Minmax robustness for multi-objective optimization problems
•Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and epsilon-constraints are adjusted to the new concept.•Problems with objective-wise uncertainty are investigated more closely.•The concepts are illustra...
Saved in:
| Published in: | European journal of operational research Vol. 239; no. 1; pp. 17 - 31 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
16.11.2014
Elsevier Sequoia S.A |
| Subjects: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and epsilon-constraints are adjusted to the new concept.•Problems with objective-wise uncertainty are investigated more closely.•The concepts are illustrated with a few LP-examples.
In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances. |
|---|---|
| AbstractList | In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances. •Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and epsilon-constraints are adjusted to the new concept.•Problems with objective-wise uncertainty are investigated more closely.•The concepts are illustrated with a few LP-examples. In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances. |
| Author | Ehrgott, Matthias Schöbel, Anita Ide, Jonas |
| Author_xml | – sequence: 1 givenname: Matthias surname: Ehrgott fullname: Ehrgott, Matthias email: m.ehrgott@lancaster.ac.uk organization: Lancaster University, Department of Management Science, Bailrigg, Lancaster LA1 4YX, United Kingdom – sequence: 2 givenname: Jonas surname: Ide fullname: Ide, Jonas email: j.ide@math.uni-goettingen.de organization: University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083 Göttingen, Germany – sequence: 3 givenname: Anita surname: Schöbel fullname: Schöbel, Anita email: schoebel@math.uni-goettingen.de organization: University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083 Göttingen, Germany |
| BookMark | eNp9kD1P5DAQQC3ESSzc_YGrIl1Dk-BvJ4IGIb6kRTRQW15nLDlK4j3bQXC__ry7VBRU07w3M3qn6HgOMyD0m-CGYCIvhgaGEBuKCW8wazBhR2hFWkVr2Up8jFaYKVVTStQJOk1pwBgTQcQKXT75eTLvVQybJeUZUqpciNW0jNnXYTOAzf4NqrDNfvL_TPZhrrYFHmFKP9EPZ8YEvz7nGXq9u325eajXz_ePN9fr2nJJcw296zvnNiBo2xvpLDFEAOOdMphK02InnLECW8VIz7mUQBW3WCnR8k5Sxs7Q-WFvOfx3gZT15JOFcTQzhCVpIkSniORtW9A_X9AhLHEu3xWKM9YpuafogbIxpBTB6W30k4kfmmC966kHveupdz01Zrr0LFL7RbI-74PkaPz4vXp1UKFUevMQdbIeZgu9jyWw7oP_Tv8P8oWS1Q |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_1115_1_4067706 crossref_primary_10_1007_s10957_025_02772_8 crossref_primary_10_1080_0305215X_2024_2418341 crossref_primary_10_1007_s11573_018_0900_1 crossref_primary_10_1016_j_eswa_2018_02_004 crossref_primary_10_1137_21M143683X crossref_primary_10_1080_02331934_2016_1195384 crossref_primary_10_1541_ieejeiss_136_189 crossref_primary_10_1007_s10898_022_01209_0 crossref_primary_10_1007_s40314_023_02224_x crossref_primary_10_1016_j_ejor_2025_06_010 crossref_primary_10_1016_j_cie_2021_107497 crossref_primary_10_1016_j_ins_2019_07_014 crossref_primary_10_1016_j_ifacol_2016_07_867 crossref_primary_10_1016_j_omega_2014_11_005 crossref_primary_10_1007_s11590_023_02085_7 crossref_primary_10_1016_j_ejor_2021_03_068 crossref_primary_10_1016_j_ejor_2018_11_048 crossref_primary_10_1007_s10479_021_04422_4 crossref_primary_10_1080_02331934_2019_1579212 crossref_primary_10_1007_s11081_016_9317_2 crossref_primary_10_1142_S0217595923500318 crossref_primary_10_1016_j_energy_2019_04_153 crossref_primary_10_1007_s10957_021_01939_3 crossref_primary_10_1007_s10479_021_04461_x crossref_primary_10_1080_02331934_2016_1267174 crossref_primary_10_1007_s43069_023_00209_4 crossref_primary_10_1080_02331934_2022_2031189 crossref_primary_10_1007_s10898_023_01335_3 crossref_primary_10_1016_j_ejor_2017_12_018 crossref_primary_10_1007_s10957_017_1196_y crossref_primary_10_1007_s10878_018_0364_9 crossref_primary_10_1016_j_ejor_2017_04_012 crossref_primary_10_3390_en9030159 crossref_primary_10_1007_s10479_024_05963_0 crossref_primary_10_1016_j_orl_2015_03_005 crossref_primary_10_1007_s10898_022_01208_1 crossref_primary_10_1007_s10479_020_03630_8 crossref_primary_10_1016_j_ejor_2018_03_018 crossref_primary_10_1016_j_swevo_2024_101734 crossref_primary_10_1016_j_ejor_2020_09_045 crossref_primary_10_1061__ASCE_IS_1943_555X_0000380 crossref_primary_10_1016_j_ejor_2019_08_047 crossref_primary_10_1016_j_ejor_2019_08_040 crossref_primary_10_1016_j_ejor_2017_08_001 crossref_primary_10_1016_j_ejor_2017_08_003 crossref_primary_10_1049_iet_its_2019_0332 crossref_primary_10_1007_s11573_015_0785_1 crossref_primary_10_1080_0305215X_2024_2433077 crossref_primary_10_1016_j_jclepro_2020_124073 crossref_primary_10_1007_s10898_020_00959_z crossref_primary_10_1007_s00170_021_07644_9 crossref_primary_10_1016_j_ejor_2023_09_017 crossref_primary_10_1080_02331934_2025_2475393 crossref_primary_10_1016_j_ejor_2025_04_054 crossref_primary_10_1021_acs_iecr_7b04196 crossref_primary_10_1016_j_cie_2018_08_007 crossref_primary_10_1007_s10479_017_2526_z crossref_primary_10_1007_s10957_016_0942_x crossref_primary_10_1016_j_cie_2020_106646 crossref_primary_10_1016_j_ssci_2022_105814 crossref_primary_10_3390_su12187582 crossref_primary_10_1007_s10589_018_0043_x crossref_primary_10_1016_j_ejor_2017_07_015 crossref_primary_10_3390_math12132124 crossref_primary_10_1016_j_ejor_2016_12_045 crossref_primary_10_1002_cite_70012 crossref_primary_10_1016_j_energy_2017_04_115 crossref_primary_10_11650_tjm_250801 crossref_primary_10_1007_s10898_021_01118_8 crossref_primary_10_1007_s10957_024_02528_w crossref_primary_10_1016_j_ejor_2017_02_014 crossref_primary_10_1137_17M1143484 crossref_primary_10_1186_s13660_018_1612_3 crossref_primary_10_1007_s10479_022_04951_6 crossref_primary_10_1007_s10690_022_09375_7 crossref_primary_10_1080_02331934_2022_2105214 crossref_primary_10_4316_AECE_2021_02008 crossref_primary_10_1007_s10479_020_03567_y crossref_primary_10_1016_j_cie_2022_108051 crossref_primary_10_1016_j_isatra_2023_05_003 crossref_primary_10_3389_fphy_2022_875847 crossref_primary_10_1080_0305215X_2024_2354881 crossref_primary_10_1016_j_ejco_2021_100014 crossref_primary_10_1016_j_ejor_2019_01_003 crossref_primary_10_3390_math8111959 crossref_primary_10_1007_s10957_018_1256_y crossref_primary_10_1016_j_ejor_2016_12_019 crossref_primary_10_1016_j_compag_2018_09_001 crossref_primary_10_1016_j_compchemeng_2016_11_038 crossref_primary_10_1007_s00170_022_10152_z crossref_primary_10_1016_j_trc_2023_104124 crossref_primary_10_1016_j_econmod_2017_03_020 crossref_primary_10_1007_s10957_025_02783_5 crossref_primary_10_1145_3469801 crossref_primary_10_1080_02331934_2019_1625352 crossref_primary_10_3390_su14127511 crossref_primary_10_1137_23M1578371 crossref_primary_10_1016_j_ejor_2016_01_015 crossref_primary_10_1016_j_ejor_2016_01_017 crossref_primary_10_1007_s10898_022_01142_2 crossref_primary_10_1007_s10957_021_01887_y crossref_primary_10_1080_02331934_2023_2257709 crossref_primary_10_1155_2016_3629174 crossref_primary_10_1016_j_ejor_2018_08_019 crossref_primary_10_1007_s10489_022_04240_6 crossref_primary_10_1016_j_enbuild_2019_109362 crossref_primary_10_3390_electronics10172089 crossref_primary_10_1080_02331934_2020_1728269 crossref_primary_10_1007_s10479_020_03577_w crossref_primary_10_1080_02331934_2022_2046740 crossref_primary_10_1016_j_ejor_2017_03_041 crossref_primary_10_1002_cite_201600098 crossref_primary_10_1007_s10957_024_02423_4 crossref_primary_10_1080_02331934_2023_2181080 crossref_primary_10_1109_TNNLS_2024_3397393 crossref_primary_10_1080_02331934_2018_1493108 crossref_primary_10_1007_s10957_022_02075_2 crossref_primary_10_1016_j_apenergy_2023_121185 crossref_primary_10_1080_0305215X_2022_2090545 crossref_primary_10_1002_mcda_1653 crossref_primary_10_1007_s10957_018_1359_5 crossref_primary_10_1016_j_compchemeng_2024_108985 crossref_primary_10_1080_01630563_2025_2506203 crossref_primary_10_1080_02331934_2017_1393675 crossref_primary_10_1007_s10898_017_0518_9 crossref_primary_10_1016_j_ejor_2021_08_040 crossref_primary_10_1002_net_21815 crossref_primary_10_1016_j_cor_2025_107179 crossref_primary_10_5004_dwt_2023_30022 crossref_primary_10_1080_02331934_2022_2122717 crossref_primary_10_1080_00036811_2024_2426219 crossref_primary_10_1007_s10957_023_02307_z crossref_primary_10_1007_s00291_015_0418_7 crossref_primary_10_1080_02331934_2025_2499818 crossref_primary_10_15807_jorsj_67_65 crossref_primary_10_1016_j_asoc_2021_107890 crossref_primary_10_1007_s43069_021_00082_z crossref_primary_10_1007_s00186_014_0471_z crossref_primary_10_1016_j_cie_2019_106187 crossref_primary_10_1080_02331934_2018_1522537 crossref_primary_10_1016_j_ejor_2018_08_020 crossref_primary_10_1016_j_physa_2019_122059 crossref_primary_10_1186_s42492_023_00131_w crossref_primary_10_1007_s11117_024_01032_9 crossref_primary_10_1016_j_cor_2015_08_007 crossref_primary_10_3390_math11071741 crossref_primary_10_1016_j_ejor_2014_10_027 crossref_primary_10_1155_2015_349781 crossref_primary_10_1155_2017_3423562 crossref_primary_10_1007_s10288_014_0265_4 crossref_primary_10_1007_s12215_025_01255_z crossref_primary_10_1016_j_ejor_2020_01_004 crossref_primary_10_1080_02331934_2024_2390116 crossref_primary_10_1080_0305215X_2018_1457655 crossref_primary_10_1137_19M1251461 crossref_primary_10_1007_s10479_020_03840_0 crossref_primary_10_1016_j_jclepro_2015_09_092 crossref_primary_10_1007_s10586_017_0887_3 crossref_primary_10_1016_j_ejor_2017_12_026 crossref_primary_10_1007_s11590_025_02193_6 crossref_primary_10_1007_s10957_020_01662_5 crossref_primary_10_1007_s00291_023_00725_z crossref_primary_10_1016_j_ejor_2015_06_031 crossref_primary_10_1016_j_na_2016_01_002 crossref_primary_10_1080_02331934_2016_1172226 crossref_primary_10_1007_s00291_018_0540_4 crossref_primary_10_1016_j_envsoft_2021_105134 crossref_primary_10_1016_j_seps_2025_102260 crossref_primary_10_1007_s10479_017_2751_5 crossref_primary_10_1007_s10957_019_01609_5 crossref_primary_10_1016_j_ejor_2015_08_062 crossref_primary_10_1007_s10458_022_09564_8 crossref_primary_10_1007_s10479_021_04179_w crossref_primary_10_1016_j_amc_2019_06_006 crossref_primary_10_1109_TCOMM_2018_2834920 crossref_primary_10_1007_s10479_022_05104_5 crossref_primary_10_1007_s10957_019_01505_y crossref_primary_10_1002_ecj_11947 crossref_primary_10_1016_j_ejor_2018_07_035 crossref_primary_10_1016_j_ins_2018_06_016 crossref_primary_10_1016_j_omega_2025_103405 crossref_primary_10_3390_math13020308 crossref_primary_10_1016_j_ecolmodel_2016_02_005 crossref_primary_10_1007_s10473_020_0320_5 crossref_primary_10_1007_s40305_023_00514_z crossref_primary_10_1016_j_ejor_2016_03_016 crossref_primary_10_1016_j_physa_2021_126260 crossref_primary_10_1177_1059712319869313 crossref_primary_10_1007_s11590_019_01406_z crossref_primary_10_1016_j_apenergy_2017_12_066 crossref_primary_10_1080_02331934_2019_1658760 crossref_primary_10_1049_iet_gtd_2015_1344 crossref_primary_10_1145_3161408 crossref_primary_10_1007_s10957_018_1312_7 crossref_primary_10_1007_s10479_021_04462_w crossref_primary_10_1002_rnc_5197 crossref_primary_10_1109_TVT_2022_3226291 |
| Cites_doi | 10.1088/0031-9155/57/3/591 10.1287/moor.23.4.769 10.1016/0377-2217(84)90077-8 10.1016/j.ejor.2008.09.012 10.1007/s00158-004-0450-8 10.1162/evco.2006.14.4.463 10.1186/1687-1812-2014-83 10.1287/opre.21.5.1154 10.1137/S0895479896298130 10.1145/1389095.1389221 10.1007/s10957-012-0234-z 10.1016/S0305-0548(97)00085-3 10.1007/978-1-4757-2620-6 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. Copyright Elsevier Sequoia S.A. Nov 16, 2014 |
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Nov 16, 2014 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D 7TA JG9 |
| DOI | 10.1016/j.ejor.2014.03.013 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Materials Business File Materials Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Materials Research Database Materials Business File |
| DatabaseTitleList | Materials Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 31 |
| ExternalDocumentID | 3365212601 10_1016_j_ejor_2014_03_013 S0377221714002276 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 L7M L~C L~D SSH 7TA JG9 |
| ID | FETCH-LOGICAL-c462t-edfd9ffbe528da6fc1a15e3497a026a80f5fac50c731d4466e274c07758496233 |
| ISICitedReferencesCount | 232 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339148900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Thu Oct 02 11:16:59 EDT 2025 Fri Jul 25 05:03:22 EDT 2025 Tue Nov 18 20:45:09 EST 2025 Sat Nov 29 01:41:10 EST 2025 Fri Feb 23 02:32:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Scenarios Multi-objective optimization Robustness and sensitivity analysis Uncertainty modelling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c462t-edfd9ffbe528da6fc1a15e3497a026a80f5fac50c731d4466e274c07758496233 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1543397688 |
| PQPubID | 45678 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1559716488 proquest_journals_1543397688 crossref_primary_10_1016_j_ejor_2014_03_013 crossref_citationtrail_10_1016_j_ejor_2014_03_013 elsevier_sciencedirect_doi_10_1016_j_ejor_2014_03_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-16 |
| PublicationDateYYYYMMDD | 2014-11-16 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia S.A |
| References | Goerigk, M., & Schöbel, A. (2013). Algorithm engineering in robust optimization. Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen. Ehrgott (b0060) 2005 Disser, Müller-Hannemann, Schnee (b0050) 2008 Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., & Schöbel, A. (2013). The price of strict and light robustness in timetable information. Saltelli, Chan, Scott (b0150) 2000 Avigad, G., & Branke, J. (2008). Embedded evolutionary multi-objective optimization for worst case robustness. In M. Keijzer (Ed.) Ben-Tal, Ghaoui, Nemirovski (b0020) 2009 Ide, J., & Köbis, E. (2013). Ide, J., & Schöbel, A. (2013). Yu, Liu (b0180) 2013; 159 Fliege, J., & Werner, R. (2013). Robust multiobjective optimization and applications in portfolio optimization. Deb, Gupta (b0045) 2006; 14 Ph.D. Thesis, Paderborn: Universität Paderborn. Yu, Yang (b0175) 1998; 25 Ben-Tal, Nemirovski (b0025) 1998; 23 Ide, J., Tiedemann, M., Westphal, S., & Haiduk, F. (2013). Kouvelis, Yu (b0115) 1997 Kuroiwa, Lee (b0125) 2012; 40 Soyster (b0155) 1973; 21 Martins (b0140) 1984; 16 Witting, K. (2012). Gunawan, Azarm (b0090) 2005; 29 Ide, Köbis, Kuroiwa, Schöbel, Tammer (b0100) 2014 422–433. Working paper. Löhne (b0130) 2011 Birge, Louveaux (b0030) 2011 Doolittle, E. K., Kerivin, H. L. M., & Wiecek, M. M. (2012). Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen. Steponavice, I., & Miettinen, K. (2012). Survey on multiobjective robustness for simulation-based optimization. In Talk at the 21st international symposium on mathematical programming, August 19–24, 2012, Berlin, Germany. . Barrico, Antunes (b0015) 2006 Müller-Hannemann, Schnee (b0145) 2007 Branke (b0035) 1998; Vol. 1498 Stewart, Bandte, Braun, Chakraborti, Ehrgott, Göbelt (b0165) 2008; vol. 5252 Chen, Unkelbach, Trofimov, Madden, Kooy, Bortfeld (b0040) 2012; 57 Majewski, D. E. (2013). Robust bi-objective linear optimization. Master’s thesis, University of Göttingen. Technical Report, Department of Mathematical Sciences, Clemson University. Aissi, Bazgan, Vanderpooten (b0005) 2009; 197 Goerigk, Heße, Müller-Hannemann, Schmidt, Schöbel (b0075) 2013 Kuhn, K., Raith, A., Schmidt, M., & Schöbel, A. (2012). Ghaoui, Lebret (b0065) 1997; 18 Kuroiwa (10.1016/j.ejor.2014.03.013_b0125) 2012; 40 Ehrgott (10.1016/j.ejor.2014.03.013_b0060) 2005 Martins (10.1016/j.ejor.2014.03.013_b0140) 1984; 16 Yu (10.1016/j.ejor.2014.03.013_b0175) 1998; 25 10.1016/j.ejor.2014.03.013_b0055 10.1016/j.ejor.2014.03.013_b0110 10.1016/j.ejor.2014.03.013_b0010 Birge (10.1016/j.ejor.2014.03.013_b0030) 2011 Disser (10.1016/j.ejor.2014.03.013_b0050) 2008 Stewart (10.1016/j.ejor.2014.03.013_b0165) 2008; vol. 5252 Chen (10.1016/j.ejor.2014.03.013_b0040) 2012; 57 10.1016/j.ejor.2014.03.013_b0135 10.1016/j.ejor.2014.03.013_b0170 Ben-Tal (10.1016/j.ejor.2014.03.013_b0025) 1998; 23 10.1016/j.ejor.2014.03.013_b0070 Löhne (10.1016/j.ejor.2014.03.013_b0130) 2011 Deb (10.1016/j.ejor.2014.03.013_b0045) 2006; 14 10.1016/j.ejor.2014.03.013_b0095 Goerigk (10.1016/j.ejor.2014.03.013_b0075) 2013 Ide (10.1016/j.ejor.2014.03.013_b0100) 2014 Aissi (10.1016/j.ejor.2014.03.013_b0005) 2009; 197 Ben-Tal (10.1016/j.ejor.2014.03.013_b0020) 2009 10.1016/j.ejor.2014.03.013_b0120 10.1016/j.ejor.2014.03.013_b0105 Yu (10.1016/j.ejor.2014.03.013_b0180) 2013; 159 Soyster (10.1016/j.ejor.2014.03.013_b0155) 1973; 21 Ghaoui (10.1016/j.ejor.2014.03.013_b0065) 1997; 18 10.1016/j.ejor.2014.03.013_b0080 Saltelli (10.1016/j.ejor.2014.03.013_b0150) 2000 10.1016/j.ejor.2014.03.013_b0085 10.1016/j.ejor.2014.03.013_b0160 Müller-Hannemann (10.1016/j.ejor.2014.03.013_b0145) 2007 Branke (10.1016/j.ejor.2014.03.013_b0035) 1998; Vol. 1498 Gunawan (10.1016/j.ejor.2014.03.013_b0090) 2005; 29 Kouvelis (10.1016/j.ejor.2014.03.013_b0115) 1997 Barrico (10.1016/j.ejor.2014.03.013_b0015) 2006 |
| References_xml | – start-page: 347 year: 2008 end-page: 361 ident: b0050 article-title: Multi-criteria shortest paths in time-dependent train networks publication-title: Experimental algorithms – year: 2014 ident: b0100 article-title: The relationship between multicriteria robustness concepts and set valued optimization publication-title: Fixed Point Theory and Applications – volume: 197 start-page: 427 year: 2009 end-page: 438 ident: b0005 article-title: Min-max and min-max regret versions of combinatorial optimization problems: A survey publication-title: European Journal of Operational Research – volume: Vol. 1498 start-page: 119 year: 1998 end-page: 128 ident: b0035 article-title: Creating robust solutions by means of evolutionary algorithms publication-title: Parallel problem solving from nature – PPSNV – reference: Ide, J., Tiedemann, M., Westphal, S., & Haiduk, F. (2013). – start-page: 1 year: 2013 end-page: 14 ident: b0075 article-title: Recoverable robust timetable information publication-title: 13th Workshop on algorithmic approaches for transportation modelling, optimization, and systems – year: 1997 ident: b0115 publication-title: Robust discrete optimization and its applications – volume: vol. 5252 start-page: 285 year: 2008 end-page: 327 ident: b0165 article-title: Real-world applications of multiobjective optimization publication-title: Multiobjective optimization: Interactive and evolutionary approaches – year: 2011 ident: b0030 publication-title: Introduction to stochastic programming – year: 2005 ident: b0060 article-title: Multicriteria optimization – volume: 18 start-page: 1034 year: 1997 end-page: 1064 ident: b0065 article-title: Robust solutions to least-squares problems with uncertain data publication-title: SIAM Journal on Matrix Analysis and Applications – start-page: 1887 year: 2006 end-page: 1892 ident: b0015 article-title: Robustness analysis in multi-objective optimization using a degree of robustness concept publication-title: IEEE congress on evolutionary computation, CEC 2006 – reference: Witting, K. (2012). – reference: Ide, J., & Köbis, E. (2013). – volume: 23 start-page: 769 year: 1998 end-page: 805 ident: b0025 article-title: Robust convex optimization publication-title: Mathematics of Operations Research – reference: Steponavice, I., & Miettinen, K. (2012). Survey on multiobjective robustness for simulation-based optimization. In Talk at the 21st international symposium on mathematical programming, August 19–24, 2012, Berlin, Germany. – reference: Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., & Schöbel, A. (2013). The price of strict and light robustness in timetable information. – year: 2011 ident: b0130 publication-title: Vector optimization with infimum and supremum – year: 2000 ident: b0150 publication-title: Sensitivity analysis – reference: . Working paper. – reference: 422–433. – reference: Kuhn, K., Raith, A., Schmidt, M., & Schöbel, A. (2012). – volume: 159 start-page: 272 year: 2013 end-page: 280 ident: b0180 article-title: Robust multiple objective game theory publication-title: Journal of Optimization Theory and Applications – reference: Ide, J., & Schöbel, A. (2013). – reference: . < – reference: Majewski, D. E. (2013). Robust bi-objective linear optimization. Master’s thesis, University of Göttingen. – reference: . Ph.D. Thesis, Paderborn: Universität Paderborn. – volume: 57 start-page: 591 year: 2012 ident: b0040 article-title: Including robustness in multi-criteria optimization for intensity-modulated proton therapy publication-title: Physics in Medicine and Biology – reference: >. – year: 2009 ident: b0020 article-title: Robust optimization – reference: . – volume: 40 start-page: 305 year: 2012 end-page: 317 ident: b0125 article-title: On robust multiobjective optimization publication-title: Vietnam Journal of Mathematics – volume: 29 start-page: 50 year: 2005 end-page: 60 ident: b0090 article-title: Multi-objective robust optimization using a sensitivity region concept publication-title: Structural and Multidisciplinary Optimization – volume: 16 start-page: 236 year: 1984 end-page: 245 ident: b0140 article-title: On a multicriteria shortest path problem publication-title: European Journal of Operational Research – reference: Doolittle, E. K., Kerivin, H. L. M., & Wiecek, M. M. (2012). – volume: 14 start-page: 463 year: 2006 end-page: 494 ident: b0045 article-title: Introducing robustness in multi-objective optimization publication-title: Evolutionary Computation – reference: . Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen. – start-page: 246 year: 2007 end-page: 263 ident: b0145 article-title: Finding all attractive train connections by multi-criteria Pareto search publication-title: Algorithmic methods for railway optimization – volume: 25 start-page: 457 year: 1998 end-page: 468 ident: b0175 article-title: On the robust shortest path problem publication-title: Computers and Operations Research – reference: Avigad, G., & Branke, J. (2008). Embedded evolutionary multi-objective optimization for worst case robustness. In M. Keijzer (Ed.), – reference: Goerigk, M., & Schöbel, A. (2013). Algorithm engineering in robust optimization. Technical Report Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen. – reference: Fliege, J., & Werner, R. (2013). Robust multiobjective optimization and applications in portfolio optimization. – reference: . Technical Report, Department of Mathematical Sciences, Clemson University. – volume: 21 start-page: 1154 year: 1973 end-page: 1157 ident: b0155 article-title: Convex programming with set-inclusive constraints and applications to inexact linear programming publication-title: Operations Research – start-page: 246 year: 2007 ident: 10.1016/j.ejor.2014.03.013_b0145 article-title: Finding all attractive train connections by multi-criteria Pareto search – ident: 10.1016/j.ejor.2014.03.013_b0120 – ident: 10.1016/j.ejor.2014.03.013_b0170 – ident: 10.1016/j.ejor.2014.03.013_b0055 – volume: Vol. 1498 start-page: 119 year: 1998 ident: 10.1016/j.ejor.2014.03.013_b0035 article-title: Creating robust solutions by means of evolutionary algorithms – ident: 10.1016/j.ejor.2014.03.013_b0110 – start-page: 1887 year: 2006 ident: 10.1016/j.ejor.2014.03.013_b0015 article-title: Robustness analysis in multi-objective optimization using a degree of robustness concept – volume: 57 start-page: 591 year: 2012 ident: 10.1016/j.ejor.2014.03.013_b0040 article-title: Including robustness in multi-criteria optimization for intensity-modulated proton therapy publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/57/3/591 – volume: 23 start-page: 769 year: 1998 ident: 10.1016/j.ejor.2014.03.013_b0025 article-title: Robust convex optimization publication-title: Mathematics of Operations Research doi: 10.1287/moor.23.4.769 – volume: 16 start-page: 236 year: 1984 ident: 10.1016/j.ejor.2014.03.013_b0140 article-title: On a multicriteria shortest path problem publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(84)90077-8 – volume: 197 start-page: 427 year: 2009 ident: 10.1016/j.ejor.2014.03.013_b0005 article-title: Min-max and min-max regret versions of combinatorial optimization problems: A survey publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.09.012 – year: 2009 ident: 10.1016/j.ejor.2014.03.013_b0020 – ident: 10.1016/j.ejor.2014.03.013_b0135 – volume: 29 start-page: 50 year: 2005 ident: 10.1016/j.ejor.2014.03.013_b0090 article-title: Multi-objective robust optimization using a sensitivity region concept publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-004-0450-8 – ident: 10.1016/j.ejor.2014.03.013_b0085 – year: 2011 ident: 10.1016/j.ejor.2014.03.013_b0130 – year: 2005 ident: 10.1016/j.ejor.2014.03.013_b0060 – year: 2000 ident: 10.1016/j.ejor.2014.03.013_b0150 – volume: 14 start-page: 463 year: 2006 ident: 10.1016/j.ejor.2014.03.013_b0045 article-title: Introducing robustness in multi-objective optimization publication-title: Evolutionary Computation doi: 10.1162/evco.2006.14.4.463 – year: 2011 ident: 10.1016/j.ejor.2014.03.013_b0030 – year: 2014 ident: 10.1016/j.ejor.2014.03.013_b0100 article-title: The relationship between multicriteria robustness concepts and set valued optimization publication-title: Fixed Point Theory and Applications doi: 10.1186/1687-1812-2014-83 – ident: 10.1016/j.ejor.2014.03.013_b0070 – ident: 10.1016/j.ejor.2014.03.013_b0095 – volume: 21 start-page: 1154 year: 1973 ident: 10.1016/j.ejor.2014.03.013_b0155 article-title: Convex programming with set-inclusive constraints and applications to inexact linear programming publication-title: Operations Research doi: 10.1287/opre.21.5.1154 – volume: vol. 5252 start-page: 285 year: 2008 ident: 10.1016/j.ejor.2014.03.013_b0165 article-title: Real-world applications of multiobjective optimization – start-page: 347 year: 2008 ident: 10.1016/j.ejor.2014.03.013_b0050 article-title: Multi-criteria shortest paths in time-dependent train networks – volume: 18 start-page: 1034 year: 1997 ident: 10.1016/j.ejor.2014.03.013_b0065 article-title: Robust solutions to least-squares problems with uncertain data publication-title: SIAM Journal on Matrix Analysis and Applications doi: 10.1137/S0895479896298130 – ident: 10.1016/j.ejor.2014.03.013_b0105 – ident: 10.1016/j.ejor.2014.03.013_b0010 doi: 10.1145/1389095.1389221 – start-page: 1 year: 2013 ident: 10.1016/j.ejor.2014.03.013_b0075 article-title: Recoverable robust timetable information – volume: 40 start-page: 305 year: 2012 ident: 10.1016/j.ejor.2014.03.013_b0125 article-title: On robust multiobjective optimization publication-title: Vietnam Journal of Mathematics – volume: 159 start-page: 272 year: 2013 ident: 10.1016/j.ejor.2014.03.013_b0180 article-title: Robust multiple objective game theory publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-012-0234-z – ident: 10.1016/j.ejor.2014.03.013_b0160 – volume: 25 start-page: 457 year: 1998 ident: 10.1016/j.ejor.2014.03.013_b0175 article-title: On the robust shortest path problem publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(97)00085-3 – ident: 10.1016/j.ejor.2014.03.013_b0080 – year: 1997 ident: 10.1016/j.ejor.2014.03.013_b0115 doi: 10.1007/978-1-4757-2620-6 |
| SSID | ssj0001515 |
| Score | 2.582429 |
| Snippet | •Minmax robustness is extended to multi-objective optimization.•The concept of minmax robust efficiency is introduced.•Weighted sum scalarization and... In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Disturbances Gain Ingredients Mathematical models Mathematical problems Mathematical programming Multi-objective optimization Operational research Optimization Optimization techniques Quadratic programming Quality Robustness Robustness and sensitivity analysis Scenarios Studies Uncertainty modelling |
| Title | Minmax robustness for multi-objective optimization problems |
| URI | https://dx.doi.org/10.1016/j.ejor.2014.03.013 https://www.proquest.com/docview/1543397688 https://www.proquest.com/docview/1559716488 |
| Volume | 239 |
| WOSCitedRecordID | wos000339148900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELagQwge-FFAKwwUJMRLZZTESWOLpwl1YqgUHjqpb5aTONCKJV3Sov753MV21hVtGg-8RJVrN5XvfD6f7_uOkHdRwcKURYoKOPLQiPmapkUY0DxOUy18DiuqBQpPkumUz-fiu4UrNm05gaQs-XYrVv9V1NAGwkbo7D-Iu_tRaIDPIHR4gtjheSvBf12U52o7rKt006xbQ4aZhG3iIK3SpTFwwwpMxbnFYA5tVZnm2jC9dVmhoXbBQ8sS1EWTxz_rHy75A2uIL1TnrZ_mXaC-a0P2z9RmCIBVUbvRhyBCGJ4BRzrUVZLQMDT4S2dRQ8NPdEV1jH20_cxOa8z_XzbchBOWH_SyQsLWIGpZaA1i9Sph9vSbPDmbTORsPJ-9X11QrCWGd-62sMpdchAmseA9cnB8Op5_6XZodOLa2yX73y2YyuT97b_2Oodlb-tu_ZHZE_LIHiS8Y6MAT8kdXfbJfYdj6JPHrl6HZ813nzzcIZ98Rj4aRfEuFcUDRfH2FMXbVRTPKcpzcnYynn36TG0pDZpFo3BNdV7koihSHYc8V6MiC1QQaxaJRMEhXHG_iAuVxX6WsCDHK34NSzdDekQeCfCQ2QvSK6tSHxKPgdFmSZQn6Qi8fSFUEXA4FOgchiL50oAEbr5kZnnmsdzJL-kSCpcS51jiHEufSZjjARl2Y1aGZeXG3rETg7R-ovH_JKjQjeOOnMykXTuNhCMEQ5-c8wF5230NNhYvzlSpqw32iZFpDfa6l7fo84o8uFwpR6S3rjf6NbmX_V4vmvqN1cU_x2WgVw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minmax+robustness+for+multi-objective+optimization+problems&rft.jtitle=European+journal+of+operational+research&rft.au=Ehrgott%2C+Matthias&rft.au=Ide%2C+Jonas&rft.au=Schobel%2C+Anita&rft.date=2014-11-16&rft.issn=0377-2217&rft.volume=239&rft.issue=1&rft.spage=17&rft.epage=31&rft_id=info:doi/10.1016%2Fj.ejor.2014.03.013&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |