Minmax robustness for multi-objective optimization problems

•Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and epsilon-constraints are adjusted to the new concept.•Problems with objective-wise uncertainty are investigated more closely.•The concepts are illustra...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 239; no. 1; pp. 17 - 31
Main Authors: Ehrgott, Matthias, Ide, Jonas, Schöbel, Anita
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.11.2014
Elsevier Sequoia S.A
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and epsilon-constraints are adjusted to the new concept.•Problems with objective-wise uncertainty are investigated more closely.•The concepts are illustrated with a few LP-examples. In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances.
AbstractList In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances.
•Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and epsilon-constraints are adjusted to the new concept.•Problems with objective-wise uncertainty are investigated more closely.•The concepts are illustrated with a few LP-examples. In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances.
Author Ehrgott, Matthias
Schöbel, Anita
Ide, Jonas
Author_xml – sequence: 1
  givenname: Matthias
  surname: Ehrgott
  fullname: Ehrgott, Matthias
  email: m.ehrgott@lancaster.ac.uk
  organization: Lancaster University, Department of Management Science, Bailrigg, Lancaster LA1 4YX, United Kingdom
– sequence: 2
  givenname: Jonas
  surname: Ide
  fullname: Ide, Jonas
  email: j.ide@math.uni-goettingen.de
  organization: University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083 Göttingen, Germany
– sequence: 3
  givenname: Anita
  surname: Schöbel
  fullname: Schöbel, Anita
  email: schoebel@math.uni-goettingen.de
  organization: University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083 Göttingen, Germany
BookMark eNp9kD1P5DAQQC3ESSzc_YGrIl1Dk-BvJ4IGIb6kRTRQW15nLDlK4j3bQXC__ry7VBRU07w3M3qn6HgOMyD0m-CGYCIvhgaGEBuKCW8wazBhR2hFWkVr2Up8jFaYKVVTStQJOk1pwBgTQcQKXT75eTLvVQybJeUZUqpciNW0jNnXYTOAzf4NqrDNfvL_TPZhrrYFHmFKP9EPZ8YEvz7nGXq9u325eajXz_ePN9fr2nJJcw296zvnNiBo2xvpLDFEAOOdMphK02InnLECW8VIz7mUQBW3WCnR8k5Sxs7Q-WFvOfx3gZT15JOFcTQzhCVpIkSniORtW9A_X9AhLHEu3xWKM9YpuafogbIxpBTB6W30k4kfmmC966kHveupdz01Zrr0LFL7RbI-74PkaPz4vXp1UKFUevMQdbIeZgu9jyWw7oP_Tv8P8oWS1Q
CODEN EJORDT
CitedBy_id crossref_primary_10_1115_1_4067706
crossref_primary_10_1007_s10957_025_02772_8
crossref_primary_10_1080_0305215X_2024_2418341
crossref_primary_10_1007_s11573_018_0900_1
crossref_primary_10_1016_j_eswa_2018_02_004
crossref_primary_10_1137_21M143683X
crossref_primary_10_1080_02331934_2016_1195384
crossref_primary_10_1541_ieejeiss_136_189
crossref_primary_10_1007_s10898_022_01209_0
crossref_primary_10_1007_s40314_023_02224_x
crossref_primary_10_1016_j_ejor_2025_06_010
crossref_primary_10_1016_j_cie_2021_107497
crossref_primary_10_1016_j_ins_2019_07_014
crossref_primary_10_1016_j_ifacol_2016_07_867
crossref_primary_10_1016_j_omega_2014_11_005
crossref_primary_10_1007_s11590_023_02085_7
crossref_primary_10_1016_j_ejor_2021_03_068
crossref_primary_10_1016_j_ejor_2018_11_048
crossref_primary_10_1007_s10479_021_04422_4
crossref_primary_10_1080_02331934_2019_1579212
crossref_primary_10_1007_s11081_016_9317_2
crossref_primary_10_1142_S0217595923500318
crossref_primary_10_1016_j_energy_2019_04_153
crossref_primary_10_1007_s10957_021_01939_3
crossref_primary_10_1007_s10479_021_04461_x
crossref_primary_10_1080_02331934_2016_1267174
crossref_primary_10_1007_s43069_023_00209_4
crossref_primary_10_1080_02331934_2022_2031189
crossref_primary_10_1007_s10898_023_01335_3
crossref_primary_10_1016_j_ejor_2017_12_018
crossref_primary_10_1007_s10957_017_1196_y
crossref_primary_10_1007_s10878_018_0364_9
crossref_primary_10_1016_j_ejor_2017_04_012
crossref_primary_10_3390_en9030159
crossref_primary_10_1007_s10479_024_05963_0
crossref_primary_10_1016_j_orl_2015_03_005
crossref_primary_10_1007_s10898_022_01208_1
crossref_primary_10_1007_s10479_020_03630_8
crossref_primary_10_1016_j_ejor_2018_03_018
crossref_primary_10_1016_j_swevo_2024_101734
crossref_primary_10_1016_j_ejor_2020_09_045
crossref_primary_10_1061__ASCE_IS_1943_555X_0000380
crossref_primary_10_1016_j_ejor_2019_08_047
crossref_primary_10_1016_j_ejor_2019_08_040
crossref_primary_10_1016_j_ejor_2017_08_001
crossref_primary_10_1016_j_ejor_2017_08_003
crossref_primary_10_1049_iet_its_2019_0332
crossref_primary_10_1007_s11573_015_0785_1
crossref_primary_10_1080_0305215X_2024_2433077
crossref_primary_10_1016_j_jclepro_2020_124073
crossref_primary_10_1007_s10898_020_00959_z
crossref_primary_10_1007_s00170_021_07644_9
crossref_primary_10_1016_j_ejor_2023_09_017
crossref_primary_10_1080_02331934_2025_2475393
crossref_primary_10_1016_j_ejor_2025_04_054
crossref_primary_10_1021_acs_iecr_7b04196
crossref_primary_10_1016_j_cie_2018_08_007
crossref_primary_10_1007_s10479_017_2526_z
crossref_primary_10_1007_s10957_016_0942_x
crossref_primary_10_1016_j_cie_2020_106646
crossref_primary_10_1016_j_ssci_2022_105814
crossref_primary_10_3390_su12187582
crossref_primary_10_1007_s10589_018_0043_x
crossref_primary_10_1016_j_ejor_2017_07_015
crossref_primary_10_3390_math12132124
crossref_primary_10_1016_j_ejor_2016_12_045
crossref_primary_10_1002_cite_70012
crossref_primary_10_1016_j_energy_2017_04_115
crossref_primary_10_11650_tjm_250801
crossref_primary_10_1007_s10898_021_01118_8
crossref_primary_10_1007_s10957_024_02528_w
crossref_primary_10_1016_j_ejor_2017_02_014
crossref_primary_10_1137_17M1143484
crossref_primary_10_1186_s13660_018_1612_3
crossref_primary_10_1007_s10479_022_04951_6
crossref_primary_10_1007_s10690_022_09375_7
crossref_primary_10_1080_02331934_2022_2105214
crossref_primary_10_4316_AECE_2021_02008
crossref_primary_10_1007_s10479_020_03567_y
crossref_primary_10_1016_j_cie_2022_108051
crossref_primary_10_1016_j_isatra_2023_05_003
crossref_primary_10_3389_fphy_2022_875847
crossref_primary_10_1080_0305215X_2024_2354881
crossref_primary_10_1016_j_ejco_2021_100014
crossref_primary_10_1016_j_ejor_2019_01_003
crossref_primary_10_3390_math8111959
crossref_primary_10_1007_s10957_018_1256_y
crossref_primary_10_1016_j_ejor_2016_12_019
crossref_primary_10_1016_j_compag_2018_09_001
crossref_primary_10_1016_j_compchemeng_2016_11_038
crossref_primary_10_1007_s00170_022_10152_z
crossref_primary_10_1016_j_trc_2023_104124
crossref_primary_10_1016_j_econmod_2017_03_020
crossref_primary_10_1007_s10957_025_02783_5
crossref_primary_10_1145_3469801
crossref_primary_10_1080_02331934_2019_1625352
crossref_primary_10_3390_su14127511
crossref_primary_10_1137_23M1578371
crossref_primary_10_1016_j_ejor_2016_01_015
crossref_primary_10_1016_j_ejor_2016_01_017
crossref_primary_10_1007_s10898_022_01142_2
crossref_primary_10_1007_s10957_021_01887_y
crossref_primary_10_1080_02331934_2023_2257709
crossref_primary_10_1155_2016_3629174
crossref_primary_10_1016_j_ejor_2018_08_019
crossref_primary_10_1007_s10489_022_04240_6
crossref_primary_10_1016_j_enbuild_2019_109362
crossref_primary_10_3390_electronics10172089
crossref_primary_10_1080_02331934_2020_1728269
crossref_primary_10_1007_s10479_020_03577_w
crossref_primary_10_1080_02331934_2022_2046740
crossref_primary_10_1016_j_ejor_2017_03_041
crossref_primary_10_1002_cite_201600098
crossref_primary_10_1007_s10957_024_02423_4
crossref_primary_10_1080_02331934_2023_2181080
crossref_primary_10_1109_TNNLS_2024_3397393
crossref_primary_10_1080_02331934_2018_1493108
crossref_primary_10_1007_s10957_022_02075_2
crossref_primary_10_1016_j_apenergy_2023_121185
crossref_primary_10_1080_0305215X_2022_2090545
crossref_primary_10_1002_mcda_1653
crossref_primary_10_1007_s10957_018_1359_5
crossref_primary_10_1016_j_compchemeng_2024_108985
crossref_primary_10_1080_01630563_2025_2506203
crossref_primary_10_1080_02331934_2017_1393675
crossref_primary_10_1007_s10898_017_0518_9
crossref_primary_10_1016_j_ejor_2021_08_040
crossref_primary_10_1002_net_21815
crossref_primary_10_1016_j_cor_2025_107179
crossref_primary_10_5004_dwt_2023_30022
crossref_primary_10_1080_02331934_2022_2122717
crossref_primary_10_1080_00036811_2024_2426219
crossref_primary_10_1007_s10957_023_02307_z
crossref_primary_10_1007_s00291_015_0418_7
crossref_primary_10_1080_02331934_2025_2499818
crossref_primary_10_15807_jorsj_67_65
crossref_primary_10_1016_j_asoc_2021_107890
crossref_primary_10_1007_s43069_021_00082_z
crossref_primary_10_1007_s00186_014_0471_z
crossref_primary_10_1016_j_cie_2019_106187
crossref_primary_10_1080_02331934_2018_1522537
crossref_primary_10_1016_j_ejor_2018_08_020
crossref_primary_10_1016_j_physa_2019_122059
crossref_primary_10_1186_s42492_023_00131_w
crossref_primary_10_1007_s11117_024_01032_9
crossref_primary_10_1016_j_cor_2015_08_007
crossref_primary_10_3390_math11071741
crossref_primary_10_1016_j_ejor_2014_10_027
crossref_primary_10_1155_2015_349781
crossref_primary_10_1155_2017_3423562
crossref_primary_10_1007_s10288_014_0265_4
crossref_primary_10_1007_s12215_025_01255_z
crossref_primary_10_1016_j_ejor_2020_01_004
crossref_primary_10_1080_02331934_2024_2390116
crossref_primary_10_1080_0305215X_2018_1457655
crossref_primary_10_1137_19M1251461
crossref_primary_10_1007_s10479_020_03840_0
crossref_primary_10_1016_j_jclepro_2015_09_092
crossref_primary_10_1007_s10586_017_0887_3
crossref_primary_10_1016_j_ejor_2017_12_026
crossref_primary_10_1007_s11590_025_02193_6
crossref_primary_10_1007_s10957_020_01662_5
crossref_primary_10_1007_s00291_023_00725_z
crossref_primary_10_1016_j_ejor_2015_06_031
crossref_primary_10_1016_j_na_2016_01_002
crossref_primary_10_1080_02331934_2016_1172226
crossref_primary_10_1007_s00291_018_0540_4
crossref_primary_10_1016_j_envsoft_2021_105134
crossref_primary_10_1016_j_seps_2025_102260
crossref_primary_10_1007_s10479_017_2751_5
crossref_primary_10_1007_s10957_019_01609_5
crossref_primary_10_1016_j_ejor_2015_08_062
crossref_primary_10_1007_s10458_022_09564_8
crossref_primary_10_1007_s10479_021_04179_w
crossref_primary_10_1016_j_amc_2019_06_006
crossref_primary_10_1109_TCOMM_2018_2834920
crossref_primary_10_1007_s10479_022_05104_5
crossref_primary_10_1007_s10957_019_01505_y
crossref_primary_10_1002_ecj_11947
crossref_primary_10_1016_j_ejor_2018_07_035
crossref_primary_10_1016_j_ins_2018_06_016
crossref_primary_10_1016_j_omega_2025_103405
crossref_primary_10_3390_math13020308
crossref_primary_10_1016_j_ecolmodel_2016_02_005
crossref_primary_10_1007_s10473_020_0320_5
crossref_primary_10_1007_s40305_023_00514_z
crossref_primary_10_1016_j_ejor_2016_03_016
crossref_primary_10_1016_j_physa_2021_126260
crossref_primary_10_1177_1059712319869313
crossref_primary_10_1007_s11590_019_01406_z
crossref_primary_10_1016_j_apenergy_2017_12_066
crossref_primary_10_1080_02331934_2019_1658760
crossref_primary_10_1049_iet_gtd_2015_1344
crossref_primary_10_1145_3161408
crossref_primary_10_1007_s10957_018_1312_7
crossref_primary_10_1007_s10479_021_04462_w
crossref_primary_10_1002_rnc_5197
crossref_primary_10_1109_TVT_2022_3226291
Cites_doi 10.1088/0031-9155/57/3/591
10.1287/moor.23.4.769
10.1016/0377-2217(84)90077-8
10.1016/j.ejor.2008.09.012
10.1007/s00158-004-0450-8
10.1162/evco.2006.14.4.463
10.1186/1687-1812-2014-83
10.1287/opre.21.5.1154
10.1137/S0895479896298130
10.1145/1389095.1389221
10.1007/s10957-012-0234-z
10.1016/S0305-0548(97)00085-3
10.1007/978-1-4757-2620-6
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Nov 16, 2014
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Nov 16, 2014
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2014.03.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Materials Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 31
ExternalDocumentID 3365212601
10_1016_j_ejor_2014_03_013
S0377221714002276
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
7TA
JG9
ID FETCH-LOGICAL-c462t-edfd9ffbe528da6fc1a15e3497a026a80f5fac50c731d4466e274c07758496233
ISICitedReferencesCount 232
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339148900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Thu Oct 02 11:16:59 EDT 2025
Fri Jul 25 05:03:22 EDT 2025
Tue Nov 18 20:45:09 EST 2025
Sat Nov 29 01:41:10 EST 2025
Fri Feb 23 02:32:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Scenarios
Multi-objective optimization
Robustness and sensitivity analysis
Uncertainty modelling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-edfd9ffbe528da6fc1a15e3497a026a80f5fac50c731d4466e274c07758496233
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1543397688
PQPubID 45678
PageCount 15
ParticipantIDs proquest_miscellaneous_1559716488
proquest_journals_1543397688
crossref_primary_10_1016_j_ejor_2014_03_013
crossref_citationtrail_10_1016_j_ejor_2014_03_013
elsevier_sciencedirect_doi_10_1016_j_ejor_2014_03_013
PublicationCentury 2000
PublicationDate 2014-11-16
PublicationDateYYYYMMDD 2014-11-16
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2014
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Goerigk, M., & Schöbel, A. (2013). Algorithm engineering in robust optimization. Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen.
Ehrgott (b0060) 2005
Disser, Müller-Hannemann, Schnee (b0050) 2008
Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., & Schöbel, A. (2013). The price of strict and light robustness in timetable information.
Saltelli, Chan, Scott (b0150) 2000
Avigad, G., & Branke, J. (2008). Embedded evolutionary multi-objective optimization for worst case robustness. In M. Keijzer (Ed.)
Ben-Tal, Ghaoui, Nemirovski (b0020) 2009
Ide, J., & Köbis, E. (2013).
Ide, J., & Schöbel, A. (2013).
Yu, Liu (b0180) 2013; 159
Fliege, J., & Werner, R. (2013). Robust multiobjective optimization and applications in portfolio optimization.
Deb, Gupta (b0045) 2006; 14
Ph.D. Thesis, Paderborn: Universität Paderborn.
Yu, Yang (b0175) 1998; 25
Ben-Tal, Nemirovski (b0025) 1998; 23
Ide, J., Tiedemann, M., Westphal, S., & Haiduk, F. (2013).
Kouvelis, Yu (b0115) 1997
Kuroiwa, Lee (b0125) 2012; 40
Soyster (b0155) 1973; 21
Martins (b0140) 1984; 16
Witting, K. (2012).
Gunawan, Azarm (b0090) 2005; 29
Ide, Köbis, Kuroiwa, Schöbel, Tammer (b0100) 2014
422–433.
Working paper.
Löhne (b0130) 2011
Birge, Louveaux (b0030) 2011
Doolittle, E. K., Kerivin, H. L. M., & Wiecek, M. M. (2012).
Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen.
Steponavice, I., & Miettinen, K. (2012). Survey on multiobjective robustness for simulation-based optimization. In Talk at the 21st international symposium on mathematical programming, August 19–24, 2012, Berlin, Germany.
.
Barrico, Antunes (b0015) 2006
Müller-Hannemann, Schnee (b0145) 2007
Branke (b0035) 1998; Vol. 1498
Stewart, Bandte, Braun, Chakraborti, Ehrgott, Göbelt (b0165) 2008; vol. 5252
Chen, Unkelbach, Trofimov, Madden, Kooy, Bortfeld (b0040) 2012; 57
Majewski, D. E. (2013). Robust bi-objective linear optimization. Master’s thesis, University of Göttingen.
Technical Report, Department of Mathematical Sciences, Clemson University.
Aissi, Bazgan, Vanderpooten (b0005) 2009; 197
Goerigk, Heße, Müller-Hannemann, Schmidt, Schöbel (b0075) 2013
Kuhn, K., Raith, A., Schmidt, M., & Schöbel, A. (2012).
Ghaoui, Lebret (b0065) 1997; 18
Kuroiwa (10.1016/j.ejor.2014.03.013_b0125) 2012; 40
Ehrgott (10.1016/j.ejor.2014.03.013_b0060) 2005
Martins (10.1016/j.ejor.2014.03.013_b0140) 1984; 16
Yu (10.1016/j.ejor.2014.03.013_b0175) 1998; 25
10.1016/j.ejor.2014.03.013_b0055
10.1016/j.ejor.2014.03.013_b0110
10.1016/j.ejor.2014.03.013_b0010
Birge (10.1016/j.ejor.2014.03.013_b0030) 2011
Disser (10.1016/j.ejor.2014.03.013_b0050) 2008
Stewart (10.1016/j.ejor.2014.03.013_b0165) 2008; vol. 5252
Chen (10.1016/j.ejor.2014.03.013_b0040) 2012; 57
10.1016/j.ejor.2014.03.013_b0135
10.1016/j.ejor.2014.03.013_b0170
Ben-Tal (10.1016/j.ejor.2014.03.013_b0025) 1998; 23
10.1016/j.ejor.2014.03.013_b0070
Löhne (10.1016/j.ejor.2014.03.013_b0130) 2011
Deb (10.1016/j.ejor.2014.03.013_b0045) 2006; 14
10.1016/j.ejor.2014.03.013_b0095
Goerigk (10.1016/j.ejor.2014.03.013_b0075) 2013
Ide (10.1016/j.ejor.2014.03.013_b0100) 2014
Aissi (10.1016/j.ejor.2014.03.013_b0005) 2009; 197
Ben-Tal (10.1016/j.ejor.2014.03.013_b0020) 2009
10.1016/j.ejor.2014.03.013_b0120
10.1016/j.ejor.2014.03.013_b0105
Yu (10.1016/j.ejor.2014.03.013_b0180) 2013; 159
Soyster (10.1016/j.ejor.2014.03.013_b0155) 1973; 21
Ghaoui (10.1016/j.ejor.2014.03.013_b0065) 1997; 18
10.1016/j.ejor.2014.03.013_b0080
Saltelli (10.1016/j.ejor.2014.03.013_b0150) 2000
10.1016/j.ejor.2014.03.013_b0085
10.1016/j.ejor.2014.03.013_b0160
Müller-Hannemann (10.1016/j.ejor.2014.03.013_b0145) 2007
Branke (10.1016/j.ejor.2014.03.013_b0035) 1998; Vol. 1498
Gunawan (10.1016/j.ejor.2014.03.013_b0090) 2005; 29
Kouvelis (10.1016/j.ejor.2014.03.013_b0115) 1997
Barrico (10.1016/j.ejor.2014.03.013_b0015) 2006
References_xml – start-page: 347
  year: 2008
  end-page: 361
  ident: b0050
  article-title: Multi-criteria shortest paths in time-dependent train networks
  publication-title: Experimental algorithms
– year: 2014
  ident: b0100
  article-title: The relationship between multicriteria robustness concepts and set valued optimization
  publication-title: Fixed Point Theory and Applications
– volume: 197
  start-page: 427
  year: 2009
  end-page: 438
  ident: b0005
  article-title: Min-max and min-max regret versions of combinatorial optimization problems: A survey
  publication-title: European Journal of Operational Research
– volume: Vol. 1498
  start-page: 119
  year: 1998
  end-page: 128
  ident: b0035
  article-title: Creating robust solutions by means of evolutionary algorithms
  publication-title: Parallel problem solving from nature – PPSNV
– reference: Ide, J., Tiedemann, M., Westphal, S., & Haiduk, F. (2013).
– start-page: 1
  year: 2013
  end-page: 14
  ident: b0075
  article-title: Recoverable robust timetable information
  publication-title: 13th Workshop on algorithmic approaches for transportation modelling, optimization, and systems
– year: 1997
  ident: b0115
  publication-title: Robust discrete optimization and its applications
– volume: vol. 5252
  start-page: 285
  year: 2008
  end-page: 327
  ident: b0165
  article-title: Real-world applications of multiobjective optimization
  publication-title: Multiobjective optimization: Interactive and evolutionary approaches
– year: 2011
  ident: b0030
  publication-title: Introduction to stochastic programming
– year: 2005
  ident: b0060
  article-title: Multicriteria optimization
– volume: 18
  start-page: 1034
  year: 1997
  end-page: 1064
  ident: b0065
  article-title: Robust solutions to least-squares problems with uncertain data
  publication-title: SIAM Journal on Matrix Analysis and Applications
– start-page: 1887
  year: 2006
  end-page: 1892
  ident: b0015
  article-title: Robustness analysis in multi-objective optimization using a degree of robustness concept
  publication-title: IEEE congress on evolutionary computation, CEC 2006
– reference: Witting, K. (2012).
– reference: Ide, J., & Köbis, E. (2013).
– volume: 23
  start-page: 769
  year: 1998
  end-page: 805
  ident: b0025
  article-title: Robust convex optimization
  publication-title: Mathematics of Operations Research
– reference: Steponavice, I., & Miettinen, K. (2012). Survey on multiobjective robustness for simulation-based optimization. In Talk at the 21st international symposium on mathematical programming, August 19–24, 2012, Berlin, Germany.
– reference: Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., & Schöbel, A. (2013). The price of strict and light robustness in timetable information.
– year: 2011
  ident: b0130
  publication-title: Vector optimization with infimum and supremum
– year: 2000
  ident: b0150
  publication-title: Sensitivity analysis
– reference: . Working paper.
– reference: 422–433.
– reference: Kuhn, K., Raith, A., Schmidt, M., & Schöbel, A. (2012).
– volume: 159
  start-page: 272
  year: 2013
  end-page: 280
  ident: b0180
  article-title: Robust multiple objective game theory
  publication-title: Journal of Optimization Theory and Applications
– reference: Ide, J., & Schöbel, A. (2013).
– reference: . <
– reference: Majewski, D. E. (2013). Robust bi-objective linear optimization. Master’s thesis, University of Göttingen.
– reference: . Ph.D. Thesis, Paderborn: Universität Paderborn.
– volume: 57
  start-page: 591
  year: 2012
  ident: b0040
  article-title: Including robustness in multi-criteria optimization for intensity-modulated proton therapy
  publication-title: Physics in Medicine and Biology
– reference: >.
– year: 2009
  ident: b0020
  article-title: Robust optimization
– reference: .
– volume: 40
  start-page: 305
  year: 2012
  end-page: 317
  ident: b0125
  article-title: On robust multiobjective optimization
  publication-title: Vietnam Journal of Mathematics
– volume: 29
  start-page: 50
  year: 2005
  end-page: 60
  ident: b0090
  article-title: Multi-objective robust optimization using a sensitivity region concept
  publication-title: Structural and Multidisciplinary Optimization
– volume: 16
  start-page: 236
  year: 1984
  end-page: 245
  ident: b0140
  article-title: On a multicriteria shortest path problem
  publication-title: European Journal of Operational Research
– reference: Doolittle, E. K., Kerivin, H. L. M., & Wiecek, M. M. (2012).
– volume: 14
  start-page: 463
  year: 2006
  end-page: 494
  ident: b0045
  article-title: Introducing robustness in multi-objective optimization
  publication-title: Evolutionary Computation
– reference: . Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen.
– start-page: 246
  year: 2007
  end-page: 263
  ident: b0145
  article-title: Finding all attractive train connections by multi-criteria Pareto search
  publication-title: Algorithmic methods for railway optimization
– volume: 25
  start-page: 457
  year: 1998
  end-page: 468
  ident: b0175
  article-title: On the robust shortest path problem
  publication-title: Computers and Operations Research
– reference: Avigad, G., & Branke, J. (2008). Embedded evolutionary multi-objective optimization for worst case robustness. In M. Keijzer (Ed.),
– reference: Goerigk, M., & Schöbel, A. (2013). Algorithm engineering in robust optimization. Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen.
– reference: Fliege, J., & Werner, R. (2013). Robust multiobjective optimization and applications in portfolio optimization.
– reference: . Technical Report, Department of Mathematical Sciences, Clemson University.
– volume: 21
  start-page: 1154
  year: 1973
  end-page: 1157
  ident: b0155
  article-title: Convex programming with set-inclusive constraints and applications to inexact linear programming
  publication-title: Operations Research
– start-page: 246
  year: 2007
  ident: 10.1016/j.ejor.2014.03.013_b0145
  article-title: Finding all attractive train connections by multi-criteria Pareto search
– ident: 10.1016/j.ejor.2014.03.013_b0120
– ident: 10.1016/j.ejor.2014.03.013_b0170
– ident: 10.1016/j.ejor.2014.03.013_b0055
– volume: Vol. 1498
  start-page: 119
  year: 1998
  ident: 10.1016/j.ejor.2014.03.013_b0035
  article-title: Creating robust solutions by means of evolutionary algorithms
– ident: 10.1016/j.ejor.2014.03.013_b0110
– start-page: 1887
  year: 2006
  ident: 10.1016/j.ejor.2014.03.013_b0015
  article-title: Robustness analysis in multi-objective optimization using a degree of robustness concept
– volume: 57
  start-page: 591
  year: 2012
  ident: 10.1016/j.ejor.2014.03.013_b0040
  article-title: Including robustness in multi-criteria optimization for intensity-modulated proton therapy
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/57/3/591
– volume: 23
  start-page: 769
  year: 1998
  ident: 10.1016/j.ejor.2014.03.013_b0025
  article-title: Robust convex optimization
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.23.4.769
– volume: 16
  start-page: 236
  year: 1984
  ident: 10.1016/j.ejor.2014.03.013_b0140
  article-title: On a multicriteria shortest path problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(84)90077-8
– volume: 197
  start-page: 427
  year: 2009
  ident: 10.1016/j.ejor.2014.03.013_b0005
  article-title: Min-max and min-max regret versions of combinatorial optimization problems: A survey
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.09.012
– year: 2009
  ident: 10.1016/j.ejor.2014.03.013_b0020
– ident: 10.1016/j.ejor.2014.03.013_b0135
– volume: 29
  start-page: 50
  year: 2005
  ident: 10.1016/j.ejor.2014.03.013_b0090
  article-title: Multi-objective robust optimization using a sensitivity region concept
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-004-0450-8
– ident: 10.1016/j.ejor.2014.03.013_b0085
– year: 2011
  ident: 10.1016/j.ejor.2014.03.013_b0130
– year: 2005
  ident: 10.1016/j.ejor.2014.03.013_b0060
– year: 2000
  ident: 10.1016/j.ejor.2014.03.013_b0150
– volume: 14
  start-page: 463
  year: 2006
  ident: 10.1016/j.ejor.2014.03.013_b0045
  article-title: Introducing robustness in multi-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2006.14.4.463
– year: 2011
  ident: 10.1016/j.ejor.2014.03.013_b0030
– year: 2014
  ident: 10.1016/j.ejor.2014.03.013_b0100
  article-title: The relationship between multicriteria robustness concepts and set valued optimization
  publication-title: Fixed Point Theory and Applications
  doi: 10.1186/1687-1812-2014-83
– ident: 10.1016/j.ejor.2014.03.013_b0070
– ident: 10.1016/j.ejor.2014.03.013_b0095
– volume: 21
  start-page: 1154
  year: 1973
  ident: 10.1016/j.ejor.2014.03.013_b0155
  article-title: Convex programming with set-inclusive constraints and applications to inexact linear programming
  publication-title: Operations Research
  doi: 10.1287/opre.21.5.1154
– volume: vol. 5252
  start-page: 285
  year: 2008
  ident: 10.1016/j.ejor.2014.03.013_b0165
  article-title: Real-world applications of multiobjective optimization
– start-page: 347
  year: 2008
  ident: 10.1016/j.ejor.2014.03.013_b0050
  article-title: Multi-criteria shortest paths in time-dependent train networks
– volume: 18
  start-page: 1034
  year: 1997
  ident: 10.1016/j.ejor.2014.03.013_b0065
  article-title: Robust solutions to least-squares problems with uncertain data
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/S0895479896298130
– ident: 10.1016/j.ejor.2014.03.013_b0105
– ident: 10.1016/j.ejor.2014.03.013_b0010
  doi: 10.1145/1389095.1389221
– start-page: 1
  year: 2013
  ident: 10.1016/j.ejor.2014.03.013_b0075
  article-title: Recoverable robust timetable information
– volume: 40
  start-page: 305
  year: 2012
  ident: 10.1016/j.ejor.2014.03.013_b0125
  article-title: On robust multiobjective optimization
  publication-title: Vietnam Journal of Mathematics
– volume: 159
  start-page: 272
  year: 2013
  ident: 10.1016/j.ejor.2014.03.013_b0180
  article-title: Robust multiple objective game theory
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-012-0234-z
– ident: 10.1016/j.ejor.2014.03.013_b0160
– volume: 25
  start-page: 457
  year: 1998
  ident: 10.1016/j.ejor.2014.03.013_b0175
  article-title: On the robust shortest path problem
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(97)00085-3
– ident: 10.1016/j.ejor.2014.03.013_b0080
– year: 1997
  ident: 10.1016/j.ejor.2014.03.013_b0115
  doi: 10.1007/978-1-4757-2620-6
SSID ssj0001515
Score 2.582429
Snippet •Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and...
In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Disturbances
Gain
Ingredients
Mathematical models
Mathematical problems
Mathematical programming
Multi-objective optimization
Operational research
Optimization
Optimization techniques
Quadratic programming
Quality
Robustness
Robustness and sensitivity analysis
Scenarios
Studies
Uncertainty modelling
Title Minmax robustness for multi-objective optimization problems
URI https://dx.doi.org/10.1016/j.ejor.2014.03.013
https://www.proquest.com/docview/1543397688
https://www.proquest.com/docview/1559716488
Volume 239
WOSCitedRecordID wos000339148900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELagQwge-FFAKwwUJMRLZZTESWOLpwl1YqgUHjqpb5aTONCKJV3Sov753MV21hVtGg-8RJVrN5XvfD6f7_uOkHdRwcKURYoKOPLQiPmapkUY0DxOUy18DiuqBQpPkumUz-fiu4UrNm05gaQs-XYrVv9V1NAGwkbo7D-Iu_tRaIDPIHR4gtjheSvBf12U52o7rKt006xbQ4aZhG3iIK3SpTFwwwpMxbnFYA5tVZnm2jC9dVmhoXbBQ8sS1EWTxz_rHy75A2uIL1TnrZ_mXaC-a0P2z9RmCIBVUbvRhyBCGJ4BRzrUVZLQMDT4S2dRQ8NPdEV1jH20_cxOa8z_XzbchBOWH_SyQsLWIGpZaA1i9Sph9vSbPDmbTORsPJ-9X11QrCWGd-62sMpdchAmseA9cnB8Op5_6XZodOLa2yX73y2YyuT97b_2Oodlb-tu_ZHZE_LIHiS8Y6MAT8kdXfbJfYdj6JPHrl6HZ813nzzcIZ98Rj4aRfEuFcUDRfH2FMXbVRTPKcpzcnYynn36TG0pDZpFo3BNdV7koihSHYc8V6MiC1QQaxaJRMEhXHG_iAuVxX6WsCDHK34NSzdDekQeCfCQ2QvSK6tSHxKPgdFmSZQn6Qi8fSFUEXA4FOgchiL50oAEbr5kZnnmsdzJL-kSCpcS51jiHEufSZjjARl2Y1aGZeXG3rETg7R-ovH_JKjQjeOOnMykXTuNhCMEQ5-c8wF5230NNhYvzlSpqw32iZFpDfa6l7fo84o8uFwpR6S3rjf6NbmX_V4vmvqN1cU_x2WgVw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minmax+robustness+for+multi-objective+optimization+problems&rft.jtitle=European+journal+of+operational+research&rft.au=Ehrgott%2C+Matthias&rft.au=Ide%2C+Jonas&rft.au=Schobel%2C+Anita&rft.date=2014-11-16&rft.issn=0377-2217&rft.volume=239&rft.issue=1&rft.spage=17&rft.epage=31&rft_id=info:doi/10.1016%2Fj.ejor.2014.03.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon