Structures and mechanisms of CRISPR RNA-guided effector nucleases
[Display omitted] •Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and type III (Csm/Cmr) effector nucleases.•Functional convergence between the type II (Cas9) and type V (Cpf1) effector nucleases. In the prokaryo...
Gespeichert in:
| Veröffentlicht in: | Current opinion in structural biology Jg. 43; S. 68 - 78 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.04.2017
|
| Schlagworte: | |
| ISSN: | 0959-440X, 1879-033X, 1879-033X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and type III (Csm/Cmr) effector nucleases.•Functional convergence between the type II (Cas9) and type V (Cpf1) effector nucleases.
In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases. |
|---|---|
| AbstractList | In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases. In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases. [Display omitted] •Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and type III (Csm/Cmr) effector nucleases.•Functional convergence between the type II (Cas9) and type V (Cpf1) effector nucleases. In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases. |
| Author | Nishimasu, Hiroshi Nureki, Osamu |
| Author_xml | – sequence: 1 givenname: Hiroshi surname: Nishimasu fullname: Nishimasu, Hiroshi email: nisimasu@bs.s.u-tokyo.ac.jp organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan – sequence: 2 givenname: Osamu surname: Nureki fullname: Nureki, Osamu email: nureki@bs.s.u-tokyo.ac.jp organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27912110$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMlOwzAQQC1URBf4AC4oRy4JHtvZxKmqWCpVgFqQerMcZwKushQ7QeLvSdXCgUNPM4f3Rpo3JoO6qZGQS6ABUIhuNoHLTMD6NQAIKPATMoIkTn3K-XpARjQNU18Iuh6SsXMbSmkEIjkjQxanwADoiExXre1021l0nqpzr0L9oWrjKuc1hTdbzlcvS2_5NPXfO5Nj7mFRoG4b69WdLlE5dOfktFClw4vDnJC3-7vX2aO_eH6Yz6YLX4uItX7BuYoFQpZhxCDhXERhlFCKPNIp0FTFLM0yreIiLxIR05ClnOWYKR0z1DzhE3K9v7u1zWeHrpWVcRrLUtXYdE5CIsKEMxaJHr06oF1WYS631lTKfsvft3sA9oC2jXMWiz8EqNyllRvZp5W7tBJA9ml7J_7naNOq1jR1a5Upj5q3exP7PF8GrXTaYK0xN7aPKfPGHLF_AN-tkUE |
| CitedBy_id | crossref_primary_10_1111_pbi_13864 crossref_primary_10_1016_j_jmb_2024_168550 crossref_primary_10_1007_s00203_021_02656_1 crossref_primary_10_1002_wrna_1804 crossref_primary_10_2174_1574893616666210601105553 crossref_primary_10_1007_s10123_024_00577_9 crossref_primary_10_1016_j_cell_2017_09_006 crossref_primary_10_1016_j_jmb_2018_08_030 crossref_primary_10_3390_v16101548 crossref_primary_10_1063_1_4984052 crossref_primary_10_1038_s41589_024_01593_6 crossref_primary_10_1038_s41586_022_05324_6 crossref_primary_10_1016_j_bbapap_2023_140900 crossref_primary_10_1016_j_lfs_2021_119908 crossref_primary_10_1038_s41422_019_0151_x crossref_primary_10_1099_jgv_0_002071 crossref_primary_10_1016_j_jsb_2019_03_004 crossref_primary_10_21307_PM_2021_60_1_01 crossref_primary_10_1074_jbc_RA117_001611 crossref_primary_10_1016_j_molcel_2017_02_007 crossref_primary_10_1186_s13765_023_00808_z crossref_primary_10_1016_j_jbc_2024_107295 crossref_primary_10_3389_fbioe_2023_1213236 crossref_primary_10_1016_j_jmb_2024_168448 crossref_primary_10_1093_nar_gkz269 crossref_primary_10_1007_s12031_021_01855_1 crossref_primary_10_1093_nar_gkaf271 crossref_primary_10_1016_j_ymben_2020_12_002 crossref_primary_10_1016_j_trac_2024_117902 crossref_primary_10_1016_j_sbi_2020_06_010 crossref_primary_10_1007_s13237_023_00457_z crossref_primary_10_1089_hum_2020_166 crossref_primary_10_3390_cells13020146 crossref_primary_10_1093_nar_gkac767 crossref_primary_10_1002_jobm_201900124 crossref_primary_10_1017_S0033583518000070 crossref_primary_10_1016_j_molcel_2017_06_035 crossref_primary_10_1093_nar_gky702 crossref_primary_10_1093_nar_gkx1181 crossref_primary_10_1007_s00216_024_05678_y crossref_primary_10_1073_pnas_2021291118 crossref_primary_10_1016_j_molcel_2020_12_033 crossref_primary_10_1038_s41467_022_30402_8 crossref_primary_10_1088_2516_1075_acb410 crossref_primary_10_1016_j_gene_2020_144636 crossref_primary_10_1007_s12038_018_9761_6 crossref_primary_10_1016_j_trac_2024_117594 crossref_primary_10_1093_nar_gkab286 crossref_primary_10_1007_s00253_023_12731_w crossref_primary_10_1016_j_molcel_2017_05_024 crossref_primary_10_1073_pnas_1803440115 crossref_primary_10_2147_IDR_S370869 crossref_primary_10_1159_000516643 crossref_primary_10_3103_S0891416822030065 crossref_primary_10_1016_j_cell_2017_06_012 crossref_primary_10_1038_nsmb_3486 crossref_primary_10_1002_wsbm_1408 crossref_primary_10_1016_j_molcel_2017_04_019 crossref_primary_10_1016_j_gene_2022_147055 crossref_primary_10_15212_ZOONOSES_2023_0008 crossref_primary_10_1002_mba2_70 crossref_primary_10_3389_fmicb_2023_1177841 |
| Cites_doi | 10.1126/science.1232033 10.1093/femsre/fuv019 10.1101/gad.272153.115 10.1101/gad.250712.114 10.1038/nsmb.2019 10.1016/j.cell.2016.01.039 10.1038/nature13637 10.1038/nature17945 10.1038/nature15386 10.1038/nbt.3659 10.1016/j.cell.2015.12.035 10.1016/j.molcel.2013.09.008 10.1016/j.celrep.2014.11.007 10.1016/j.molcel.2014.10.005 10.1016/j.molcel.2013.08.020 10.1016/j.cell.2014.02.001 10.1126/science.1247997 10.1038/nature13579 10.1038/nature15544 10.7554/eLife.00471 10.1016/j.molcel.2014.09.027 10.1093/nar/gku1355 10.1038/nature09886 10.1038/nsmb.2043 10.1038/nature19802 10.1126/science.aaa4535 10.1126/science.1159689 10.1016/j.molcel.2012.03.018 10.1126/science.1231143 10.1016/j.cell.2015.12.053 10.1126/science.1165771 10.1016/j.molcel.2014.09.002 10.1038/nature17944 10.1038/nature13733 10.1016/j.molcel.2015.03.018 10.1146/annurev-biophys-060414-033939 10.1038/nsmb.2875 10.1016/j.molcel.2013.09.013 10.1038/nrmicro3569 10.1016/j.cell.2015.04.027 10.1126/science.aad8282 10.1016/j.cell.2009.07.040 10.1038/nature10402 10.1126/science.1256328 10.1038/nature14299 10.1016/j.sbi.2015.02.002 10.1073/pnas.1405079111 10.1126/science.aaf5573 10.1093/nar/gkt1074 10.1073/pnas.1410806111 10.1038/cr.2016.88 10.1126/science.1256996 10.1016/j.molcel.2015.05.023 10.1016/j.cell.2015.09.038 10.1126/science.aad5147 10.1038/nature16995 10.1038/nature09523 10.1101/gad.273722.115 10.1126/science.1225829 10.1126/science.aab1452 10.1186/1745-6150-6-38 10.1016/j.cell.2015.08.007 10.1016/j.cell.2016.04.003 10.1016/j.molcel.2015.10.008 10.1073/pnas.1208507109 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2016 The Author(s) – notice: Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.sbi.2016.11.013 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1879-033X |
| EndPage | 78 |
| ExternalDocumentID | 27912110 10_1016_j_sbi_2016_11_013 S0959440X16301981 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IH2 IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K WUQ XPP Y6R ZKB ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c462t-f33a74e1bbe6218334656800e36c9109a729bbca7fdf847052932debac72ec383 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403460500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-440X 1879-033X |
| IngestDate | Thu Oct 02 06:34:04 EDT 2025 Mon Jul 21 06:01:45 EDT 2025 Tue Nov 18 19:44:12 EST 2025 Sat Nov 29 04:02:12 EST 2025 Fri Feb 23 02:30:47 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c462t-f33a74e1bbe6218334656800e36c9109a729bbca7fdf847052932debac72ec383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.sbi.2016.11.013 |
| PMID | 27912110 |
| PQID | 1845832264 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1845832264 pubmed_primary_27912110 crossref_primary_10_1016_j_sbi_2016_11_013 crossref_citationtrail_10_1016_j_sbi_2016_11_013 elsevier_sciencedirect_doi_10_1016_j_sbi_2016_11_013 |
| PublicationCentury | 2000 |
| PublicationDate | April 2017 2017-04-00 20170401 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Current opinion in structural biology |
| PublicationTitleAlternate | Curr Opin Struct Biol |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Goldberg, Jiang, Bikard, Marraffini (bib0460) 2014; 514 Garneau, Dupuis, Villion, Romero, Barrangou, Boyaval, Fremaux, Horvath, Magadan, Moineau (bib0535) 2010; 468 Zhao, Sheng, Wang, Wang, Bunkoczi, Gong, Wei, Wang (bib0400) 2014; 515 Hale, Zhao, Olson, Duff, Graveley, Wells, Terns, Terns (bib0445) 2009; 139 Jiang, Taylor, Chen, Kornfeld, Zhou, Thompson, Nogales, Doudna (bib0590) 2016; 351 Shmakov, Abudayyeh, Makarova, Wolf, Gootenberg, Semenova, Minakhin, Joung, Konermann, Severinov (bib0355) 2015; 60 Hayes, Xiao, Ding, van Erp, Rajashankar, Bailey, Wiedenheft, Ke (bib0410) 2016; 530 Taylor, Zhu, Staals, Kornfeld, Shinkai, van der Oost, Nogales, Doudna (bib0515) 2015; 348 Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae, Ishitani, Zhang, Nureki (bib0575) 2014; 156 Plagens, Richter, Charpentier, Randau (bib0365) 2015; 39 Elmore, Sheppard, Ramia, Deighan, Li, Terns, Terns (bib0470) 2016; 30 Marraffini (bib0330) 2015; 526 Samai, Pyenson, Jiang, Goldberg, Hatoum-Aslan, Marraffini (bib0465) 2015; 161 Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev (bib0620) 2015; 163 Benda, Ebert, Scheltema, Schiller, Baumgartner, Bonneau, Mann, Conti (bib0490) 2014; 56 Jiang, Samai, Marraffini (bib0480) 2016; 164 Hochstrasser, Taylor, Bhat, Guegler, Sternberg, Nogales, Doudna (bib0420) 2014; 111 Fonfara, Richter, Bratovic, Le Rhun, Charpentier (bib0625) 2016; 532 Mulepati, Heroux, Bailey (bib0405) 2014; 345 Brouns, Jore, Lundgren, Westra, Slijkhuis, Snijders, Dickman, Makarova, Koonin, van der Oost (bib0375) 2008; 321 Jackson, Wiedenheft (bib0525) 2015; 58 Dong, Ren, Qiu, Zheng, Guo, Guan, Liu, Li, Zhang, Yang (bib0630) 2016; 532 Jinek, East, Cheng, Lin, Ma, Doudna (bib0565) 2013; 2 Mohanraju, Makarova, Zetsche, Zhang, Koonin, van der Oost (bib0340) 2016; 353 Jackson, Golden, van Erp, Carter, Westra, Brouns, van der Oost, Terwilliger, Read, Wiedenheft (bib0395) 2014; 345 Spilman, Cocozaki, Hale, Shao, Ramia, Terns, Terns, Li, Stagg (bib0450) 2013; 52 Anders, Niewoehner, Duerst, Jinek (bib0580) 2014; 513 Wright, Nunez, Doudna (bib0345) 2016; 164 Deltcheva, Chylinski, Sharma, Gonzales, Chao, Pirzada, Eckert, Vogel, Charpentier (bib0540) 2011; 471 Rouillon, Zhou, Zhang, Politis, Beilsten-Edmands, Cannone, Graham, Robinson, Spagnolo, White (bib0510) 2013; 52 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib0545) 2012; 337 Nishimasu, Cong, Yan, Ran, Zetsche, Li, Kurabayashi, Ishitani, Zhang, Nureki (bib0610) 2015; 162 Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova (bib0605) 2015; 520 Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini (bib0555) 2013; 339 Gao, Yang, Rajashankar, Huang, Patel (bib0640) 2016; 26 Sternberg, LaFrance, Kaplan, Doudna (bib0595) 2015; 527 Yamano, Nishimasu, Zetsche, Hirano, Slaymaker, Li, Fedorova, Nakane, Makarova, Koonin (bib0635) 2016; 165 Wiedenheft, Lander, Zhou, Jore, Brouns, van der Oost, Doudna, Nogales (bib0390) 2011; 477 Huo, Nam, Ding, Lee, Wu, Xiao, Farchione, Zhou, Rajashankar, Kurinov (bib0430) 2014; 21 Staals, Zhu, Taylor, Kornfeld, Sharma, Barendregt, Koehorst, Vlot, Neupane, Varossieau (bib0440) 2014; 56 Makarova, Aravind, Wolf, Koonin (bib0530) 2011; 6 Gasiunas, Barrangou, Horvath, Siksnys (bib0550) 2012; 109 Sashital, Jinek, Doudna (bib0415) 2011; 18 Jore, Lundgren, van Duijn, Bultema, Westra, Waghmare, Wiedenheft, Pul, Wurm, Wagner (bib0380) 2011; 18 East-Seletsky, O’Connell, Knight, Burstein, Cate, Tjian, Doudna (bib0650) 2016; 538 Jiang, Doudna (bib0360) 2015; 30 Staals, Agari, Maki-Yonekura, Zhu, Taylor, van Duijn, Barendregt, Vlot, Koehorst, Sakamoto (bib0455) 2013; 52 Hale, Cocozaki, Li, Terns, Terns (bib0495) 2014; 28 Hirano, Gootenberg, Horii, Abudayyeh, Kimura, Hsu, Nakane, Ishitani, Hatada, Zhang (bib0615) 2016; 164 Tamulaitis, Kazlauskiene, Manakova, Venclovas, Nwokeoji, Dickman, Horvath, Siksnys (bib0485) 2014; 56 Osawa, Inanaga, Sato, Numata (bib0520) 2015; 58 Gong, Shin, Sun, Jung, Bolt, van der Oost, Kim (bib0425) 2014; 111 Makarova, Wolf, Alkhnbashi, Costa, Shah, Saunders, Barrangou, Brouns, Charpentier, Haft (bib0350) 2015; 13 Fonfara, Le Rhun, Chylinski, Makarova, Lecrivain, Bzdrenga, Koonin, Charpentier (bib0600) 2014; 42 Abudayyeh, Gootenberg, Konermann, Joung, Slaymaker, Cox, Shmakov, Makarova, Semenova, Minakhin (bib0645) 2016; 353 Tsui, Li (bib0370) 2015; 44 Jiang, Zhou, Ma, Gressel, Doudna (bib0585) 2015; 348 Zhu, Ye (bib0505) 2015; 43 Marraffini, Sontheimer (bib0435) 2008; 322 Westra, van Erp, Kunne, Wong, Staals, Seegers, Bollen, Jore, Semenova, Severinov (bib0385) 2012; 46 Barrangou, Doudna (bib0335) 2016; 34 Ramia, Spilman, Tang, Shao, Elmore, Hale, Cocozaki, Bhattacharya, Terns, Terns (bib0500) 2014; 9 Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Norville, Church (bib0560) 2013; 339 Jinek, Jiang, Taylor, Sternberg, Kaya, Ma, Anders, Hauer, Zhou, Lin (bib0570) 2014; 343 Estrella, Kuo, Bailey (bib0475) 2016; 30 Nishimasu (10.1016/j.sbi.2016.11.013_sbref0575) 2014; 156 Gasiunas (10.1016/j.sbi.2016.11.013_bib0550) 2012; 109 Yamano (10.1016/j.sbi.2016.11.013_sbref0635) 2016; 165 Garneau (10.1016/j.sbi.2016.11.013_bib0535) 2010; 468 Anders (10.1016/j.sbi.2016.11.013_sbref0580) 2014; 513 Barrangou (10.1016/j.sbi.2016.11.013_bib0335) 2016; 34 Wiedenheft (10.1016/j.sbi.2016.11.013_bib0390) 2011; 477 Sternberg (10.1016/j.sbi.2016.11.013_bib0595) 2015; 527 Gong (10.1016/j.sbi.2016.11.013_bib0425) 2014; 111 Zhu (10.1016/j.sbi.2016.11.013_bib0505) 2015; 43 Taylor (10.1016/j.sbi.2016.11.013_sbref0515) 2015; 348 Nishimasu (10.1016/j.sbi.2016.11.013_sbref0610) 2015; 162 Abudayyeh (10.1016/j.sbi.2016.11.013_bib0645) 2016; 353 Mali (10.1016/j.sbi.2016.11.013_bib0560) 2013; 339 Goldberg (10.1016/j.sbi.2016.11.013_bib0460) 2014; 514 Wright (10.1016/j.sbi.2016.11.013_bib0345) 2016; 164 Dong (10.1016/j.sbi.2016.11.013_sbref0630) 2016; 532 Hirano (10.1016/j.sbi.2016.11.013_sbref0615) 2016; 164 Makarova (10.1016/j.sbi.2016.11.013_bib0350) 2015; 13 Jinek (10.1016/j.sbi.2016.11.013_sbref0570) 2014; 343 Plagens (10.1016/j.sbi.2016.11.013_bib0365) 2015; 39 Spilman (10.1016/j.sbi.2016.11.013_bib0450) 2013; 52 Fonfara (10.1016/j.sbi.2016.11.013_bib0625) 2016; 532 Elmore (10.1016/j.sbi.2016.11.013_bib0470) 2016; 30 Jiang (10.1016/j.sbi.2016.11.013_bib0360) 2015; 30 Jackson (10.1016/j.sbi.2016.11.013_sbref0395) 2014; 345 Fonfara (10.1016/j.sbi.2016.11.013_bib0600) 2014; 42 Estrella (10.1016/j.sbi.2016.11.013_bib0475) 2016; 30 Zetsche (10.1016/j.sbi.2016.11.013_bib0620) 2015; 163 Jore (10.1016/j.sbi.2016.11.013_bib0380) 2011; 18 Ramia (10.1016/j.sbi.2016.11.013_bib0500) 2014; 9 Ran (10.1016/j.sbi.2016.11.013_bib0605) 2015; 520 Staals (10.1016/j.sbi.2016.11.013_bib0440) 2014; 56 Deltcheva (10.1016/j.sbi.2016.11.013_bib0540) 2011; 471 Rouillon (10.1016/j.sbi.2016.11.013_bib0510) 2013; 52 Mulepati (10.1016/j.sbi.2016.11.013_sbref0405) 2014; 345 Huo (10.1016/j.sbi.2016.11.013_bib0430) 2014; 21 Jinek (10.1016/j.sbi.2016.11.013_bib0565) 2013; 2 Jiang (10.1016/j.sbi.2016.11.013_bib0480) 2016; 164 Shmakov (10.1016/j.sbi.2016.11.013_bib0355) 2015; 60 Benda (10.1016/j.sbi.2016.11.013_bib0490) 2014; 56 Brouns (10.1016/j.sbi.2016.11.013_bib0375) 2008; 321 Hayes (10.1016/j.sbi.2016.11.013_sbref0410) 2016; 530 Sashital (10.1016/j.sbi.2016.11.013_bib0415) 2011; 18 Hale (10.1016/j.sbi.2016.11.013_bib0495) 2014; 28 Tsui (10.1016/j.sbi.2016.11.013_bib0370) 2015; 44 Jiang (10.1016/j.sbi.2016.11.013_sbref0590) 2016; 351 Jinek (10.1016/j.sbi.2016.11.013_bib0545) 2012; 337 Hale (10.1016/j.sbi.2016.11.013_bib0445) 2009; 139 East-Seletsky (10.1016/j.sbi.2016.11.013_bib0650) 2016; 538 Marraffini (10.1016/j.sbi.2016.11.013_bib0330) 2015; 526 Mohanraju (10.1016/j.sbi.2016.11.013_bib0340) 2016; 353 Zhao (10.1016/j.sbi.2016.11.013_sbref0400) 2014; 515 Jackson (10.1016/j.sbi.2016.11.013_bib0525) 2015; 58 Hochstrasser (10.1016/j.sbi.2016.11.013_bib0420) 2014; 111 Staals (10.1016/j.sbi.2016.11.013_bib0455) 2013; 52 Westra (10.1016/j.sbi.2016.11.013_bib0385) 2012; 46 Cong (10.1016/j.sbi.2016.11.013_bib0555) 2013; 339 Samai (10.1016/j.sbi.2016.11.013_bib0465) 2015; 161 Jiang (10.1016/j.sbi.2016.11.013_sbref0585) 2015; 348 Osawa (10.1016/j.sbi.2016.11.013_sbref0520) 2015; 58 Makarova (10.1016/j.sbi.2016.11.013_bib0530) 2011; 6 Marraffini (10.1016/j.sbi.2016.11.013_bib0435) 2008; 322 Gao (10.1016/j.sbi.2016.11.013_sbref0640) 2016; 26 Tamulaitis (10.1016/j.sbi.2016.11.013_bib0485) 2014; 56 |
| References_xml | – volume: 477 start-page: 486 year: 2011 end-page: 489 ident: bib0390 article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system publication-title: Nature – volume: 58 start-page: 722 year: 2015 end-page: 728 ident: bib0525 article-title: A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses publication-title: Mol Cell – volume: 538 start-page: 270 year: 2016 end-page: 273 ident: bib0650 article-title: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection publication-title: Nature – volume: 532 start-page: 517 year: 2016 end-page: 521 ident: bib0625 article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA publication-title: Nature – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: bib0560 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science – volume: 2 start-page: e00471 year: 2013 ident: bib0565 article-title: RNA-programmed genome editing in human cells publication-title: Elife – volume: 39 start-page: 442 year: 2015 end-page: 463 ident: bib0365 article-title: DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes publication-title: FEMS Microbiol Rev – volume: 46 start-page: 595 year: 2012 end-page: 605 ident: bib0385 article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 publication-title: Mol Cell – volume: 111 start-page: 6618 year: 2014 end-page: 6623 ident: bib0420 article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference publication-title: Proc Natl Acad Sci U S A – volume: 52 start-page: 146 year: 2013 end-page: 152 ident: bib0450 article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system publication-title: Mol Cell – volume: 345 start-page: 1473 year: 2014 end-page: 1479 ident: bib0395 article-title: Crystal structure of the CRISPR RNA-guided surveillance complex from publication-title: Science – volume: 111 start-page: 16359 year: 2014 end-page: 16364 ident: bib0425 article-title: Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3 publication-title: Proc Natl Acad Sci U S A – volume: 52 start-page: 135 year: 2013 end-page: 145 ident: bib0455 article-title: Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of publication-title: Mol Cell – volume: 18 start-page: 529 year: 2011 end-page: 536 ident: bib0380 article-title: Structural basis for CRISPR RNA-guided DNA recognition by Cascade publication-title: Nat Struct Mol Biol – volume: 156 start-page: 935 year: 2014 end-page: 949 ident: bib0575 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell – volume: 9 start-page: 1610 year: 2014 end-page: 1617 ident: bib0500 article-title: Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex publication-title: Cell Rep – volume: 161 start-page: 1164 year: 2015 end-page: 1174 ident: bib0465 article-title: Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity publication-title: Cell – volume: 513 start-page: 569 year: 2014 end-page: 573 ident: bib0580 article-title: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease publication-title: Nature – volume: 42 start-page: 2577 year: 2014 end-page: 2590 ident: bib0600 article-title: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems publication-title: Nucleic Acids Res – volume: 52 start-page: 124 year: 2013 end-page: 134 ident: bib0510 article-title: Structure of the CRISPR interference complex CSM reveals key similarities with Cascade publication-title: Mol Cell – volume: 527 start-page: 110 year: 2015 end-page: 113 ident: bib0595 article-title: Conformational control of DNA target cleavage by CRISPR-Cas9 publication-title: Nature – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bib0555 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 28 start-page: 2432 year: 2014 end-page: 2443 ident: bib0495 article-title: Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex publication-title: Genes Dev – volume: 345 start-page: 1479 year: 2014 end-page: 1484 ident: bib0405 article-title: Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target publication-title: Science – volume: 322 start-page: 1843 year: 2008 end-page: 1845 ident: bib0435 article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA publication-title: Science – volume: 30 start-page: 460 year: 2016 end-page: 470 ident: bib0475 article-title: RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex publication-title: Genes Dev – volume: 165 start-page: 949 year: 2016 end-page: 962 ident: bib0635 article-title: Crystal structure of Cpf1 in complex with guide RNA and target DNA publication-title: Cell – volume: 530 start-page: 499 year: 2016 end-page: 503 ident: bib0410 article-title: Structural basis for promiscuous PAM recognition in type I-E Cascade from publication-title: Nature – volume: 348 start-page: 581 year: 2015 end-page: 585 ident: bib0515 article-title: Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning publication-title: Science – volume: 18 start-page: 680 year: 2011 end-page: 687 ident: bib0415 article-title: An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3 publication-title: Nat Struct Mol Biol – volume: 30 start-page: 447 year: 2016 end-page: 459 ident: bib0470 article-title: Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system publication-title: Genes Dev – volume: 56 start-page: 506 year: 2014 end-page: 517 ident: bib0485 article-title: Programmable RNA shredding by the type III-A CRISPR-Cas system of publication-title: Mol Cell – volume: 532 start-page: 522 year: 2016 end-page: 526 ident: bib0630 article-title: The crystal structure of Cpf1 in complex with CRISPR RNA publication-title: Nature – volume: 164 start-page: 710 year: 2016 end-page: 721 ident: bib0480 article-title: Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity publication-title: Cell – volume: 343 start-page: 1247997 year: 2014 ident: bib0570 article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation publication-title: Science – volume: 526 start-page: 55 year: 2015 end-page: 61 ident: bib0330 article-title: CRISPR-Cas immunity in prokaryotes publication-title: Nature – volume: 514 start-page: 633 year: 2014 end-page: 637 ident: bib0460 article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting publication-title: Nature – volume: 60 start-page: 385 year: 2015 end-page: 397 ident: bib0355 article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems publication-title: Mol Cell – volume: 164 start-page: 29 year: 2016 end-page: 44 ident: bib0345 article-title: Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering publication-title: Cell – volume: 321 start-page: 960 year: 2008 end-page: 964 ident: bib0375 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science – volume: 21 start-page: 771 year: 2014 end-page: 777 ident: bib0430 article-title: Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation publication-title: Nat Struct Mol Biol – volume: 44 start-page: 229 year: 2015 end-page: 255 ident: bib0370 article-title: Structure principles of CRISPR-Cas surveillance and effector complexes publication-title: Annu Rev Biophys – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: bib0605 article-title: genome editing using publication-title: Nature – volume: 164 start-page: 950 year: 2016 end-page: 961 ident: bib0615 article-title: Structure and engineering of publication-title: Cell – volume: 58 start-page: 418 year: 2015 end-page: 430 ident: bib0520 article-title: Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog publication-title: Mol Cell – volume: 6 start-page: 38 year: 2011 ident: bib0530 article-title: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems publication-title: Biol Direct – volume: 468 start-page: 67 year: 2010 end-page: 71 ident: bib0535 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature – volume: 56 start-page: 43 year: 2014 end-page: 54 ident: bib0490 article-title: Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4 publication-title: Mol Cell – volume: 139 start-page: 945 year: 2009 end-page: 956 ident: bib0445 article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex publication-title: Cell – volume: 43 start-page: 1257 year: 2015 end-page: 1267 ident: bib0505 article-title: Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex publication-title: Nucleic Acids Res – volume: 351 start-page: 867 year: 2016 end-page: 871 ident: bib0590 article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage publication-title: Science – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: bib0550 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc Natl Acad Sci U S A – volume: 348 start-page: 1477 year: 2015 end-page: 1481 ident: bib0585 article-title: A Cas9-guide RNA complex preorganized for target DNA recognition publication-title: Science – volume: 353 start-page: aaf5573 year: 2016 ident: bib0645 article-title: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector publication-title: Science – volume: 56 start-page: 518 year: 2014 end-page: 530 ident: bib0440 article-title: RNA targeting by the type III-A CRISPR-Cas Csm complex of publication-title: Mol Cell – volume: 13 start-page: 722 year: 2015 end-page: 736 ident: bib0350 article-title: An updated evolutionary classification of CRISPR-Cas systems publication-title: Nat Rev Microbiol – volume: 471 start-page: 602 year: 2011 end-page: 607 ident: bib0540 article-title: CRISPR RNA maturation by publication-title: Nature – volume: 162 start-page: 1113 year: 2015 end-page: 1126 ident: bib0610 article-title: Crystal structure of publication-title: Cell – volume: 353 start-page: aad5147 year: 2016 ident: bib0340 article-title: Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems publication-title: Science – volume: 26 start-page: 901 year: 2016 end-page: 913 ident: bib0640 article-title: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition publication-title: Cell Res – volume: 34 start-page: 933 year: 2016 end-page: 941 ident: bib0335 article-title: Applications of CRISPR technologies in research and beyond publication-title: Nat Biotechnol – volume: 30 start-page: 100 year: 2015 end-page: 111 ident: bib0360 article-title: The structural biology of CRISPR-Cas systems publication-title: Curr Opin Struct Biol – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib0545 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 515 start-page: 147 year: 2014 end-page: 150 ident: bib0400 article-title: Crystal structure of the RNA-guided immune surveillance Cascade complex in publication-title: Nature – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: bib0620 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell – volume: 339 start-page: 823 year: 2013 ident: 10.1016/j.sbi.2016.11.013_bib0560 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 39 start-page: 442 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0365 article-title: DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuv019 – volume: 30 start-page: 447 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0470 article-title: Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system publication-title: Genes Dev doi: 10.1101/gad.272153.115 – volume: 28 start-page: 2432 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0495 article-title: Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex publication-title: Genes Dev doi: 10.1101/gad.250712.114 – volume: 18 start-page: 529 year: 2011 ident: 10.1016/j.sbi.2016.11.013_bib0380 article-title: Structural basis for CRISPR RNA-guided DNA recognition by Cascade publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2019 – volume: 164 start-page: 950 year: 2016 ident: 10.1016/j.sbi.2016.11.013_sbref0615 article-title: Structure and engineering of Francisella novicida Cas9 publication-title: Cell doi: 10.1016/j.cell.2016.01.039 – volume: 514 start-page: 633 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0460 article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting publication-title: Nature doi: 10.1038/nature13637 – volume: 532 start-page: 517 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0625 article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA publication-title: Nature doi: 10.1038/nature17945 – volume: 526 start-page: 55 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0330 article-title: CRISPR-Cas immunity in prokaryotes publication-title: Nature doi: 10.1038/nature15386 – volume: 34 start-page: 933 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0335 article-title: Applications of CRISPR technologies in research and beyond publication-title: Nat Biotechnol doi: 10.1038/nbt.3659 – volume: 164 start-page: 29 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0345 article-title: Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering publication-title: Cell doi: 10.1016/j.cell.2015.12.035 – volume: 52 start-page: 146 year: 2013 ident: 10.1016/j.sbi.2016.11.013_bib0450 article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system publication-title: Mol Cell doi: 10.1016/j.molcel.2013.09.008 – volume: 9 start-page: 1610 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0500 article-title: Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex publication-title: Cell Rep doi: 10.1016/j.celrep.2014.11.007 – volume: 56 start-page: 518 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0440 article-title: RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus publication-title: Mol Cell doi: 10.1016/j.molcel.2014.10.005 – volume: 52 start-page: 124 year: 2013 ident: 10.1016/j.sbi.2016.11.013_bib0510 article-title: Structure of the CRISPR interference complex CSM reveals key similarities with Cascade publication-title: Mol Cell doi: 10.1016/j.molcel.2013.08.020 – volume: 156 start-page: 935 year: 2014 ident: 10.1016/j.sbi.2016.11.013_sbref0575 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 343 start-page: 1247997 year: 2014 ident: 10.1016/j.sbi.2016.11.013_sbref0570 article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation publication-title: Science doi: 10.1126/science.1247997 – volume: 513 start-page: 569 year: 2014 ident: 10.1016/j.sbi.2016.11.013_sbref0580 article-title: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease publication-title: Nature doi: 10.1038/nature13579 – volume: 527 start-page: 110 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0595 article-title: Conformational control of DNA target cleavage by CRISPR-Cas9 publication-title: Nature doi: 10.1038/nature15544 – volume: 2 start-page: e00471 year: 2013 ident: 10.1016/j.sbi.2016.11.013_bib0565 article-title: RNA-programmed genome editing in human cells publication-title: Elife doi: 10.7554/eLife.00471 – volume: 56 start-page: 506 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0485 article-title: Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus publication-title: Mol Cell doi: 10.1016/j.molcel.2014.09.027 – volume: 43 start-page: 1257 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0505 article-title: Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1355 – volume: 471 start-page: 602 year: 2011 ident: 10.1016/j.sbi.2016.11.013_bib0540 article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III publication-title: Nature doi: 10.1038/nature09886 – volume: 18 start-page: 680 year: 2011 ident: 10.1016/j.sbi.2016.11.013_bib0415 article-title: An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2043 – volume: 538 start-page: 270 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0650 article-title: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection publication-title: Nature doi: 10.1038/nature19802 – volume: 348 start-page: 581 year: 2015 ident: 10.1016/j.sbi.2016.11.013_sbref0515 article-title: Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning publication-title: Science doi: 10.1126/science.aaa4535 – volume: 321 start-page: 960 year: 2008 ident: 10.1016/j.sbi.2016.11.013_bib0375 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science doi: 10.1126/science.1159689 – volume: 46 start-page: 595 year: 2012 ident: 10.1016/j.sbi.2016.11.013_bib0385 article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.03.018 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.sbi.2016.11.013_bib0555 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 164 start-page: 710 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0480 article-title: Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity publication-title: Cell doi: 10.1016/j.cell.2015.12.053 – volume: 322 start-page: 1843 year: 2008 ident: 10.1016/j.sbi.2016.11.013_bib0435 article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA publication-title: Science doi: 10.1126/science.1165771 – volume: 56 start-page: 43 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0490 article-title: Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.09.002 – volume: 532 start-page: 522 year: 2016 ident: 10.1016/j.sbi.2016.11.013_sbref0630 article-title: The crystal structure of Cpf1 in complex with CRISPR RNA publication-title: Nature doi: 10.1038/nature17944 – volume: 515 start-page: 147 year: 2014 ident: 10.1016/j.sbi.2016.11.013_sbref0400 article-title: Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli publication-title: Nature doi: 10.1038/nature13733 – volume: 58 start-page: 418 year: 2015 ident: 10.1016/j.sbi.2016.11.013_sbref0520 article-title: Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog publication-title: Mol Cell doi: 10.1016/j.molcel.2015.03.018 – volume: 44 start-page: 229 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0370 article-title: Structure principles of CRISPR-Cas surveillance and effector complexes publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-060414-033939 – volume: 21 start-page: 771 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0430 article-title: Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2875 – volume: 52 start-page: 135 year: 2013 ident: 10.1016/j.sbi.2016.11.013_bib0455 article-title: Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus publication-title: Mol Cell doi: 10.1016/j.molcel.2013.09.013 – volume: 13 start-page: 722 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0350 article-title: An updated evolutionary classification of CRISPR-Cas systems publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3569 – volume: 161 start-page: 1164 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0465 article-title: Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity publication-title: Cell doi: 10.1016/j.cell.2015.04.027 – volume: 351 start-page: 867 year: 2016 ident: 10.1016/j.sbi.2016.11.013_sbref0590 article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage publication-title: Science doi: 10.1126/science.aad8282 – volume: 139 start-page: 945 year: 2009 ident: 10.1016/j.sbi.2016.11.013_bib0445 article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex publication-title: Cell doi: 10.1016/j.cell.2009.07.040 – volume: 477 start-page: 486 year: 2011 ident: 10.1016/j.sbi.2016.11.013_bib0390 article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system publication-title: Nature doi: 10.1038/nature10402 – volume: 345 start-page: 1473 year: 2014 ident: 10.1016/j.sbi.2016.11.013_sbref0395 article-title: Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli publication-title: Science doi: 10.1126/science.1256328 – volume: 520 start-page: 186 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0605 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 30 start-page: 100 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0360 article-title: The structural biology of CRISPR-Cas systems publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2015.02.002 – volume: 111 start-page: 6618 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0420 article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1405079111 – volume: 353 start-page: aaf5573 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0645 article-title: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector publication-title: Science doi: 10.1126/science.aaf5573 – volume: 42 start-page: 2577 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0600 article-title: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1074 – volume: 111 start-page: 16359 year: 2014 ident: 10.1016/j.sbi.2016.11.013_bib0425 article-title: Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1410806111 – volume: 26 start-page: 901 year: 2016 ident: 10.1016/j.sbi.2016.11.013_sbref0640 article-title: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition publication-title: Cell Res doi: 10.1038/cr.2016.88 – volume: 345 start-page: 1479 year: 2014 ident: 10.1016/j.sbi.2016.11.013_sbref0405 article-title: Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target publication-title: Science doi: 10.1126/science.1256996 – volume: 58 start-page: 722 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0525 article-title: A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses publication-title: Mol Cell doi: 10.1016/j.molcel.2015.05.023 – volume: 163 start-page: 759 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0620 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 353 start-page: aad5147 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0340 article-title: Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems publication-title: Science doi: 10.1126/science.aad5147 – volume: 530 start-page: 499 year: 2016 ident: 10.1016/j.sbi.2016.11.013_sbref0410 article-title: Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli publication-title: Nature doi: 10.1038/nature16995 – volume: 468 start-page: 67 year: 2010 ident: 10.1016/j.sbi.2016.11.013_bib0535 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature doi: 10.1038/nature09523 – volume: 30 start-page: 460 year: 2016 ident: 10.1016/j.sbi.2016.11.013_bib0475 article-title: RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex publication-title: Genes Dev doi: 10.1101/gad.273722.115 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.sbi.2016.11.013_bib0545 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 348 start-page: 1477 year: 2015 ident: 10.1016/j.sbi.2016.11.013_sbref0585 article-title: A Cas9-guide RNA complex preorganized for target DNA recognition publication-title: Science doi: 10.1126/science.aab1452 – volume: 6 start-page: 38 year: 2011 ident: 10.1016/j.sbi.2016.11.013_bib0530 article-title: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems publication-title: Biol Direct doi: 10.1186/1745-6150-6-38 – volume: 162 start-page: 1113 year: 2015 ident: 10.1016/j.sbi.2016.11.013_sbref0610 article-title: Crystal structure of Staphylococcus aureus Cas9 publication-title: Cell doi: 10.1016/j.cell.2015.08.007 – volume: 165 start-page: 949 year: 2016 ident: 10.1016/j.sbi.2016.11.013_sbref0635 article-title: Crystal structure of Cpf1 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2016.04.003 – volume: 60 start-page: 385 year: 2015 ident: 10.1016/j.sbi.2016.11.013_bib0355 article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems publication-title: Mol Cell doi: 10.1016/j.molcel.2015.10.008 – volume: 109 start-page: E2579 year: 2012 ident: 10.1016/j.sbi.2016.11.013_bib0550 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1208507109 |
| SSID | ssj0006148 |
| Score | 2.4805002 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and... In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 68 |
| SubjectTerms | Clustered Regularly Interspaced Short Palindromic Repeats Ribonucleases - metabolism RNA - genetics RNA - metabolism |
| Title | Structures and mechanisms of CRISPR RNA-guided effector nucleases |
| URI | https://dx.doi.org/10.1016/j.sbi.2016.11.013 https://www.ncbi.nlm.nih.gov/pubmed/27912110 https://www.proquest.com/docview/1845832264 |
| Volume | 43 |
| WOSCitedRecordID | wos000403460500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-033X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006148 issn: 0959-440X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZgA40XBAO2bjAZiSemTGmcxsljVQ0xHsrUDilvkeM4LNOaTvOCxr_nLraTaGgTIPESRWmTWHcX33f23XeEfBAQA5SiCDxRKN8DBJ57cckLb8xzNikA46vYNJvg83mcpsmpJVTQbTsBXtfx7W1y9V9VDddA2Vg6-xfq7h4KF-AclA5HUDsc_0jxy5YRtoEwut0YWCms7a30qs3ZmC1OlqeLw8V86n1vqgLQpknoWF8f1shsDD5ND_Gqo2_CsiqbFant80G3lsFpsLdxXq2Eblp_VoH_Pa-632BApkP2Vy1WzXCxARxYn6PSroC5Kpg-5cgtJYahnxqfYibSmCeez1g6nGlDNpgqTTcd63RNG5_fpnOzsnBxpPMKs_CiIyRcNbWrd1iylzgIHAPgS0CtWIy_GfBJAhPd5vTkOP3SuWdkPjUEjGbQbqu7Tfq786L7wMp9wUgLSs5ekOc2mqBTYwUvySNVb5Onpr_oz22yNXPt_F6B_-zsgoJd0N4u6Lqkxi5obxfU2QXt7OI1-fbp-Gz22bP9MzwZRsGNVzImeKjGea4iRMIMufEgQFAskoASEwGBVZ5LwcuiBJCCe74sKFQuJA-UZDF7Qzbqda12CY0BNkrmq0RICQhGJJGcFJJjP0eknpcj4jtBZdKSy2OPk8vMZRFeZCDbDGULQWcGsh2Rj90tV4ZZ5aE_h076mYWGBvJlYCoP3fbeaSoDceNemKjVutHZOMaEAawiH5Edo8JuFAFPkPjQ3_u3l-6TZ_2n85ZsgHbVO_JE_rip9PUBeczT-MAa5S_315rp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+and+mechanisms+of+CRISPR+RNA-guided+effector+nucleases&rft.jtitle=Current+opinion+in+structural+biology&rft.au=Nishimasu%2C+Hiroshi&rft.au=Nureki%2C+Osamu&rft.date=2017-04-01&rft.pub=Elsevier+Ltd&rft.issn=0959-440X&rft.eissn=1879-033X&rft.volume=43&rft.spage=68&rft.epage=78&rft_id=info:doi/10.1016%2Fj.sbi.2016.11.013&rft.externalDocID=S0959440X16301981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-440X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-440X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-440X&client=summon |