Structures and mechanisms of CRISPR RNA-guided effector nucleases

[Display omitted] •Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and type III (Csm/Cmr) effector nucleases.•Functional convergence between the type II (Cas9) and type V (Cpf1) effector nucleases. In the prokaryo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology Jg. 43; S. 68 - 78
Hauptverfasser: Nishimasu, Hiroshi, Nureki, Osamu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.04.2017
Schlagworte:
ISSN:0959-440X, 1879-033X, 1879-033X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and type III (Csm/Cmr) effector nucleases.•Functional convergence between the type II (Cas9) and type V (Cpf1) effector nucleases. In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.
AbstractList In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.
In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.
[Display omitted] •Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and type III (Csm/Cmr) effector nucleases.•Functional convergence between the type II (Cas9) and type V (Cpf1) effector nucleases. In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.
Author Nishimasu, Hiroshi
Nureki, Osamu
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Nishimasu
  fullname: Nishimasu, Hiroshi
  email: nisimasu@bs.s.u-tokyo.ac.jp
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
– sequence: 2
  givenname: Osamu
  surname: Nureki
  fullname: Nureki, Osamu
  email: nureki@bs.s.u-tokyo.ac.jp
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27912110$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlOwzAQQC1URBf4AC4oRy4JHtvZxKmqWCpVgFqQerMcZwKushQ7QeLvSdXCgUNPM4f3Rpo3JoO6qZGQS6ABUIhuNoHLTMD6NQAIKPATMoIkTn3K-XpARjQNU18Iuh6SsXMbSmkEIjkjQxanwADoiExXre1021l0nqpzr0L9oWrjKuc1hTdbzlcvS2_5NPXfO5Nj7mFRoG4b69WdLlE5dOfktFClw4vDnJC3-7vX2aO_eH6Yz6YLX4uItX7BuYoFQpZhxCDhXERhlFCKPNIp0FTFLM0yreIiLxIR05ClnOWYKR0z1DzhE3K9v7u1zWeHrpWVcRrLUtXYdE5CIsKEMxaJHr06oF1WYS631lTKfsvft3sA9oC2jXMWiz8EqNyllRvZp5W7tBJA9ml7J_7naNOq1jR1a5Upj5q3exP7PF8GrXTaYK0xN7aPKfPGHLF_AN-tkUE
CitedBy_id crossref_primary_10_1111_pbi_13864
crossref_primary_10_1016_j_jmb_2024_168550
crossref_primary_10_1007_s00203_021_02656_1
crossref_primary_10_1002_wrna_1804
crossref_primary_10_2174_1574893616666210601105553
crossref_primary_10_1007_s10123_024_00577_9
crossref_primary_10_1016_j_cell_2017_09_006
crossref_primary_10_1016_j_jmb_2018_08_030
crossref_primary_10_3390_v16101548
crossref_primary_10_1063_1_4984052
crossref_primary_10_1038_s41589_024_01593_6
crossref_primary_10_1038_s41586_022_05324_6
crossref_primary_10_1016_j_bbapap_2023_140900
crossref_primary_10_1016_j_lfs_2021_119908
crossref_primary_10_1038_s41422_019_0151_x
crossref_primary_10_1099_jgv_0_002071
crossref_primary_10_1016_j_jsb_2019_03_004
crossref_primary_10_21307_PM_2021_60_1_01
crossref_primary_10_1074_jbc_RA117_001611
crossref_primary_10_1016_j_molcel_2017_02_007
crossref_primary_10_1186_s13765_023_00808_z
crossref_primary_10_1016_j_jbc_2024_107295
crossref_primary_10_3389_fbioe_2023_1213236
crossref_primary_10_1016_j_jmb_2024_168448
crossref_primary_10_1093_nar_gkz269
crossref_primary_10_1007_s12031_021_01855_1
crossref_primary_10_1093_nar_gkaf271
crossref_primary_10_1016_j_ymben_2020_12_002
crossref_primary_10_1016_j_trac_2024_117902
crossref_primary_10_1016_j_sbi_2020_06_010
crossref_primary_10_1007_s13237_023_00457_z
crossref_primary_10_1089_hum_2020_166
crossref_primary_10_3390_cells13020146
crossref_primary_10_1093_nar_gkac767
crossref_primary_10_1002_jobm_201900124
crossref_primary_10_1017_S0033583518000070
crossref_primary_10_1016_j_molcel_2017_06_035
crossref_primary_10_1093_nar_gky702
crossref_primary_10_1093_nar_gkx1181
crossref_primary_10_1007_s00216_024_05678_y
crossref_primary_10_1073_pnas_2021291118
crossref_primary_10_1016_j_molcel_2020_12_033
crossref_primary_10_1038_s41467_022_30402_8
crossref_primary_10_1088_2516_1075_acb410
crossref_primary_10_1016_j_gene_2020_144636
crossref_primary_10_1007_s12038_018_9761_6
crossref_primary_10_1016_j_trac_2024_117594
crossref_primary_10_1093_nar_gkab286
crossref_primary_10_1007_s00253_023_12731_w
crossref_primary_10_1016_j_molcel_2017_05_024
crossref_primary_10_1073_pnas_1803440115
crossref_primary_10_2147_IDR_S370869
crossref_primary_10_1159_000516643
crossref_primary_10_3103_S0891416822030065
crossref_primary_10_1016_j_cell_2017_06_012
crossref_primary_10_1038_nsmb_3486
crossref_primary_10_1002_wsbm_1408
crossref_primary_10_1016_j_molcel_2017_04_019
crossref_primary_10_1016_j_gene_2022_147055
crossref_primary_10_15212_ZOONOSES_2023_0008
crossref_primary_10_1002_mba2_70
crossref_primary_10_3389_fmicb_2023_1177841
Cites_doi 10.1126/science.1232033
10.1093/femsre/fuv019
10.1101/gad.272153.115
10.1101/gad.250712.114
10.1038/nsmb.2019
10.1016/j.cell.2016.01.039
10.1038/nature13637
10.1038/nature17945
10.1038/nature15386
10.1038/nbt.3659
10.1016/j.cell.2015.12.035
10.1016/j.molcel.2013.09.008
10.1016/j.celrep.2014.11.007
10.1016/j.molcel.2014.10.005
10.1016/j.molcel.2013.08.020
10.1016/j.cell.2014.02.001
10.1126/science.1247997
10.1038/nature13579
10.1038/nature15544
10.7554/eLife.00471
10.1016/j.molcel.2014.09.027
10.1093/nar/gku1355
10.1038/nature09886
10.1038/nsmb.2043
10.1038/nature19802
10.1126/science.aaa4535
10.1126/science.1159689
10.1016/j.molcel.2012.03.018
10.1126/science.1231143
10.1016/j.cell.2015.12.053
10.1126/science.1165771
10.1016/j.molcel.2014.09.002
10.1038/nature17944
10.1038/nature13733
10.1016/j.molcel.2015.03.018
10.1146/annurev-biophys-060414-033939
10.1038/nsmb.2875
10.1016/j.molcel.2013.09.013
10.1038/nrmicro3569
10.1016/j.cell.2015.04.027
10.1126/science.aad8282
10.1016/j.cell.2009.07.040
10.1038/nature10402
10.1126/science.1256328
10.1038/nature14299
10.1016/j.sbi.2015.02.002
10.1073/pnas.1405079111
10.1126/science.aaf5573
10.1093/nar/gkt1074
10.1073/pnas.1410806111
10.1038/cr.2016.88
10.1126/science.1256996
10.1016/j.molcel.2015.05.023
10.1016/j.cell.2015.09.038
10.1126/science.aad5147
10.1038/nature16995
10.1038/nature09523
10.1101/gad.273722.115
10.1126/science.1225829
10.1126/science.aab1452
10.1186/1745-6150-6-38
10.1016/j.cell.2015.08.007
10.1016/j.cell.2016.04.003
10.1016/j.molcel.2015.10.008
10.1073/pnas.1208507109
ContentType Journal Article
Copyright 2016 The Author(s)
Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2016 The Author(s)
– notice: Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.sbi.2016.11.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-033X
EndPage 78
ExternalDocumentID 27912110
10_1016_j_sbi_2016_11_013
S0959440X16301981
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IH2
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZKB
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c462t-f33a74e1bbe6218334656800e36c9109a729bbca7fdf847052932debac72ec383
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403460500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-440X
1879-033X
IngestDate Thu Oct 02 06:34:04 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Tue Nov 18 19:44:12 EST 2025
Sat Nov 29 04:02:12 EST 2025
Fri Feb 23 02:30:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-f33a74e1bbe6218334656800e36c9109a729bbca7fdf847052932debac72ec383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.sbi.2016.11.013
PMID 27912110
PQID 1845832264
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1845832264
pubmed_primary_27912110
crossref_primary_10_1016_j_sbi_2016_11_013
crossref_citationtrail_10_1016_j_sbi_2016_11_013
elsevier_sciencedirect_doi_10_1016_j_sbi_2016_11_013
PublicationCentury 2000
PublicationDate April 2017
2017-04-00
20170401
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in structural biology
PublicationTitleAlternate Curr Opin Struct Biol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goldberg, Jiang, Bikard, Marraffini (bib0460) 2014; 514
Garneau, Dupuis, Villion, Romero, Barrangou, Boyaval, Fremaux, Horvath, Magadan, Moineau (bib0535) 2010; 468
Zhao, Sheng, Wang, Wang, Bunkoczi, Gong, Wei, Wang (bib0400) 2014; 515
Hale, Zhao, Olson, Duff, Graveley, Wells, Terns, Terns (bib0445) 2009; 139
Jiang, Taylor, Chen, Kornfeld, Zhou, Thompson, Nogales, Doudna (bib0590) 2016; 351
Shmakov, Abudayyeh, Makarova, Wolf, Gootenberg, Semenova, Minakhin, Joung, Konermann, Severinov (bib0355) 2015; 60
Hayes, Xiao, Ding, van Erp, Rajashankar, Bailey, Wiedenheft, Ke (bib0410) 2016; 530
Taylor, Zhu, Staals, Kornfeld, Shinkai, van der Oost, Nogales, Doudna (bib0515) 2015; 348
Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae, Ishitani, Zhang, Nureki (bib0575) 2014; 156
Plagens, Richter, Charpentier, Randau (bib0365) 2015; 39
Elmore, Sheppard, Ramia, Deighan, Li, Terns, Terns (bib0470) 2016; 30
Marraffini (bib0330) 2015; 526
Samai, Pyenson, Jiang, Goldberg, Hatoum-Aslan, Marraffini (bib0465) 2015; 161
Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev (bib0620) 2015; 163
Benda, Ebert, Scheltema, Schiller, Baumgartner, Bonneau, Mann, Conti (bib0490) 2014; 56
Jiang, Samai, Marraffini (bib0480) 2016; 164
Hochstrasser, Taylor, Bhat, Guegler, Sternberg, Nogales, Doudna (bib0420) 2014; 111
Fonfara, Richter, Bratovic, Le Rhun, Charpentier (bib0625) 2016; 532
Mulepati, Heroux, Bailey (bib0405) 2014; 345
Brouns, Jore, Lundgren, Westra, Slijkhuis, Snijders, Dickman, Makarova, Koonin, van der Oost (bib0375) 2008; 321
Jackson, Wiedenheft (bib0525) 2015; 58
Dong, Ren, Qiu, Zheng, Guo, Guan, Liu, Li, Zhang, Yang (bib0630) 2016; 532
Jinek, East, Cheng, Lin, Ma, Doudna (bib0565) 2013; 2
Mohanraju, Makarova, Zetsche, Zhang, Koonin, van der Oost (bib0340) 2016; 353
Jackson, Golden, van Erp, Carter, Westra, Brouns, van der Oost, Terwilliger, Read, Wiedenheft (bib0395) 2014; 345
Spilman, Cocozaki, Hale, Shao, Ramia, Terns, Terns, Li, Stagg (bib0450) 2013; 52
Anders, Niewoehner, Duerst, Jinek (bib0580) 2014; 513
Wright, Nunez, Doudna (bib0345) 2016; 164
Deltcheva, Chylinski, Sharma, Gonzales, Chao, Pirzada, Eckert, Vogel, Charpentier (bib0540) 2011; 471
Rouillon, Zhou, Zhang, Politis, Beilsten-Edmands, Cannone, Graham, Robinson, Spagnolo, White (bib0510) 2013; 52
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib0545) 2012; 337
Nishimasu, Cong, Yan, Ran, Zetsche, Li, Kurabayashi, Ishitani, Zhang, Nureki (bib0610) 2015; 162
Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova (bib0605) 2015; 520
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini (bib0555) 2013; 339
Gao, Yang, Rajashankar, Huang, Patel (bib0640) 2016; 26
Sternberg, LaFrance, Kaplan, Doudna (bib0595) 2015; 527
Yamano, Nishimasu, Zetsche, Hirano, Slaymaker, Li, Fedorova, Nakane, Makarova, Koonin (bib0635) 2016; 165
Wiedenheft, Lander, Zhou, Jore, Brouns, van der Oost, Doudna, Nogales (bib0390) 2011; 477
Huo, Nam, Ding, Lee, Wu, Xiao, Farchione, Zhou, Rajashankar, Kurinov (bib0430) 2014; 21
Staals, Zhu, Taylor, Kornfeld, Sharma, Barendregt, Koehorst, Vlot, Neupane, Varossieau (bib0440) 2014; 56
Makarova, Aravind, Wolf, Koonin (bib0530) 2011; 6
Gasiunas, Barrangou, Horvath, Siksnys (bib0550) 2012; 109
Sashital, Jinek, Doudna (bib0415) 2011; 18
Jore, Lundgren, van Duijn, Bultema, Westra, Waghmare, Wiedenheft, Pul, Wurm, Wagner (bib0380) 2011; 18
East-Seletsky, O’Connell, Knight, Burstein, Cate, Tjian, Doudna (bib0650) 2016; 538
Jiang, Doudna (bib0360) 2015; 30
Staals, Agari, Maki-Yonekura, Zhu, Taylor, van Duijn, Barendregt, Vlot, Koehorst, Sakamoto (bib0455) 2013; 52
Hale, Cocozaki, Li, Terns, Terns (bib0495) 2014; 28
Hirano, Gootenberg, Horii, Abudayyeh, Kimura, Hsu, Nakane, Ishitani, Hatada, Zhang (bib0615) 2016; 164
Tamulaitis, Kazlauskiene, Manakova, Venclovas, Nwokeoji, Dickman, Horvath, Siksnys (bib0485) 2014; 56
Osawa, Inanaga, Sato, Numata (bib0520) 2015; 58
Gong, Shin, Sun, Jung, Bolt, van der Oost, Kim (bib0425) 2014; 111
Makarova, Wolf, Alkhnbashi, Costa, Shah, Saunders, Barrangou, Brouns, Charpentier, Haft (bib0350) 2015; 13
Fonfara, Le Rhun, Chylinski, Makarova, Lecrivain, Bzdrenga, Koonin, Charpentier (bib0600) 2014; 42
Abudayyeh, Gootenberg, Konermann, Joung, Slaymaker, Cox, Shmakov, Makarova, Semenova, Minakhin (bib0645) 2016; 353
Tsui, Li (bib0370) 2015; 44
Jiang, Zhou, Ma, Gressel, Doudna (bib0585) 2015; 348
Zhu, Ye (bib0505) 2015; 43
Marraffini, Sontheimer (bib0435) 2008; 322
Westra, van Erp, Kunne, Wong, Staals, Seegers, Bollen, Jore, Semenova, Severinov (bib0385) 2012; 46
Barrangou, Doudna (bib0335) 2016; 34
Ramia, Spilman, Tang, Shao, Elmore, Hale, Cocozaki, Bhattacharya, Terns, Terns (bib0500) 2014; 9
Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Norville, Church (bib0560) 2013; 339
Jinek, Jiang, Taylor, Sternberg, Kaya, Ma, Anders, Hauer, Zhou, Lin (bib0570) 2014; 343
Estrella, Kuo, Bailey (bib0475) 2016; 30
Nishimasu (10.1016/j.sbi.2016.11.013_sbref0575) 2014; 156
Gasiunas (10.1016/j.sbi.2016.11.013_bib0550) 2012; 109
Yamano (10.1016/j.sbi.2016.11.013_sbref0635) 2016; 165
Garneau (10.1016/j.sbi.2016.11.013_bib0535) 2010; 468
Anders (10.1016/j.sbi.2016.11.013_sbref0580) 2014; 513
Barrangou (10.1016/j.sbi.2016.11.013_bib0335) 2016; 34
Wiedenheft (10.1016/j.sbi.2016.11.013_bib0390) 2011; 477
Sternberg (10.1016/j.sbi.2016.11.013_bib0595) 2015; 527
Gong (10.1016/j.sbi.2016.11.013_bib0425) 2014; 111
Zhu (10.1016/j.sbi.2016.11.013_bib0505) 2015; 43
Taylor (10.1016/j.sbi.2016.11.013_sbref0515) 2015; 348
Nishimasu (10.1016/j.sbi.2016.11.013_sbref0610) 2015; 162
Abudayyeh (10.1016/j.sbi.2016.11.013_bib0645) 2016; 353
Mali (10.1016/j.sbi.2016.11.013_bib0560) 2013; 339
Goldberg (10.1016/j.sbi.2016.11.013_bib0460) 2014; 514
Wright (10.1016/j.sbi.2016.11.013_bib0345) 2016; 164
Dong (10.1016/j.sbi.2016.11.013_sbref0630) 2016; 532
Hirano (10.1016/j.sbi.2016.11.013_sbref0615) 2016; 164
Makarova (10.1016/j.sbi.2016.11.013_bib0350) 2015; 13
Jinek (10.1016/j.sbi.2016.11.013_sbref0570) 2014; 343
Plagens (10.1016/j.sbi.2016.11.013_bib0365) 2015; 39
Spilman (10.1016/j.sbi.2016.11.013_bib0450) 2013; 52
Fonfara (10.1016/j.sbi.2016.11.013_bib0625) 2016; 532
Elmore (10.1016/j.sbi.2016.11.013_bib0470) 2016; 30
Jiang (10.1016/j.sbi.2016.11.013_bib0360) 2015; 30
Jackson (10.1016/j.sbi.2016.11.013_sbref0395) 2014; 345
Fonfara (10.1016/j.sbi.2016.11.013_bib0600) 2014; 42
Estrella (10.1016/j.sbi.2016.11.013_bib0475) 2016; 30
Zetsche (10.1016/j.sbi.2016.11.013_bib0620) 2015; 163
Jore (10.1016/j.sbi.2016.11.013_bib0380) 2011; 18
Ramia (10.1016/j.sbi.2016.11.013_bib0500) 2014; 9
Ran (10.1016/j.sbi.2016.11.013_bib0605) 2015; 520
Staals (10.1016/j.sbi.2016.11.013_bib0440) 2014; 56
Deltcheva (10.1016/j.sbi.2016.11.013_bib0540) 2011; 471
Rouillon (10.1016/j.sbi.2016.11.013_bib0510) 2013; 52
Mulepati (10.1016/j.sbi.2016.11.013_sbref0405) 2014; 345
Huo (10.1016/j.sbi.2016.11.013_bib0430) 2014; 21
Jinek (10.1016/j.sbi.2016.11.013_bib0565) 2013; 2
Jiang (10.1016/j.sbi.2016.11.013_bib0480) 2016; 164
Shmakov (10.1016/j.sbi.2016.11.013_bib0355) 2015; 60
Benda (10.1016/j.sbi.2016.11.013_bib0490) 2014; 56
Brouns (10.1016/j.sbi.2016.11.013_bib0375) 2008; 321
Hayes (10.1016/j.sbi.2016.11.013_sbref0410) 2016; 530
Sashital (10.1016/j.sbi.2016.11.013_bib0415) 2011; 18
Hale (10.1016/j.sbi.2016.11.013_bib0495) 2014; 28
Tsui (10.1016/j.sbi.2016.11.013_bib0370) 2015; 44
Jiang (10.1016/j.sbi.2016.11.013_sbref0590) 2016; 351
Jinek (10.1016/j.sbi.2016.11.013_bib0545) 2012; 337
Hale (10.1016/j.sbi.2016.11.013_bib0445) 2009; 139
East-Seletsky (10.1016/j.sbi.2016.11.013_bib0650) 2016; 538
Marraffini (10.1016/j.sbi.2016.11.013_bib0330) 2015; 526
Mohanraju (10.1016/j.sbi.2016.11.013_bib0340) 2016; 353
Zhao (10.1016/j.sbi.2016.11.013_sbref0400) 2014; 515
Jackson (10.1016/j.sbi.2016.11.013_bib0525) 2015; 58
Hochstrasser (10.1016/j.sbi.2016.11.013_bib0420) 2014; 111
Staals (10.1016/j.sbi.2016.11.013_bib0455) 2013; 52
Westra (10.1016/j.sbi.2016.11.013_bib0385) 2012; 46
Cong (10.1016/j.sbi.2016.11.013_bib0555) 2013; 339
Samai (10.1016/j.sbi.2016.11.013_bib0465) 2015; 161
Jiang (10.1016/j.sbi.2016.11.013_sbref0585) 2015; 348
Osawa (10.1016/j.sbi.2016.11.013_sbref0520) 2015; 58
Makarova (10.1016/j.sbi.2016.11.013_bib0530) 2011; 6
Marraffini (10.1016/j.sbi.2016.11.013_bib0435) 2008; 322
Gao (10.1016/j.sbi.2016.11.013_sbref0640) 2016; 26
Tamulaitis (10.1016/j.sbi.2016.11.013_bib0485) 2014; 56
References_xml – volume: 477
  start-page: 486
  year: 2011
  end-page: 489
  ident: bib0390
  article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system
  publication-title: Nature
– volume: 58
  start-page: 722
  year: 2015
  end-page: 728
  ident: bib0525
  article-title: A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses
  publication-title: Mol Cell
– volume: 538
  start-page: 270
  year: 2016
  end-page: 273
  ident: bib0650
  article-title: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection
  publication-title: Nature
– volume: 532
  start-page: 517
  year: 2016
  end-page: 521
  ident: bib0625
  article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
  publication-title: Nature
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bib0560
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 2
  start-page: e00471
  year: 2013
  ident: bib0565
  article-title: RNA-programmed genome editing in human cells
  publication-title: Elife
– volume: 39
  start-page: 442
  year: 2015
  end-page: 463
  ident: bib0365
  article-title: DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
  publication-title: FEMS Microbiol Rev
– volume: 46
  start-page: 595
  year: 2012
  end-page: 605
  ident: bib0385
  article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
  publication-title: Mol Cell
– volume: 111
  start-page: 6618
  year: 2014
  end-page: 6623
  ident: bib0420
  article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
  publication-title: Proc Natl Acad Sci U S A
– volume: 52
  start-page: 146
  year: 2013
  end-page: 152
  ident: bib0450
  article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system
  publication-title: Mol Cell
– volume: 345
  start-page: 1473
  year: 2014
  end-page: 1479
  ident: bib0395
  article-title: Crystal structure of the CRISPR RNA-guided surveillance complex from
  publication-title: Science
– volume: 111
  start-page: 16359
  year: 2014
  end-page: 16364
  ident: bib0425
  article-title: Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3
  publication-title: Proc Natl Acad Sci U S A
– volume: 52
  start-page: 135
  year: 2013
  end-page: 145
  ident: bib0455
  article-title: Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of
  publication-title: Mol Cell
– volume: 18
  start-page: 529
  year: 2011
  end-page: 536
  ident: bib0380
  article-title: Structural basis for CRISPR RNA-guided DNA recognition by Cascade
  publication-title: Nat Struct Mol Biol
– volume: 156
  start-page: 935
  year: 2014
  end-page: 949
  ident: bib0575
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
– volume: 9
  start-page: 1610
  year: 2014
  end-page: 1617
  ident: bib0500
  article-title: Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex
  publication-title: Cell Rep
– volume: 161
  start-page: 1164
  year: 2015
  end-page: 1174
  ident: bib0465
  article-title: Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
  publication-title: Cell
– volume: 513
  start-page: 569
  year: 2014
  end-page: 573
  ident: bib0580
  article-title: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
  publication-title: Nature
– volume: 42
  start-page: 2577
  year: 2014
  end-page: 2590
  ident: bib0600
  article-title: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
  publication-title: Nucleic Acids Res
– volume: 52
  start-page: 124
  year: 2013
  end-page: 134
  ident: bib0510
  article-title: Structure of the CRISPR interference complex CSM reveals key similarities with Cascade
  publication-title: Mol Cell
– volume: 527
  start-page: 110
  year: 2015
  end-page: 113
  ident: bib0595
  article-title: Conformational control of DNA target cleavage by CRISPR-Cas9
  publication-title: Nature
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib0555
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 28
  start-page: 2432
  year: 2014
  end-page: 2443
  ident: bib0495
  article-title: Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex
  publication-title: Genes Dev
– volume: 345
  start-page: 1479
  year: 2014
  end-page: 1484
  ident: bib0405
  article-title: Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
  publication-title: Science
– volume: 322
  start-page: 1843
  year: 2008
  end-page: 1845
  ident: bib0435
  article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
  publication-title: Science
– volume: 30
  start-page: 460
  year: 2016
  end-page: 470
  ident: bib0475
  article-title: RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex
  publication-title: Genes Dev
– volume: 165
  start-page: 949
  year: 2016
  end-page: 962
  ident: bib0635
  article-title: Crystal structure of Cpf1 in complex with guide RNA and target DNA
  publication-title: Cell
– volume: 530
  start-page: 499
  year: 2016
  end-page: 503
  ident: bib0410
  article-title: Structural basis for promiscuous PAM recognition in type I-E Cascade from
  publication-title: Nature
– volume: 348
  start-page: 581
  year: 2015
  end-page: 585
  ident: bib0515
  article-title: Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
  publication-title: Science
– volume: 18
  start-page: 680
  year: 2011
  end-page: 687
  ident: bib0415
  article-title: An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3
  publication-title: Nat Struct Mol Biol
– volume: 30
  start-page: 447
  year: 2016
  end-page: 459
  ident: bib0470
  article-title: Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system
  publication-title: Genes Dev
– volume: 56
  start-page: 506
  year: 2014
  end-page: 517
  ident: bib0485
  article-title: Programmable RNA shredding by the type III-A CRISPR-Cas system of
  publication-title: Mol Cell
– volume: 532
  start-page: 522
  year: 2016
  end-page: 526
  ident: bib0630
  article-title: The crystal structure of Cpf1 in complex with CRISPR RNA
  publication-title: Nature
– volume: 164
  start-page: 710
  year: 2016
  end-page: 721
  ident: bib0480
  article-title: Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity
  publication-title: Cell
– volume: 343
  start-page: 1247997
  year: 2014
  ident: bib0570
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science
– volume: 526
  start-page: 55
  year: 2015
  end-page: 61
  ident: bib0330
  article-title: CRISPR-Cas immunity in prokaryotes
  publication-title: Nature
– volume: 514
  start-page: 633
  year: 2014
  end-page: 637
  ident: bib0460
  article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
  publication-title: Nature
– volume: 60
  start-page: 385
  year: 2015
  end-page: 397
  ident: bib0355
  article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
  publication-title: Mol Cell
– volume: 164
  start-page: 29
  year: 2016
  end-page: 44
  ident: bib0345
  article-title: Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering
  publication-title: Cell
– volume: 321
  start-page: 960
  year: 2008
  end-page: 964
  ident: bib0375
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
– volume: 21
  start-page: 771
  year: 2014
  end-page: 777
  ident: bib0430
  article-title: Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation
  publication-title: Nat Struct Mol Biol
– volume: 44
  start-page: 229
  year: 2015
  end-page: 255
  ident: bib0370
  article-title: Structure principles of CRISPR-Cas surveillance and effector complexes
  publication-title: Annu Rev Biophys
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  ident: bib0605
  article-title: genome editing using
  publication-title: Nature
– volume: 164
  start-page: 950
  year: 2016
  end-page: 961
  ident: bib0615
  article-title: Structure and engineering of
  publication-title: Cell
– volume: 58
  start-page: 418
  year: 2015
  end-page: 430
  ident: bib0520
  article-title: Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog
  publication-title: Mol Cell
– volume: 6
  start-page: 38
  year: 2011
  ident: bib0530
  article-title: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
  publication-title: Biol Direct
– volume: 468
  start-page: 67
  year: 2010
  end-page: 71
  ident: bib0535
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
– volume: 56
  start-page: 43
  year: 2014
  end-page: 54
  ident: bib0490
  article-title: Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4
  publication-title: Mol Cell
– volume: 139
  start-page: 945
  year: 2009
  end-page: 956
  ident: bib0445
  article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
  publication-title: Cell
– volume: 43
  start-page: 1257
  year: 2015
  end-page: 1267
  ident: bib0505
  article-title: Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex
  publication-title: Nucleic Acids Res
– volume: 351
  start-page: 867
  year: 2016
  end-page: 871
  ident: bib0590
  article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
  publication-title: Science
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: bib0550
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc Natl Acad Sci U S A
– volume: 348
  start-page: 1477
  year: 2015
  end-page: 1481
  ident: bib0585
  article-title: A Cas9-guide RNA complex preorganized for target DNA recognition
  publication-title: Science
– volume: 353
  start-page: aaf5573
  year: 2016
  ident: bib0645
  article-title: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
  publication-title: Science
– volume: 56
  start-page: 518
  year: 2014
  end-page: 530
  ident: bib0440
  article-title: RNA targeting by the type III-A CRISPR-Cas Csm complex of
  publication-title: Mol Cell
– volume: 13
  start-page: 722
  year: 2015
  end-page: 736
  ident: bib0350
  article-title: An updated evolutionary classification of CRISPR-Cas systems
  publication-title: Nat Rev Microbiol
– volume: 471
  start-page: 602
  year: 2011
  end-page: 607
  ident: bib0540
  article-title: CRISPR RNA maturation by
  publication-title: Nature
– volume: 162
  start-page: 1113
  year: 2015
  end-page: 1126
  ident: bib0610
  article-title: Crystal structure of
  publication-title: Cell
– volume: 353
  start-page: aad5147
  year: 2016
  ident: bib0340
  article-title: Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
  publication-title: Science
– volume: 26
  start-page: 901
  year: 2016
  end-page: 913
  ident: bib0640
  article-title: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
  publication-title: Cell Res
– volume: 34
  start-page: 933
  year: 2016
  end-page: 941
  ident: bib0335
  article-title: Applications of CRISPR technologies in research and beyond
  publication-title: Nat Biotechnol
– volume: 30
  start-page: 100
  year: 2015
  end-page: 111
  ident: bib0360
  article-title: The structural biology of CRISPR-Cas systems
  publication-title: Curr Opin Struct Biol
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib0545
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 515
  start-page: 147
  year: 2014
  end-page: 150
  ident: bib0400
  article-title: Crystal structure of the RNA-guided immune surveillance Cascade complex in
  publication-title: Nature
– volume: 163
  start-page: 759
  year: 2015
  end-page: 771
  ident: bib0620
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.sbi.2016.11.013_bib0560
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 39
  start-page: 442
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0365
  article-title: DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuv019
– volume: 30
  start-page: 447
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0470
  article-title: Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system
  publication-title: Genes Dev
  doi: 10.1101/gad.272153.115
– volume: 28
  start-page: 2432
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0495
  article-title: Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex
  publication-title: Genes Dev
  doi: 10.1101/gad.250712.114
– volume: 18
  start-page: 529
  year: 2011
  ident: 10.1016/j.sbi.2016.11.013_bib0380
  article-title: Structural basis for CRISPR RNA-guided DNA recognition by Cascade
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2019
– volume: 164
  start-page: 950
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_sbref0615
  article-title: Structure and engineering of Francisella novicida Cas9
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.039
– volume: 514
  start-page: 633
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0460
  article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
  publication-title: Nature
  doi: 10.1038/nature13637
– volume: 532
  start-page: 517
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0625
  article-title: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
  publication-title: Nature
  doi: 10.1038/nature17945
– volume: 526
  start-page: 55
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0330
  article-title: CRISPR-Cas immunity in prokaryotes
  publication-title: Nature
  doi: 10.1038/nature15386
– volume: 34
  start-page: 933
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0335
  article-title: Applications of CRISPR technologies in research and beyond
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3659
– volume: 164
  start-page: 29
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0345
  article-title: Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.035
– volume: 52
  start-page: 146
  year: 2013
  ident: 10.1016/j.sbi.2016.11.013_bib0450
  article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.09.008
– volume: 9
  start-page: 1610
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0500
  article-title: Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.11.007
– volume: 56
  start-page: 518
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0440
  article-title: RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.10.005
– volume: 52
  start-page: 124
  year: 2013
  ident: 10.1016/j.sbi.2016.11.013_bib0510
  article-title: Structure of the CRISPR interference complex CSM reveals key similarities with Cascade
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.08.020
– volume: 156
  start-page: 935
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_sbref0575
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 343
  start-page: 1247997
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_sbref0570
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science
  doi: 10.1126/science.1247997
– volume: 513
  start-page: 569
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_sbref0580
  article-title: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
  publication-title: Nature
  doi: 10.1038/nature13579
– volume: 527
  start-page: 110
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0595
  article-title: Conformational control of DNA target cleavage by CRISPR-Cas9
  publication-title: Nature
  doi: 10.1038/nature15544
– volume: 2
  start-page: e00471
  year: 2013
  ident: 10.1016/j.sbi.2016.11.013_bib0565
  article-title: RNA-programmed genome editing in human cells
  publication-title: Elife
  doi: 10.7554/eLife.00471
– volume: 56
  start-page: 506
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0485
  article-title: Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.09.027
– volume: 43
  start-page: 1257
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0505
  article-title: Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1355
– volume: 471
  start-page: 602
  year: 2011
  ident: 10.1016/j.sbi.2016.11.013_bib0540
  article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
  publication-title: Nature
  doi: 10.1038/nature09886
– volume: 18
  start-page: 680
  year: 2011
  ident: 10.1016/j.sbi.2016.11.013_bib0415
  article-title: An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2043
– volume: 538
  start-page: 270
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0650
  article-title: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection
  publication-title: Nature
  doi: 10.1038/nature19802
– volume: 348
  start-page: 581
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_sbref0515
  article-title: Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
  publication-title: Science
  doi: 10.1126/science.aaa4535
– volume: 321
  start-page: 960
  year: 2008
  ident: 10.1016/j.sbi.2016.11.013_bib0375
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1159689
– volume: 46
  start-page: 595
  year: 2012
  ident: 10.1016/j.sbi.2016.11.013_bib0385
  article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.03.018
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.sbi.2016.11.013_bib0555
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 164
  start-page: 710
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0480
  article-title: Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.053
– volume: 322
  start-page: 1843
  year: 2008
  ident: 10.1016/j.sbi.2016.11.013_bib0435
  article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
  publication-title: Science
  doi: 10.1126/science.1165771
– volume: 56
  start-page: 43
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0490
  article-title: Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.09.002
– volume: 532
  start-page: 522
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_sbref0630
  article-title: The crystal structure of Cpf1 in complex with CRISPR RNA
  publication-title: Nature
  doi: 10.1038/nature17944
– volume: 515
  start-page: 147
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_sbref0400
  article-title: Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli
  publication-title: Nature
  doi: 10.1038/nature13733
– volume: 58
  start-page: 418
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_sbref0520
  article-title: Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.03.018
– volume: 44
  start-page: 229
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0370
  article-title: Structure principles of CRISPR-Cas surveillance and effector complexes
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-060414-033939
– volume: 21
  start-page: 771
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0430
  article-title: Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2875
– volume: 52
  start-page: 135
  year: 2013
  ident: 10.1016/j.sbi.2016.11.013_bib0455
  article-title: Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.09.013
– volume: 13
  start-page: 722
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0350
  article-title: An updated evolutionary classification of CRISPR-Cas systems
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3569
– volume: 161
  start-page: 1164
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0465
  article-title: Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.027
– volume: 351
  start-page: 867
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_sbref0590
  article-title: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
  publication-title: Science
  doi: 10.1126/science.aad8282
– volume: 139
  start-page: 945
  year: 2009
  ident: 10.1016/j.sbi.2016.11.013_bib0445
  article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.040
– volume: 477
  start-page: 486
  year: 2011
  ident: 10.1016/j.sbi.2016.11.013_bib0390
  article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system
  publication-title: Nature
  doi: 10.1038/nature10402
– volume: 345
  start-page: 1473
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_sbref0395
  article-title: Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1256328
– volume: 520
  start-page: 186
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0605
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 30
  start-page: 100
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0360
  article-title: The structural biology of CRISPR-Cas systems
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2015.02.002
– volume: 111
  start-page: 6618
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0420
  article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1405079111
– volume: 353
  start-page: aaf5573
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0645
  article-title: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
  publication-title: Science
  doi: 10.1126/science.aaf5573
– volume: 42
  start-page: 2577
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0600
  article-title: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1074
– volume: 111
  start-page: 16359
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_bib0425
  article-title: Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1410806111
– volume: 26
  start-page: 901
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_sbref0640
  article-title: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
  publication-title: Cell Res
  doi: 10.1038/cr.2016.88
– volume: 345
  start-page: 1479
  year: 2014
  ident: 10.1016/j.sbi.2016.11.013_sbref0405
  article-title: Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
  publication-title: Science
  doi: 10.1126/science.1256996
– volume: 58
  start-page: 722
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0525
  article-title: A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.05.023
– volume: 163
  start-page: 759
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0620
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 353
  start-page: aad5147
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0340
  article-title: Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
  publication-title: Science
  doi: 10.1126/science.aad5147
– volume: 530
  start-page: 499
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_sbref0410
  article-title: Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli
  publication-title: Nature
  doi: 10.1038/nature16995
– volume: 468
  start-page: 67
  year: 2010
  ident: 10.1016/j.sbi.2016.11.013_bib0535
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  doi: 10.1038/nature09523
– volume: 30
  start-page: 460
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_bib0475
  article-title: RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex
  publication-title: Genes Dev
  doi: 10.1101/gad.273722.115
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.sbi.2016.11.013_bib0545
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 348
  start-page: 1477
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_sbref0585
  article-title: A Cas9-guide RNA complex preorganized for target DNA recognition
  publication-title: Science
  doi: 10.1126/science.aab1452
– volume: 6
  start-page: 38
  year: 2011
  ident: 10.1016/j.sbi.2016.11.013_bib0530
  article-title: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-6-38
– volume: 162
  start-page: 1113
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_sbref0610
  article-title: Crystal structure of Staphylococcus aureus Cas9
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.007
– volume: 165
  start-page: 949
  year: 2016
  ident: 10.1016/j.sbi.2016.11.013_sbref0635
  article-title: Crystal structure of Cpf1 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.003
– volume: 60
  start-page: 385
  year: 2015
  ident: 10.1016/j.sbi.2016.11.013_bib0355
  article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.10.008
– volume: 109
  start-page: E2579
  year: 2012
  ident: 10.1016/j.sbi.2016.11.013_bib0550
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1208507109
SSID ssj0006148
Score 2.4805002
SecondaryResourceType review_article
Snippet [Display omitted] •Incredible structural and mechanistic diversity in the CRISPR-Cas effector nucleases.•Divergent evolution of the type I (Cascade-Cas3) and...
In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Clustered Regularly Interspaced Short Palindromic Repeats
Ribonucleases - metabolism
RNA - genetics
RNA - metabolism
Title Structures and mechanisms of CRISPR RNA-guided effector nucleases
URI https://dx.doi.org/10.1016/j.sbi.2016.11.013
https://www.ncbi.nlm.nih.gov/pubmed/27912110
https://www.proquest.com/docview/1845832264
Volume 43
WOSCitedRecordID wos000403460500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-033X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006148
  issn: 0959-440X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZgA40XBAO2bjAZiSemTGmcxsljVQ0xHsrUDilvkeM4LNOaTvOCxr_nLraTaGgTIPESRWmTWHcX33f23XeEfBAQA5SiCDxRKN8DBJ57cckLb8xzNikA46vYNJvg83mcpsmpJVTQbTsBXtfx7W1y9V9VDddA2Vg6-xfq7h4KF-AclA5HUDsc_0jxy5YRtoEwut0YWCms7a30qs3ZmC1OlqeLw8V86n1vqgLQpknoWF8f1shsDD5ND_Gqo2_CsiqbFant80G3lsFpsLdxXq2Eblp_VoH_Pa-632BApkP2Vy1WzXCxARxYn6PSroC5Kpg-5cgtJYahnxqfYibSmCeez1g6nGlDNpgqTTcd63RNG5_fpnOzsnBxpPMKs_CiIyRcNbWrd1iylzgIHAPgS0CtWIy_GfBJAhPd5vTkOP3SuWdkPjUEjGbQbqu7Tfq786L7wMp9wUgLSs5ekOc2mqBTYwUvySNVb5Onpr_oz22yNXPt_F6B_-zsgoJd0N4u6Lqkxi5obxfU2QXt7OI1-fbp-Gz22bP9MzwZRsGNVzImeKjGea4iRMIMufEgQFAskoASEwGBVZ5LwcuiBJCCe74sKFQuJA-UZDF7Qzbqda12CY0BNkrmq0RICQhGJJGcFJJjP0eknpcj4jtBZdKSy2OPk8vMZRFeZCDbDGULQWcGsh2Rj90tV4ZZ5aE_h076mYWGBvJlYCoP3fbeaSoDceNemKjVutHZOMaEAawiH5Edo8JuFAFPkPjQ3_u3l-6TZ_2n85ZsgHbVO_JE_rip9PUBeczT-MAa5S_315rp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+and+mechanisms+of+CRISPR+RNA-guided+effector+nucleases&rft.jtitle=Current+opinion+in+structural+biology&rft.au=Nishimasu%2C+Hiroshi&rft.au=Nureki%2C+Osamu&rft.date=2017-04-01&rft.pub=Elsevier+Ltd&rft.issn=0959-440X&rft.eissn=1879-033X&rft.volume=43&rft.spage=68&rft.epage=78&rft_id=info:doi/10.1016%2Fj.sbi.2016.11.013&rft.externalDocID=S0959440X16301981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-440X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-440X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-440X&client=summon