Θ is time-dependent and fulfils mild regularity assumptions, the value function U of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient σ ( X ) is specified, the solution of the variational problem is found in a suitable Banach space V fully characterized in terms of a Gaussian measure μ . This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982 ), of well-known results on optimal stopping theory and variational inequalities in R n . These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space ... with a non-linear diffusion coefficient ... and a generic unbounded operator A in the drift term. When the gain function ... is time-dependent and fulfils mild regularity assumptions, the value function ... of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient ... is specified, the solution of the variational problem is found in a suitable Banach space ... fully characterized in terms of a Gaussian measure ... This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982 ), of well-known results on optimal stopping theory and variational inequalities in ... These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model.
A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space H with a non-linear diffusion coefficient σ ( X ) and a generic unbounded operator A in the drift term. When the gain function Θ is time-dependent and fulfils mild regularity assumptions, the value function U of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient σ ( X ) is specified, the solution of the variational problem is found in a suitable Banach space V fully characterized in terms of a Gaussian measure μ . This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982 ), of well-known results on optimal stopping theory and variational inequalities in R n . These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model.
Author Chiarolla, Maria B.
De Angelis, Tiziano
Author_xml – sequence: 1
  givenname: Maria B.
  surname: Chiarolla
  fullname: Chiarolla, Maria B.
  organization: Dipartimento di Metodi e Modelli per l’Economia, il Territorio e la Finanza (MEMOTEF), Università di Roma ‘La Sapienza’
– sequence: 2
  givenname: Tiziano
  surname: De Angelis
  fullname: De Angelis, Tiziano
  email: tiziano.deangelis@manchester.ac.uk
  organization: School of Mathematics, University of Manchester
BookMark eNp9kE1PAyEURYnRxFr9Ae5I3LgZBYb5ctf41SZNuqh2SyjzaDBTZgrMwn8v47gwTXQFvJz7uDkX6NS2FhC6puSOElLce0IYzxJCs6RKCUvKEzShPGUJyUl-iiaEVFnCc5qfowvvP0jE0zydoHrVBbOXDV6HtuuM3eFWY4nnptmCC3jdSQV4I5seavxktO69ae0Dnlm8sNpYEyCO92CHcdyykc7IMN4XFg69bEz4vERnWjYern7OKXp_eX57nCfL1evicbZMFM9ZSDTXkmlQipWZYlDKlG_zOGS6hrSSvGZMbVUGZa4ZL-uqJkXBZXzTQpcVlOkU3Y57O9ceevBB7I1X0DTSQtt7QUtCeMV5wSJ6c4R-tL2LtSNVFIwzltE0UnSklGu9d6BF56It9ykoEYN3MXoX0bsYvIuhRHGUUSZ8OwlOmubfJBuTPv5id-B-dfoz9AWgYplS
CODEN AMOMBN
CitedBy_id crossref_primary_10_1007_s00780_019_00407_1
crossref_primary_10_1137_23M1579558
crossref_primary_10_1137_19M1296288
crossref_primary_10_1111_mafi_12339
crossref_primary_10_1142_S021902571850025X
Cites_doi 10.1007/978-0-387-70914-7
10.1007/BFb0083943
10.1017/CBO9780511666223
10.1007/BF02392299
10.1007/s10915-007-9168-2
10.1007/978-1-4612-5561-1
10.1007/s001860050040
10.1016/0022-1236(89)90062-1
10.1007/s00245-003-0764-8
10.1007/BFb0004053
10.1090/surv/062
10.1016/j.spa.2014.09.021
10.1007/BFb0097499
10.1002/cpa.3160250603
10.1137/0318052
10.1007/3-540-29021-4
10.1007/BFb0083935
10.1016/j.na.2005.05.054
10.1007/s00245-007-9021-x
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
88I
8AO
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7SC
8FD
L7M
L~C
L~D
DOI 10.1007/s00245-015-9302-8
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
ABI/INFORM Global (OCUL)
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1432-0606
EndPage 312
ExternalDocumentID 3982194961
10_1007_s00245_015_9302_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TH9
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WHG
WJK
WK8
YLTOR
Z45
Z81
Z8U
ZL0
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
JQ2
L.-
L.0
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7SC
8FD
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c462t-f4fa2fecc285c2e8a34b6f4f2fde39a4d22cbc5e86f248d9d0774a5e817f89e83
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372254900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0095-4616
IngestDate Thu Oct 02 05:12:11 EDT 2025
Wed Nov 05 15:01:29 EST 2025
Sat Nov 29 02:47:06 EST 2025
Tue Nov 18 21:23:13 EST 2025
Fri Feb 21 02:26:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Optimal stopping
Infinite-dimensional stochastic analysis
60G40
49J40
Degenerate variational inequalities
35R15
Parabolic partial differential equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-f4fa2fecc285c2e8a34b6f4f2fde39a4d22cbc5e86f248d9d0774a5e817f89e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/2318/1761959
PQID 1772422513
PQPubID 47316
PageCount 42
ParticipantIDs proquest_miscellaneous_1800494472
proquest_journals_1772422513
crossref_primary_10_1007_s00245_015_9302_8
crossref_citationtrail_10_1007_s00245_015_9302_8
springer_journals_10_1007_s00245_015_9302_8
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied mathematics & optimization
PublicationTitleAbbrev Appl Math Optim
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Da PratoGZabczykJSecond Order Partial Differential Equations in Hilbert Spaces2004CambridgeCambridge University Press1012.35001
MenaldiJLOn the optimal stopping time problem for degenerate diffusionsSIAM J. Control Optim.198018669772159292810.1137/03180520462.93045
BarbuVMarinelliCVariational inequalities in Hilbert spaces with measures and optimal stopping problemsAppl. Math. Optim.200857237262238610510.1007/s00245-007-9021-x1144.49006
Da PratoGZabczykJStochastic Equations in Infinite Dimensions1992CambridgeCambridge University Press10.1017/CBO97805116662230761.60052
Menaldi, J.L.: On Degenerate Variational and Quasi-Variational Inequalities of parabolic Type. Analysis and Optimization of Systems, Lecture notes in Control and Information Sciences, vol. 28, pp. 338–356 (1980)
LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutionsActa Math.19883–424327897179710.1007/BF023922990757.93082
KrylovNVControlled Diffusion Processes2009BerlinSpringer1171.93004
Chow, P.L., Menaldi, J.L.: Variational Inequalities for the Control of Stochastic Partial Differential Equations. Stochastic Partial Differential Equations and Applications II, Lecture Notes in Mathematics, Springer, Berlin, pp. 42–52 (1989)
El Karoui, N.: Les Aspects Probabilistes du Contrôle Stochastique. In: 9th Saint Flour Probability Summer School, Lecture Notes in Math. 876, Springer, Berlin, pp. 73–238 (1979)
Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25, Springer, New York
Zabczyk, J.: Stopping Problems on Polish Spaces. Ann. Univ. Mariae Curie-Sklodowska, 51 Vol. 1.18 pp. 181–199 (1997)
StroockDVaradhanSRSOn degenerate elliptic-parabolic operators of second order and their associated diffusionsComm. Pure Appl. Math.19722565171338781210.1002/cpa.31602506030344.35041
ChiarollaMBDe AngelisTAnalytical pricing of American put options on a zero coupon bond in the Heath-Jarrow-Morton modelStoch. Process.2015125678707329329910.1016/j.spa.2014.09.0211307.91173
DieudonnéJFoundations of Modern Analysis1969LondonAcademic Press0176.00502
Da PratoGAn Introduction to Infinite-Dimensional Analysis2006BerlinSpringer10.1007/3-540-29021-41109.46001
Bogachev, V.I.: Gaussian Measures. American Mathematical Society (1997)
LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equationsJ. Funct. Anal.1989861118101393110.1016/0022-1236(89)90062-10757.93084
KelomeDŚwiȩchAViscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equationAppl. Math. Optim.200347253278197438910.1007/s00245-003-0764-81025.49019
PazyASemigroups of Linear Operator and Applications to Partial Differential Equations1983New YorkSpringer10.1007/978-1-4612-5561-10516.47023
AdamsRASobolev Spaces1975LondonAcademic Press0314.46030
ShiryaevANOptimal Stopping Rules1978BerlinSpringer0391.60002
MaZMRöcknerMIntroduction to the theory of (non-symmetric) dirichlet forms1992BerlinSpringer10.1007/978-3-642-77739-40826.31001
ŚwiȩchA“Unbounded” second order partial differential equations in infinite-dimensional Hilbert spacesComm. Partial Differ. Equ.19941911–121999203613011800812.35154
Zabczyk, J.: Stopping Problems in Stochastic Control. In: Proceedings of the International Congress of Mathematicians, vol. 1–2, PWN, Warsaw, pp. 1425–1437 (1984)
Ga̧tarekDŚwiȩchAOptimal stopping in Hilbert spaces and pricing of American optionsMath. Methods Oper. Res.199950135147171117710.1007/s0018600500400991.91033
ZabczykJBellman’s inclusions and excessive measuresProbab. Math. Statist.200121110112218697240992.60077
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2010)
MarcozziMDOn the approximation of infinite dimensional optimal stopping problems with application to mathematical financeJ. Sci Comput.200834287307237762110.1007/s10915-007-9168-21133.91502
BensoussanALionsJLApplications of Variational Inequalities in Stochastic Control1982AmsterdamNorth-Holland0478.49002
Lions, P.L.: Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s equation. Lecture Notes in Math., 1390, Springer, Berlin, pp. 147–170 (1989)
De Angelis, T.: Pricing American Bond Options under HJM: An Infinite Dimensional Variational Inequality. Ph.D thesis (2012)
BarbuVSritharanSSOptimal stopping-time problem for stochastic Navier-Stokes equations and infinite-dimensional variational inequalitiesNonlinear Anal.20066410181024219680910.1016/j.na.2005.05.0541091.60005
9302_CR20
JL Menaldi (9302_CR24) 1980; 18
MB Chiarolla (9302_CR7) 2015; 125
9302_CR25
J Zabczyk (9302_CR32) 2001; 21
9302_CR8
A Świȩch (9302_CR29) 1994; 19
9302_CR6
9302_CR5
D Stroock (9302_CR28) 1972; 25
PL Lions (9302_CR21) 1989; 86
A Bensoussan (9302_CR4) 1982
9302_CR31
9302_CR12
9302_CR14
9302_CR15
V Barbu (9302_CR3) 2006; 64
RA Adams (9302_CR1) 1975
AN Shiryaev (9302_CR27) 1978
G Prato Da (9302_CR9) 2006
D Ga̧tarek (9302_CR16) 1999; 50
G Da Prato (9302_CR10) 1992
J Dieudonné (9302_CR13) 1969
NV Krylov (9302_CR18) 2009
V Barbu (9302_CR2) 2008; 57
G Da Prato (9302_CR11) 2004
PL Lions (9302_CR19) 1988; 3–4
MD Marcozzi (9302_CR23) 2008; 34
D Kelome (9302_CR17) 2003; 47
ZM Ma (9302_CR22) 1992
A Pazy (9302_CR26) 1983
9302_CR30
References_xml – reference: Da PratoGAn Introduction to Infinite-Dimensional Analysis2006BerlinSpringer10.1007/3-540-29021-41109.46001
– reference: BarbuVSritharanSSOptimal stopping-time problem for stochastic Navier-Stokes equations and infinite-dimensional variational inequalitiesNonlinear Anal.20066410181024219680910.1016/j.na.2005.05.0541091.60005
– reference: BensoussanALionsJLApplications of Variational Inequalities in Stochastic Control1982AmsterdamNorth-Holland0478.49002
– reference: MarcozziMDOn the approximation of infinite dimensional optimal stopping problems with application to mathematical financeJ. Sci Comput.200834287307237762110.1007/s10915-007-9168-21133.91502
– reference: ZabczykJBellman’s inclusions and excessive measuresProbab. Math. Statist.200121110112218697240992.60077
– reference: Da PratoGZabczykJStochastic Equations in Infinite Dimensions1992CambridgeCambridge University Press10.1017/CBO97805116662230761.60052
– reference: LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutionsActa Math.19883–424327897179710.1007/BF023922990757.93082
– reference: Bogachev, V.I.: Gaussian Measures. American Mathematical Society (1997)
– reference: Zabczyk, J.: Stopping Problems on Polish Spaces. Ann. Univ. Mariae Curie-Sklodowska, 51 Vol. 1.18 pp. 181–199 (1997)
– reference: AdamsRASobolev Spaces1975LondonAcademic Press0314.46030
– reference: Zabczyk, J.: Stopping Problems in Stochastic Control. In: Proceedings of the International Congress of Mathematicians, vol. 1–2, PWN, Warsaw, pp. 1425–1437 (1984)
– reference: Da PratoGZabczykJSecond Order Partial Differential Equations in Hilbert Spaces2004CambridgeCambridge University Press1012.35001
– reference: Chow, P.L., Menaldi, J.L.: Variational Inequalities for the Control of Stochastic Partial Differential Equations. Stochastic Partial Differential Equations and Applications II, Lecture Notes in Mathematics, Springer, Berlin, pp. 42–52 (1989)
– reference: Lions, P.L.: Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s equation. Lecture Notes in Math., 1390, Springer, Berlin, pp. 147–170 (1989)
– reference: StroockDVaradhanSRSOn degenerate elliptic-parabolic operators of second order and their associated diffusionsComm. Pure Appl. Math.19722565171338781210.1002/cpa.31602506030344.35041
– reference: BarbuVMarinelliCVariational inequalities in Hilbert spaces with measures and optimal stopping problemsAppl. Math. Optim.200857237262238610510.1007/s00245-007-9021-x1144.49006
– reference: Ga̧tarekDŚwiȩchAOptimal stopping in Hilbert spaces and pricing of American optionsMath. Methods Oper. Res.199950135147171117710.1007/s0018600500400991.91033
– reference: LionsPLViscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equationsJ. Funct. Anal.1989861118101393110.1016/0022-1236(89)90062-10757.93084
– reference: KrylovNVControlled Diffusion Processes2009BerlinSpringer1171.93004
– reference: MaZMRöcknerMIntroduction to the theory of (non-symmetric) dirichlet forms1992BerlinSpringer10.1007/978-3-642-77739-40826.31001
– reference: PazyASemigroups of Linear Operator and Applications to Partial Differential Equations1983New YorkSpringer10.1007/978-1-4612-5561-10516.47023
– reference: El Karoui, N.: Les Aspects Probabilistes du Contrôle Stochastique. In: 9th Saint Flour Probability Summer School, Lecture Notes in Math. 876, Springer, Berlin, pp. 73–238 (1979)
– reference: Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2010)
– reference: MenaldiJLOn the optimal stopping time problem for degenerate diffusionsSIAM J. Control Optim.198018669772159292810.1137/03180520462.93045
– reference: Menaldi, J.L.: On Degenerate Variational and Quasi-Variational Inequalities of parabolic Type. Analysis and Optimization of Systems, Lecture notes in Control and Information Sciences, vol. 28, pp. 338–356 (1980)
– reference: DieudonnéJFoundations of Modern Analysis1969LondonAcademic Press0176.00502
– reference: Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25, Springer, New York
– reference: KelomeDŚwiȩchAViscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equationAppl. Math. Optim.200347253278197438910.1007/s00245-003-0764-81025.49019
– reference: ChiarollaMBDe AngelisTAnalytical pricing of American put options on a zero coupon bond in the Heath-Jarrow-Morton modelStoch. Process.2015125678707329329910.1016/j.spa.2014.09.0211307.91173
– reference: ŚwiȩchA“Unbounded” second order partial differential equations in infinite-dimensional Hilbert spacesComm. Partial Differ. Equ.19941911–121999203613011800812.35154
– reference: De Angelis, T.: Pricing American Bond Options under HJM: An Infinite Dimensional Variational Inequality. Ph.D thesis (2012)
– reference: ShiryaevANOptimal Stopping Rules1978BerlinSpringer0391.60002
– volume-title: Sobolev Spaces
  year: 1975
  ident: 9302_CR1
– ident: 9302_CR6
  doi: 10.1007/978-0-387-70914-7
– volume-title: Introduction to the theory of (non-symmetric) dirichlet forms
  year: 1992
  ident: 9302_CR22
– ident: 9302_CR20
  doi: 10.1007/BFb0083943
– ident: 9302_CR31
– ident: 9302_CR12
– ident: 9302_CR15
– volume-title: Stochastic Equations in Infinite Dimensions
  year: 1992
  ident: 9302_CR10
  doi: 10.1017/CBO9780511666223
– volume: 3–4
  start-page: 243
  year: 1988
  ident: 9302_CR19
  publication-title: Acta Math.
  doi: 10.1007/BF02392299
– volume: 19
  start-page: 1999
  issue: 11–12
  year: 1994
  ident: 9302_CR29
  publication-title: Comm. Partial Differ. Equ.
– volume-title: Foundations of Modern Analysis
  year: 1969
  ident: 9302_CR13
– volume: 34
  start-page: 287
  year: 2008
  ident: 9302_CR23
  publication-title: J. Sci Comput.
  doi: 10.1007/s10915-007-9168-2
– volume-title: Semigroups of Linear Operator and Applications to Partial Differential Equations
  year: 1983
  ident: 9302_CR26
  doi: 10.1007/978-1-4612-5561-1
– volume: 50
  start-page: 135
  year: 1999
  ident: 9302_CR16
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s001860050040
– volume-title: Controlled Diffusion Processes
  year: 2009
  ident: 9302_CR18
– volume: 86
  start-page: 1
  issue: 1
  year: 1989
  ident: 9302_CR21
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(89)90062-1
– volume: 21
  start-page: 101
  issue: 1
  year: 2001
  ident: 9302_CR32
  publication-title: Probab. Math. Statist.
– volume: 47
  start-page: 253
  year: 2003
  ident: 9302_CR17
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-003-0764-8
– ident: 9302_CR25
  doi: 10.1007/BFb0004053
– ident: 9302_CR5
  doi: 10.1090/surv/062
– volume: 125
  start-page: 678
  year: 2015
  ident: 9302_CR7
  publication-title: Stoch. Process.
  doi: 10.1016/j.spa.2014.09.021
– ident: 9302_CR14
  doi: 10.1007/BFb0097499
– volume-title: Applications of Variational Inequalities in Stochastic Control
  year: 1982
  ident: 9302_CR4
– volume: 25
  start-page: 651
  year: 1972
  ident: 9302_CR28
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160250603
– volume: 18
  start-page: 697
  issue: 6
  year: 1980
  ident: 9302_CR24
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0318052
– volume-title: An Introduction to Infinite-Dimensional Analysis
  year: 2006
  ident: 9302_CR9
  doi: 10.1007/3-540-29021-4
– ident: 9302_CR30
– ident: 9302_CR8
  doi: 10.1007/BFb0083935
– volume-title: Second Order Partial Differential Equations in Hilbert Spaces
  year: 2004
  ident: 9302_CR11
– volume-title: Optimal Stopping Rules
  year: 1978
  ident: 9302_CR27
– volume: 64
  start-page: 1018
  year: 2006
  ident: 9302_CR3
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.05.054
– volume: 57
  start-page: 237
  year: 2008
  ident: 9302_CR2
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-007-9021-x
SSID ssj0002363
Score 2.1083124
Snippet A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A finite horizon optimal stopping problem for an infinite dimensional diffusion X...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A finite horizon optimal stopping problem for an infinite dimensional diffusion X...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 271
SubjectTerms Approximation
Calculus of Variations and Optimal Control; Optimization
Control
Diffusion
Drift
Hilbert space
Inequalities
Inequality
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Optimization
Partial differential equations
Pricing
Simulation
Stochastic models
Studies
Systems Theory
Theoretical
Viscosity
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R4NAegNJWXQrISJxAVje24zhcKsRDcIAi8RC3yHFsFGlJ6G62Uv8946wTHlK5cLQzjiPNePzZM_kGYFvmPGE8x5VmmaECDxhUaeFoHjuNcJeLJMnbYhPJ-bm6vU0vwoXbJKRVdj6xddRFbfwd-c8IYaBA44v4r4c_1FeN8tHVUELjAywgsol8StcZu-g9MeOhkloaUyEj2UU1hy2JKBM-bS2mKfdO4eW-9AQ2X8VH223nePm9H7wCSwFwkv2ZhXyGOVutwqdnNITYOuu5WydfoPiNXuQeh1w2tSdvuCO1I5qclJ4NqyGXeMi25EaPprYgh6VzU3_ftkf2K3JaudJDWOy-93nxHuSj5LgMF44oYGc_cf77CtfHR1cHJzTUYqBGSNZQJ5xmDvXNVGyYVZqLXGInc4XlqRYFYyY3sVXSMaGKtBgirtTYjhKnUqv4N5iv6sp-B8IQpCqprRGOC1Oo1PHIKCdYMpQGAeUAhp0mMhOIyn29jFHWUyy3ystQeZlXXqYGsNMPeZixdLwlvN4pLAsLdpI9aWsAW_1jXGo-fqIrW09RRrVsOiJhA9jtzOLZK_434drbE_6Aj4jC5CwdaB3mm_HUbsCi-duUk_Fma9GPwq368w
  priority: 102
  providerName: ProQuest
Title Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality
URI https://link.springer.com/article/10.1007/s00245-015-9302-8
https://www.proquest.com/docview/1772422513
https://www.proquest.com/docview/1800494472
Volume 73
WOSCitedRecordID wos000372254900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: 7WY
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: M0C
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: P5Z
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: K7-
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: M7S
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: M2O
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: M2P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1432-0606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002363
  issn: 0095-4616
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjwf2sMFgomOrjLSnIUuN7djO3sY-NITWVSuMwUvkODaKtKVTm07iv-ecJtlAgAQvJ9k5O9E5Z__OZ98B7MmMK8Yz1DTHLBVoYFBthKdZ7A3CXS6UyupkE2o41NfXyai5xz1rT7u3Lsl6pu4uu9VeQjR9Y5rwoMZLsIKrnQ75Gi7HV930y3iTPi2JqZCRbF2Zv-vi58XoAWH-4hSt15rTjf_6ymew3kBLcrj4F57DE1duwtqjgINYOu-itM5eQH6B88UtNhlXkxCm4RuZeGLIWRHiXlVkjOa0I1fmZu5yclx4Pw87awfksCTvS18EsIrVt-EEfIDzyDktmq1FZHCL65rfX8Kn05OPR2e0ybpArZCsol54wzyOLNOxZU4bLjKJlcznjidG5IzZzMZOS8-EzpN8gAjSYDlSXidO8y1YLielewWEIRzV0jgrPBc214nnkdVeMDWQFqFjDwat-FPbhCQPmTFu0i6Yci3OFMWZBnGmugf7XZO7RTyOvzHvtGOaNqo5SyO0JwTOYhHvwZvuMSpV8JSY0k3myKPruDlCsR68bcf5URd_euH2P3G_hqcIv-TiHNAOLFfTuduFVXtfFbNpH5bU5y99WHl3MhxdYumDokjPB0eBsouajgJVY6Sj-Gu_1oMfoTL4kw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD5BMFEfvBtWUWuiL5rGnbbT6ZAYQ0CyG2AlAQ1vQ6fTkklgZt2d1fCn_I2czg00kTcefGyn7Vz69czX9vQ7AG9lyiPGUxxplhkqcIJBlRaOpqHTSHe5iKK0DjYRTSbq6CjeX4Lf3VkY71bZ2cTaUGel8WvkHwOkgQLBF_DP0x_UR43yu6tdCI0GFjv2_BdO2eafxlvYv-8Y2_5yuDmibVQBaoRkFXXCaebwyZkKDbNKc5FKzGQuszzWImPMpCa0SjomVBZnQ2RIGtNB5FRsFcd2b8GK8Mpi3lWQ7feWn_E2clscUiED2e2iDmvRUia8m1xIY-6N0J__wUty-9d-bP2b237wv32gh3C_JdRkoxkBj2DJFo_h3hWZRUzt9dq08yeQfUUreYZVDqrSi1OckNIRTUa5V_uqyMFUG0u-69OFzchW7tzCryeuk42CjAuXe4qO2Wfe799PYrDkLG8XVLGAbQ6pnj-Fbzfy0s9guSgLuwqEIQlXUlsjHBcmU7HjgVFOsGgoDRLmAQy7nk9MK8Tu44GcJr2EdA2WBMGSeLAkagDv-yrTRoXkusJrHUCS1iDNk0t0DOBNfxlNid8f0oUtF1hG1WpBImID-NDB8EoT_7rh8-tv-BrujA73dpPd8WTnBdxFxikb16c1WK5mC_sSbpufVT6fvapHE4Hjm0bnBebwWsw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBSFYlLcYWsBIsAFZndiO4yBVqGIYdVQYRiqgik1wHBtFapNhJgPqr_F1vc6rBYnuumAZxw85Ob4-tq_PBXguUx4xnuJIs8xQgQsMqrRwNA2dRrrLRRSldbCJaDpVh4fxbA1-d3dhvFtlZxNrQ52Vxu-RbwdIAwWCL-DbrnWLmI3Gb-Y_qI8g5U9au3AaDUT27ckvXL4tdyYj_NcvGBu_-_R2j7YRBqgRklXUCaeZw14wFRpmleYilZjIXGZ5rEXGmElNaJV0TKgszobIljQ-B5FTsVUc670CVyNcY3p3wln4tZ8FGG-juMUhFTKQ3YnqsBYwZcK7zIU05t4g_TknnhHdv85m6ylvfOt__li3YaMl2mS3GRl3YM0Wd-HmOflFfPrQa9Yu70H2Ea3nMRY5qEovWvGdlI5ospd7FbCKHMy1seSLPlrZjIxy51Z-n_E12S3IpHC5p-6YfOzvA_jFDeZc5O1GK2awzeXVk_vw-VI6_QDWi7KwD4EwJOdKamuE48JkKnY8MMoJFg2lQSI9gGGHgsS0Au0-TshR0ktL18BJEDiJB06iBvCyLzJv1EkuyrzVgSVpDdUyOUPKAJ71r9HE-HMjXdhyhXlUrSIkIjaAVx0kz1XxrwYfXdzgU7iOoEzeT6b7m3ADiahsPKK2YL1arOxjuGZ-Vvly8aQeWAS-XTY4TwFE1mO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Stopping+of+a+Hilbert+Space+Valued+Diffusion%3A+An+Infinite+Dimensional+Variational+Inequality&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Chiarolla%2C+Maria+B.&rft.au=De+Angelis%2C+Tiziano&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=73&rft.issue=2&rft.spage=271&rft.epage=312&rft_id=info:doi/10.1007%2Fs00245-015-9302-8&rft.externalDocID=10_1007_s00245_015_9302_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon