Mochi: Composing Data Services for High-Performance Computing Environments

Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology Vol. 35; no. 1; pp. 121 - 144
Main Authors: Ross, Robert B., Amvrosiadis, George, Carns, Philip, Cranor, Charles D., Dorier, Matthieu, Harms, Kevin, Ganger, Greg, Gibson, Garth, Gutierrez, Samuel K., Latham, Robert, Robey, Bob, Robinson, Dana, Settlemyer, Bradley, Shipman, Galen, Snyder, Shane, Soumagne, Jerome, Zheng, Qing
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2020
Springer
Springer Nature B.V
Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A
Springer Nature
Subjects:
ISSN:1000-9000, 1860-4749
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size-fits-all data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work.
AbstractList Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size- fitsall data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work. Keywords storage and I/O, data-intensive computing, distributed services, high-performance computing
Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size-fits-all data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work.
Audience Academic
Author Latham, Robert
Settlemyer, Bradley
Ross, Robert B.
Carns, Philip
Gibson, Garth
Soumagne, Jerome
Zheng, Qing
Gutierrez, Samuel K.
Shipman, Galen
Amvrosiadis, George
Robinson, Dana
Snyder, Shane
Dorier, Matthieu
Harms, Kevin
Cranor, Charles D.
Robey, Bob
Ganger, Greg
AuthorAffiliation Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A
AuthorAffiliation_xml – name: Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A
Author_xml – sequence: 1
  givenname: Robert B.
  surname: Ross
  fullname: Ross, Robert B.
  email: rross@mcs.anl.gov
  organization: Argonne National Laboratory
– sequence: 2
  givenname: George
  surname: Amvrosiadis
  fullname: Amvrosiadis, George
  organization: Parallel Data Laboratory, Carnegie Mellon University
– sequence: 3
  givenname: Philip
  surname: Carns
  fullname: Carns, Philip
  organization: Argonne National Laboratory
– sequence: 4
  givenname: Charles D.
  surname: Cranor
  fullname: Cranor, Charles D.
  organization: Parallel Data Laboratory, Carnegie Mellon University
– sequence: 5
  givenname: Matthieu
  surname: Dorier
  fullname: Dorier, Matthieu
  organization: Argonne National Laboratory
– sequence: 6
  givenname: Kevin
  surname: Harms
  fullname: Harms, Kevin
  organization: Argonne National Laboratory
– sequence: 7
  givenname: Greg
  surname: Ganger
  fullname: Ganger, Greg
  organization: Parallel Data Laboratory, Carnegie Mellon University
– sequence: 8
  givenname: Garth
  surname: Gibson
  fullname: Gibson, Garth
  organization: Vector Institute for Artificial Intelligence
– sequence: 9
  givenname: Samuel K.
  surname: Gutierrez
  fullname: Gutierrez, Samuel K.
  organization: Los Alamos National Laboratory
– sequence: 10
  givenname: Robert
  surname: Latham
  fullname: Latham, Robert
  organization: Argonne National Laboratory
– sequence: 11
  givenname: Bob
  surname: Robey
  fullname: Robey, Bob
  organization: Los Alamos National Laboratory
– sequence: 12
  givenname: Dana
  surname: Robinson
  fullname: Robinson, Dana
  organization: The HDF Group
– sequence: 13
  givenname: Bradley
  surname: Settlemyer
  fullname: Settlemyer, Bradley
  organization: Los Alamos National Laboratory
– sequence: 14
  givenname: Galen
  surname: Shipman
  fullname: Shipman, Galen
  organization: Los Alamos National Laboratory
– sequence: 15
  givenname: Shane
  surname: Snyder
  fullname: Snyder, Shane
  organization: Argonne National Laboratory
– sequence: 16
  givenname: Jerome
  surname: Soumagne
  fullname: Soumagne, Jerome
  organization: The HDF Group
– sequence: 17
  givenname: Qing
  surname: Zheng
  fullname: Zheng, Qing
  organization: Parallel Data Laboratory, Carnegie Mellon University
BackLink https://www.osti.gov/servlets/purl/1596688$$D View this record in Osti.gov
BookMark eNp9kV1vFCEUhiemJvbDH-DdRG-dlgPMMHjXrK2tqdHE3hNkYJZxB1Zga_vvPdsxaWJSQ3I4gec9n0fVQYjBVtUbIKdAiDjLAEyShlDSyJ7QhryoDqHvSMMFlwfoE4I_aF5VRzlPhDBBOD-sPn-JZu0_1Ks4b2P2Yaw_6qLr7zbdeWNz7WKqr_y4br7ZhP6sg7GP8K7s4Ytw51MMsw0ln1Qvnd5k-_rvfVzdXl7crq6am6-frlfnN43hHS2NEa0DZqAFJ1gPzgwUnBzQDnzALrSUmnWaA2jNnBg6Ijg3rRVugKFl7Lh6u4SNuXiVjS_WrE0MwZqioJVd1_cIvV-g3zo4HUY1xV0KWJWa8vTzfsr3P5SlOC2Cg9nj7xZ8m-Kvnc3liacSx8g6_hj0dKFGvbHKBxdL0gbPYGePFVjn8f1cQE-hk5yiABaBSTHnZJ3aJj_r9KCAqP3a1LI2hYWo_doUQY34R4Md6uJjwGR-818lXZQZs4TRpqcmnhf9AakZq_o
CitedBy_id crossref_primary_10_1016_j_future_2025_107815
crossref_primary_10_1145_3415581
crossref_primary_10_1109_MCSE_2023_3326436
crossref_primary_10_1177_10943420241303145
crossref_primary_10_1016_j_future_2024_07_016
crossref_primary_10_1109_TPDS_2021_3086302
crossref_primary_10_1016_j_future_2022_12_010
crossref_primary_10_1002_cpe_8141
crossref_primary_10_1111_cgf_70108
crossref_primary_10_1145_3588926
crossref_primary_10_1016_j_jpdc_2023_02_014
crossref_primary_10_3389_fhpcp_2025_1638203
crossref_primary_10_1016_j_jmsy_2025_05_020
crossref_primary_10_1109_TPDS_2021_3097884
crossref_primary_10_1177_10943420251334456
crossref_primary_10_1177_10943420251316253
crossref_primary_10_1007_s11432_021_3578_6
crossref_primary_10_3389_fhpcp_2024_1472719
Cites_doi 10.1109/PDSW-DISCS.2018.00013
10.1145/1374596.1374606
10.1109/SC.2016.68
10.1109/CLUSTER.2013.6702617
10.1016/S0168-9002(97)00048-X
10.1007/978-3-319-92040-5_15
10.1002/cpe.1567
10.1021/acs.jctc.5b00916
10.1109/CCGRID.2018.00026
10.1007/s10586-011-0162-y
10.1145/2464996.2465020
10.1109/SC.2014.34
10.1007/11846802_40
10.1109/BigData.2014.7004214
10.1109/CLUSTER.2018.00049
10.2172/1632124
10.1145/3064176.3064208
10.1109/SC.2018.00005
10.1109/NVMTS.2018.8603104
10.1145/3126908.3126943
10.1109/PDSW-DISCS.2018.00005
10.1109/HiPINEB.2017.11
10.1109/JPROC.2017.2731776
10.1109/MCSE.2011.37
10.1109/TPDS.2017.2766062
10.1145/146941.146943
10.1145/1394608.1382129
10.1109/SC.2018.00006
10.1109/CCGRID.2018.00035
10.1145/3307681.3325405
ContentType Journal Article
Copyright Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020
COPYRIGHT 2020 Springer
Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020
– notice: COPYRIGHT 2020 Springer
– notice: Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
OIOZB
OTOTI
DOI 10.1007/s11390-020-9802-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList



ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 144
ExternalDocumentID 1596688
jsjkxjsxb_e202001008
A718216942
10_1007_s11390_020_9802_0
GrantInformation_xml – fundername: This work is in part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357; in part supported by the Exascale Computing Project under Grant No. 17-SC-20-SC, a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware; in part supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing program
  funderid: This work is in part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357; in part supported by the Exascale Computing Project under Grant No. 17-SC-20-SC, a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware; (SciDAC) program
GroupedDBID -4Z
-59
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
4A8
PMFND
PSX
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
CDYEO
OIOZB
OTOTI
UNUBA
Z7Z
ID FETCH-LOGICAL-c462t-c75f13c151f7381fcd21f9dd21d4d113a99a36a411aa3f7d60744c5e7fd1d533
IEDL.DBID M7S
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512098800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1000-9000
IngestDate Fri May 19 01:41:22 EDT 2023
Thu May 29 04:00:16 EDT 2025
Wed Nov 05 04:14:52 EST 2025
Sat Nov 29 09:49:12 EST 2025
Sat Nov 29 03:05:39 EST 2025
Tue Nov 18 20:44:44 EST 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords data-intensive computing
storage and I/O
high-performance computing
distributed services
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-c75f13c151f7381fcd21f9dd21d4d113a99a36a411aa3f7d60744c5e7fd1d533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
AC02-06CH11357; AC02-05CH11231
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.osti.gov/servlets/purl/1596688
PQID 2918636488
PQPubID 326258
PageCount 24
ParticipantIDs osti_scitechconnect_1596688
wanfang_journals_jsjkxjsxb_e202001008
proquest_journals_2918636488
gale_infotracacademiconefile_A718216942
crossref_primary_10_1007_s11390_020_9802_0
crossref_citationtrail_10_1007_s11390_020_9802_0
springer_journals_10_1007_s11390_020_9802_0
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
– name: United States
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A
Springer Nature
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A
– name: Springer Nature
References van der WaltSColbertSCVaroquauxGThe NumPy array: A structure for efficient numerical computationComputing in Science & Engineering2011132223010.1109/MCSE.2011.37
Liu J L, Koziol Q, Butler G F, Fortner N, Chaarawi M, Tang H J, Byna S, Lockwood G K, Cheema R, Kallback-Rose K A, Hazen D, Prabhat. Evaluation of HPC application I/O on object storage systems. In Proc. the 3rd IEEE/ACM International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.24-34.
Intel Corporation. DAOS: Revolutionizing high-performance storage with Intel Optane technology. https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-storage-brief.pdf, June 2019.
Dorier M, Carns P, Harms K et al. Methodology for the rapid development of scalable HPC data services. In Proc. the 3rd Joint International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.76-87.
HadyFTFoongAVealBWilliamsDPlatform storage performance with 3D XPoint technologyProceedings of the IEEE201710591822183310.1109/JPROC.2017.2731776
Escriva R, Sirer E G. The design and implementation of the warp transactional file system. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.469-483.
Zhao D F, Zhang Z, Zhou X B, Li T L, Wang K, Kimpe D, Carns P, Ross R, Raicu I. FusionFS: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In Proc. the 2014 IEEE International Conference on Big Data, October 2014, pp.61-70.
RudoffAPersistent memory programmingLogin: The Usenix Magazine20174223440
KunkelJulianBetkeEugenAn MPI-IO In-Memory Driver for Non-volatile Pooled Memory of the Kove XPDLecture Notes in Computer Science2017ChamSpringer International Publishing679690
Sivaraman G, Beard E, Vazquez-Mayagoitia A, Vishwanath V, Cole J. UV/vis absorption spectra database autogenerated for optical applications via the Argonne data science program. In Proc. the 2019 APS March Meeting, March 2019.
Soumagne J, Kimpe D, Zounmevo J, Chaarawi M, Koziol Q, Afsahi A, Ross R. Mercury: Enabling remote procedure call for high-performance computing. In Proc. the 2013 IEEE International Conference on Cluster Computing, September 2013, Article No. 50.
KimJDallyWJScottSAbtsDTechnology-driven, highly-scalable dragonfly topologyACM SIGARCH Comput. Architecture News2008363778810.1145/1394608.1382129
Ghemawat S, Dean J. Level DB — A fast and lightweight key/value database library by Google. https://github.com/google/leveldb, Sept. 2019.
Flajslik M, Borch E, Parker M A. Megafly: A topology for exascale systems. In Proc. the 33rd International Conference on High Performance Computing, June 2018, pp.289-310.
Besta M, Hoeer T. Slim Fly: A cost effective low-diameter network topology. In Proc. the Int. Conf. for High Performance Comput., Networking, Storage and Anal., November 2014, pp.348-359.
Ulmer C, Mukherjee S, Templet G, Levy S, Lofstead J, Widener P, Kordenbrock T, Lawson M. Faodel: Data management for next-generation application workflows. In Proc. the 9th Workshop on Scientific Cloud Computing, June 2018, Article No. 8.
Tang H J, Byna S, Tessier F et al. Toward scalable and asynchronous object-centric data management for HPC. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.113-122.
BrunRRademakersFROOT — An object oriented data analysis frameworkNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment19973891/2818610.1016/S0168-9002(97)00048-X
Zheng Q, Cranor C D, Guo D H, Ganger G R, Amvrosiadis G, Gibson G A, Settlemyer B W, Grider G, Guo F. Scaling embedded in-situ indexing with deltaFS. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 3.
Weil S A, Brandt S A, Miller E L, Long D D E, Maltzahn C. Ceph: A scalable, high-performance distributed file system. In Proc. the 7th USENIX Symposium on Operating Systems Design and Implementation, November 2006, pp.307-320.
Sevilla M A, Watkins N, Jimenez I, Alvaro P, Finkelstein S, LeFevre J, Maltzahn C. Malacology: A programmable storage system. In Proc. the 12th European Conference on Computer Systems, April 2017, pp.175-190.
Greenberg H, Bent J, Grider G. MDHIM: A parallel key/value framework for HPC. In Proc. the 7th USENIX Workshop on Hot Topics in Storage and File Systems, July 2015, Article No. 10.
Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Zahavi E. Dragonfly+: Low cost topology for scaling datacenters. In Proc. the 3rd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era, February 2017, pp.1-8.
LathamRobertRossRobertThakurRajeevCan MPI Be Used for Persistent Parallel Services?Recent Advances in Parallel Virtual Machine and Message Passing Interface2006Berlin, HeidelbergSpringer Berlin Heidelberg27528410.1007/11846802_40
FitzpatrickBDistributed caching with MemcachedLinux Journal200420041247276
Anwar A, Cheng Y, Huang H, Han J, Sim H, Lee D, Douglis F, Butt A R. BESPOKV: Application tailored scale-out key-value stores. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 2.
Olson M A, Bostic K, Seltzer M I. Berkeley DB. In Proc. the 1999 USENIX Annual Technical Conference, June 1999, pp.183-191.
Carns P, Jenkins J, Cranor C, Atchley S, Seo S, Snyder S, Hoeer T, Ross R. Enabling NVM for data-intensive scientific services. In Proc. the 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads, November 2016, Article No. 4.
PerezDCubukEDWaterlandAKaxirasEVoterAFLong-time dynamics through parallel trajectory splicingJournal of Chemical Theory and Computation2015121182810.1021/acs.jctc.5b00916
Kim J, Lee S, Vetter J S. PapyrusKV: A high-performance parallel key-value store for distributed NVM architectures. In Proc. the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2017, Article No. 57.
Duro F R, Blas J G, Isaila F, Pérez J C, Wozniak J M, Ross R. Exploiting data locality in Swift/T workflows using Hercules. In Proc. the 1st Network for Sustainable Ultrascale Computing Workshop, October 2014.
DocanCParasharMKlaskySDataSpaces: An interaction and coordination framework for coupled simulation workflowsCluster Computing201115216318110.1007/s10586-011-0162-y
DocanCParasharMKlaskySEnabling high-speed asynchronous data extraction and transfer using DARTConcurrency and Computation: Practice and Experience201022911811204
FringsW, Ahn D H, LeGendre M, Gamblin T, de Supinski B R, Wolf F. Massively parallel loading. In Proc. the 27th International ACM Conference on International Conference on Supercomputing, June 2013, pp.389-398.
Venkatesan S, Aoulaiche M. Overview of 3D NAND technologies and outlook invited paper. In Proc. the 2018 Non-Volatile Memory Technology Symposium, Oct. 2018, Article No. 15.
Lockwood G K, Hazen D, Koziol Q et al. Storage 2020: A vision for the future of HPC storage. Technical Report, National Energy Research Scientific Computing Center, 2017. https://escholarship.org/content/qt744479dp/qt744479dp.pdf, Sept. 2019.
Das A, Gupta I, Motivala A. SWIM: Scalable weaklyconsistent infection-style process group membership protocol. In Proc. the 2002 International Conference on Dependable Systems and Networks, June 2002, pp.303-312.
VefM A,Moti N, Süß T, Tocci T, Nou R,Miranda A, Cortes T, Brinkmann A. GekkoFS — A temporary distributed file system for HPC applications. In Proc. the 2018 IEEE International Conference on Cluster Computing, September 2018, pp.319-324.
Weil S A, Leung A W, Brandt S A, Maltzahn C. RADOS: A scalable, reliable storage service for petabyte-scale storage clusters. In Proc. the 2nd International Petascale Data Storage Workshop, November 2007, pp.35-44.
Kougkas A, Devarajan H, Lofstead J, Sun X H. LABIOS: A distributed label-based I/O system. In Proc. the 28th International Symposium on High-Performance Parallel and Distributed Computing, June 2019, pp.13-24.
Wang T, Mohror K, Moody A, Sato K, Yu W K. An ephemeral burst-buffer file system for scientific applications. In Proc. the 2016 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2016, pp.807-818.
Sevilla M A, Maltzahn C, Alvaro P, Nasirigerdeh R, Settlemyer B W, Perez D, Rich D, Shipman G M. Programmable caches with a data management language and policy engine. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.203-212.
SeoSAmerABalajiPArgobots: A lightweight lowlevel 1threading and tasking frameworkIEEE Transactions on Parallel and Distributed Systems201829351252610.1109/TPDS.2017.2766062
RosenblumMOusterhoutJKThe design and implementation of a log-structured file systemACM Transactions on Computer Systems1992101265210.1145/146941.146943
FT Hady (9802_CR2) 2017; 105
9802_CR27
9802_CR25
9802_CR26
M Rosenblum (9802_CR18) 1992; 10
B Fitzpatrick (9802_CR38) 2004; 2004
Julian Kunkel (9802_CR28) 2017
R Brun (9802_CR19) 1997; 389
9802_CR1
9802_CR4
J Kim (9802_CR3) 2008; 36
9802_CR23
C Docan (9802_CR35) 2011; 15
D Perez (9802_CR20) 2015; 12
9802_CR24
9802_CR21
9802_CR43
9802_CR22
9802_CR44
9802_CR6
9802_CR41
9802_CR5
9802_CR42
9802_CR8
9802_CR7
9802_CR40
A Rudoff (9802_CR12) 2017; 42
9802_CR16
S van der Walt (9802_CR17) 2011; 13
C Docan (9802_CR36) 2010; 22
9802_CR39
9802_CR14
9802_CR15
9802_CR37
S Seo (9802_CR9) 2018; 29
9802_CR34
9802_CR13
9802_CR10
9802_CR32
9802_CR11
9802_CR33
9802_CR30
Robert Latham (9802_CR29) 2006
9802_CR31
References_xml – reference: Lockwood G K, Hazen D, Koziol Q et al. Storage 2020: A vision for the future of HPC storage. Technical Report, National Energy Research Scientific Computing Center, 2017. https://escholarship.org/content/qt744479dp/qt744479dp.pdf, Sept. 2019.
– reference: Sevilla M A, Watkins N, Jimenez I, Alvaro P, Finkelstein S, LeFevre J, Maltzahn C. Malacology: A programmable storage system. In Proc. the 12th European Conference on Computer Systems, April 2017, pp.175-190.
– reference: Intel Corporation. DAOS: Revolutionizing high-performance storage with Intel Optane technology. https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-storage-brief.pdf, June 2019.
– reference: Duro F R, Blas J G, Isaila F, Pérez J C, Wozniak J M, Ross R. Exploiting data locality in Swift/T workflows using Hercules. In Proc. the 1st Network for Sustainable Ultrascale Computing Workshop, October 2014.
– reference: RudoffAPersistent memory programmingLogin: The Usenix Magazine20174223440
– reference: Ghemawat S, Dean J. Level DB — A fast and lightweight key/value database library by Google. https://github.com/google/leveldb, Sept. 2019.
– reference: Sevilla M A, Maltzahn C, Alvaro P, Nasirigerdeh R, Settlemyer B W, Perez D, Rich D, Shipman G M. Programmable caches with a data management language and policy engine. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.203-212.
– reference: Flajslik M, Borch E, Parker M A. Megafly: A topology for exascale systems. In Proc. the 33rd International Conference on High Performance Computing, June 2018, pp.289-310.
– reference: Olson M A, Bostic K, Seltzer M I. Berkeley DB. In Proc. the 1999 USENIX Annual Technical Conference, June 1999, pp.183-191.
– reference: LathamRobertRossRobertThakurRajeevCan MPI Be Used for Persistent Parallel Services?Recent Advances in Parallel Virtual Machine and Message Passing Interface2006Berlin, HeidelbergSpringer Berlin Heidelberg27528410.1007/11846802_40
– reference: van der WaltSColbertSCVaroquauxGThe NumPy array: A structure for efficient numerical computationComputing in Science & Engineering2011132223010.1109/MCSE.2011.37
– reference: Carns P, Jenkins J, Cranor C, Atchley S, Seo S, Snyder S, Hoeer T, Ross R. Enabling NVM for data-intensive scientific services. In Proc. the 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads, November 2016, Article No. 4.
– reference: Das A, Gupta I, Motivala A. SWIM: Scalable weaklyconsistent infection-style process group membership protocol. In Proc. the 2002 International Conference on Dependable Systems and Networks, June 2002, pp.303-312.
– reference: Weil S A, Leung A W, Brandt S A, Maltzahn C. RADOS: A scalable, reliable storage service for petabyte-scale storage clusters. In Proc. the 2nd International Petascale Data Storage Workshop, November 2007, pp.35-44.
– reference: DocanCParasharMKlaskySEnabling high-speed asynchronous data extraction and transfer using DARTConcurrency and Computation: Practice and Experience201022911811204
– reference: HadyFTFoongAVealBWilliamsDPlatform storage performance with 3D XPoint technologyProceedings of the IEEE201710591822183310.1109/JPROC.2017.2731776
– reference: Kougkas A, Devarajan H, Lofstead J, Sun X H. LABIOS: A distributed label-based I/O system. In Proc. the 28th International Symposium on High-Performance Parallel and Distributed Computing, June 2019, pp.13-24.
– reference: FringsW, Ahn D H, LeGendre M, Gamblin T, de Supinski B R, Wolf F. Massively parallel loading. In Proc. the 27th International ACM Conference on International Conference on Supercomputing, June 2013, pp.389-398.
– reference: KunkelJulianBetkeEugenAn MPI-IO In-Memory Driver for Non-volatile Pooled Memory of the Kove XPDLecture Notes in Computer Science2017ChamSpringer International Publishing679690
– reference: Wang T, Mohror K, Moody A, Sato K, Yu W K. An ephemeral burst-buffer file system for scientific applications. In Proc. the 2016 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2016, pp.807-818.
– reference: DocanCParasharMKlaskySDataSpaces: An interaction and coordination framework for coupled simulation workflowsCluster Computing201115216318110.1007/s10586-011-0162-y
– reference: PerezDCubukEDWaterlandAKaxirasEVoterAFLong-time dynamics through parallel trajectory splicingJournal of Chemical Theory and Computation2015121182810.1021/acs.jctc.5b00916
– reference: Escriva R, Sirer E G. The design and implementation of the warp transactional file system. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.469-483.
– reference: Kim J, Lee S, Vetter J S. PapyrusKV: A high-performance parallel key-value store for distributed NVM architectures. In Proc. the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2017, Article No. 57.
– reference: Sivaraman G, Beard E, Vazquez-Mayagoitia A, Vishwanath V, Cole J. UV/vis absorption spectra database autogenerated for optical applications via the Argonne data science program. In Proc. the 2019 APS March Meeting, March 2019.
– reference: BrunRRademakersFROOT — An object oriented data analysis frameworkNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment19973891/2818610.1016/S0168-9002(97)00048-X
– reference: Zheng Q, Cranor C D, Guo D H, Ganger G R, Amvrosiadis G, Gibson G A, Settlemyer B W, Grider G, Guo F. Scaling embedded in-situ indexing with deltaFS. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 3.
– reference: Dorier M, Carns P, Harms K et al. Methodology for the rapid development of scalable HPC data services. In Proc. the 3rd Joint International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.76-87.
– reference: Liu J L, Koziol Q, Butler G F, Fortner N, Chaarawi M, Tang H J, Byna S, Lockwood G K, Cheema R, Kallback-Rose K A, Hazen D, Prabhat. Evaluation of HPC application I/O on object storage systems. In Proc. the 3rd IEEE/ACM International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.24-34.
– reference: VefM A,Moti N, Süß T, Tocci T, Nou R,Miranda A, Cortes T, Brinkmann A. GekkoFS — A temporary distributed file system for HPC applications. In Proc. the 2018 IEEE International Conference on Cluster Computing, September 2018, pp.319-324.
– reference: SeoSAmerABalajiPArgobots: A lightweight lowlevel 1threading and tasking frameworkIEEE Transactions on Parallel and Distributed Systems201829351252610.1109/TPDS.2017.2766062
– reference: Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Zahavi E. Dragonfly+: Low cost topology for scaling datacenters. In Proc. the 3rd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era, February 2017, pp.1-8.
– reference: Tang H J, Byna S, Tessier F et al. Toward scalable and asynchronous object-centric data management for HPC. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.113-122.
– reference: KimJDallyWJScottSAbtsDTechnology-driven, highly-scalable dragonfly topologyACM SIGARCH Comput. Architecture News2008363778810.1145/1394608.1382129
– reference: Weil S A, Brandt S A, Miller E L, Long D D E, Maltzahn C. Ceph: A scalable, high-performance distributed file system. In Proc. the 7th USENIX Symposium on Operating Systems Design and Implementation, November 2006, pp.307-320.
– reference: FitzpatrickBDistributed caching with MemcachedLinux Journal200420041247276
– reference: Zhao D F, Zhang Z, Zhou X B, Li T L, Wang K, Kimpe D, Carns P, Ross R, Raicu I. FusionFS: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In Proc. the 2014 IEEE International Conference on Big Data, October 2014, pp.61-70.
– reference: Anwar A, Cheng Y, Huang H, Han J, Sim H, Lee D, Douglis F, Butt A R. BESPOKV: Application tailored scale-out key-value stores. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 2.
– reference: Ulmer C, Mukherjee S, Templet G, Levy S, Lofstead J, Widener P, Kordenbrock T, Lawson M. Faodel: Data management for next-generation application workflows. In Proc. the 9th Workshop on Scientific Cloud Computing, June 2018, Article No. 8.
– reference: Venkatesan S, Aoulaiche M. Overview of 3D NAND technologies and outlook invited paper. In Proc. the 2018 Non-Volatile Memory Technology Symposium, Oct. 2018, Article No. 15.
– reference: Besta M, Hoeer T. Slim Fly: A cost effective low-diameter network topology. In Proc. the Int. Conf. for High Performance Comput., Networking, Storage and Anal., November 2014, pp.348-359.
– reference: Soumagne J, Kimpe D, Zounmevo J, Chaarawi M, Koziol Q, Afsahi A, Ross R. Mercury: Enabling remote procedure call for high-performance computing. In Proc. the 2013 IEEE International Conference on Cluster Computing, September 2013, Article No. 50.
– reference: RosenblumMOusterhoutJKThe design and implementation of a log-structured file systemACM Transactions on Computer Systems1992101265210.1145/146941.146943
– reference: Greenberg H, Bent J, Grider G. MDHIM: A parallel key/value framework for HPC. In Proc. the 7th USENIX Workshop on Hot Topics in Storage and File Systems, July 2015, Article No. 10.
– ident: 9802_CR14
– ident: 9802_CR16
  doi: 10.1109/PDSW-DISCS.2018.00013
– ident: 9802_CR24
  doi: 10.1145/1374596.1374606
– start-page: 679
  volume-title: Lecture Notes in Computer Science
  year: 2017
  ident: 9802_CR28
– ident: 9802_CR31
  doi: 10.1109/SC.2016.68
– ident: 9802_CR10
  doi: 10.1109/CLUSTER.2013.6702617
– volume: 389
  start-page: 81
  issue: 1/2
  year: 1997
  ident: 9802_CR19
  publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
  doi: 10.1016/S0168-9002(97)00048-X
– ident: 9802_CR43
– ident: 9802_CR37
– ident: 9802_CR33
– ident: 9802_CR5
  doi: 10.1007/978-3-319-92040-5_15
– volume: 22
  start-page: 1181
  issue: 9
  year: 2010
  ident: 9802_CR36
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.1567
– volume: 12
  start-page: 18
  issue: 1
  year: 2015
  ident: 9802_CR20
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.5b00916
– ident: 9802_CR32
  doi: 10.1109/CCGRID.2018.00026
– volume: 15
  start-page: 163
  issue: 2
  year: 2011
  ident: 9802_CR35
  publication-title: Cluster Computing
  doi: 10.1007/s10586-011-0162-y
– ident: 9802_CR40
  doi: 10.1145/2464996.2465020
– ident: 9802_CR4
  doi: 10.1109/SC.2014.34
– start-page: 275
  volume-title: Recent Advances in Parallel Virtual Machine and Message Passing Interface
  year: 2006
  ident: 9802_CR29
  doi: 10.1007/11846802_40
– ident: 9802_CR34
  doi: 10.1109/BigData.2014.7004214
– ident: 9802_CR7
– ident: 9802_CR30
  doi: 10.1109/CLUSTER.2018.00049
– ident: 9802_CR8
  doi: 10.2172/1632124
– volume: 42
  start-page: 34
  issue: 2
  year: 2017
  ident: 9802_CR12
  publication-title: Login: The Usenix Magazine
– ident: 9802_CR44
  doi: 10.1145/3064176.3064208
– ident: 9802_CR15
– ident: 9802_CR42
  doi: 10.1109/SC.2018.00005
– ident: 9802_CR1
  doi: 10.1109/NVMTS.2018.8603104
– ident: 9802_CR13
– ident: 9802_CR39
  doi: 10.1145/3126908.3126943
– ident: 9802_CR26
  doi: 10.1109/PDSW-DISCS.2018.00005
– ident: 9802_CR6
  doi: 10.1109/HiPINEB.2017.11
– ident: 9802_CR11
– volume: 2004
  start-page: 72
  issue: 124
  year: 2004
  ident: 9802_CR38
  publication-title: Linux Journal
– volume: 105
  start-page: 1822
  issue: 9
  year: 2017
  ident: 9802_CR2
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2017.2731776
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  ident: 9802_CR17
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2011.37
– ident: 9802_CR25
– volume: 29
  start-page: 512
  issue: 3
  year: 2018
  ident: 9802_CR9
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2017.2766062
– volume: 10
  start-page: 26
  issue: 1
  year: 1992
  ident: 9802_CR18
  publication-title: ACM Transactions on Computer Systems
  doi: 10.1145/146941.146943
– ident: 9802_CR23
– volume: 36
  start-page: 77
  issue: 3
  year: 2008
  ident: 9802_CR3
  publication-title: ACM SIGARCH Comput. Architecture News
  doi: 10.1145/1394608.1382129
– ident: 9802_CR22
  doi: 10.1109/SC.2018.00006
– ident: 9802_CR27
– ident: 9802_CR21
  doi: 10.1109/CCGRID.2018.00035
– ident: 9802_CR41
  doi: 10.1145/3307681.3325405
SSID ssj0037044
Score 2.4735258
Snippet Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new...
SourceID osti
wanfang
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms Analysis
Artificial Intelligence
Computation
Computational linguistics
Computer Science
Data Structures and Information Theory
data-intensive computing
distributed services
High performance computing
Information storage and retrieval
Information Systems Applications (incl.Internet)
Language processing
MATHEMATICS AND COMPUTING
Natural language interfaces
New technology
Performance evaluation
Regular Paper
Software Engineering
storage and I/O
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEA569MEX6xWPrZIHRVACu9lsLr4VbRHBUrRI30I2F9uj7JHuKv35zuxJui1IQV_2JReGSWbm28yNkBetxyrkXctCqzsmeB1Yp6RnoC0b08GZR6enZhPq4EAfH5vDnMc9lGj34pKcNPWc7AZgpWL4u2M0hs3eJLfA2mns1_D5y9eifhtVTR1c8d2aYUfM4sr82xZXjFFWyYs1yNYVvHnhIp0Se_rk-m-XbND-1n9Rf4_czZCT7m7uyH1yI_YPyFZp50CzdD8kHz-t_cnpW4oja3xCoO_d6GjRJhTgLcWwEHY4JxvQzTY4ee9SytwjcrS_d_TuA8utFpgXko_MqzbVjQfznxTY8OQDr5MJ8A0iAOnOGNdIJ-rauSapIAF5CN9GlUIdADE-Jot-3ccnhDa6jUYa7rXgQidlpEPXdkyqanXs3JJUheXW5zLk2A3jh50LKCOrLLDKIqtstSSvL5b83NTguG7yKzxHi_IJ-3qX0wyAOqx0ZXfBGPNaGsGXZBuP2gLUwHq5HgOL_GgB30mp9ZLslBtgs1gPlptay0YKHH5Tznkevoaol_nizJNXw-r7-Wo472zkFUa2ARp7-k-7bpM7uHLzILRDFuPZr_iM3Pa_x9Ph7PkkFX8AMvgC-Q
  priority: 102
  providerName: Springer Nature
Title Mochi: Composing Data Services for High-Performance Computing Environments
URI https://link.springer.com/article/10.1007/s11390-020-9802-0
https://www.proquest.com/docview/2918636488
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202001008
https://www.osti.gov/servlets/purl/1596688
Volume 35
WOSCitedRecordID wos000512098800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQculKcaWlY5gJBAFnn6wQWVshUCdbVqKyhcLMdOoAtKShNQfz4zWadpL3vhYimK4zgez_jLPAGe5ZaykBc5c7ksWJbEjhWCW4bSMlUF0rw0si82IeZzeXqqFl7h1nq3ykEm9oLaNZZ05K8TFUuectxvb89_M6oaRdZVX0JjAzYpS0Lcu-4dD5I4FVFfzJVU2IyKYw5WzT50DqFPxOjnSUlywr1xLnnpPGmQzW5AzytraR_jU1em_n7tODrY-t8PuQd3PRAN91Y75z7cKusHsDUUeQg9zz-Ej4eN_XH2JqQ7DSkWwvemM-EgY0IEvSE5i7DFGIIQroahzrNrgXSP4ORgdrL_gfkCDMxmPOmYFXkVpxYXthJ4slfWJXGlHLYuc7iARimTcpPFsTFpJRxHPJLZvBSVix3iyMcwqZu63IYwlXmpuEqszJJMVkJxQwbvshJRLsvCBBANq6-tT05ONTJ-6TGtMhFMI8E0EUxHAby8euR8lZljXecXRFJNXIvjWuODD3B2lP9K7-ERncRcZUkAO0R1jQCEsuhacjeynUbUx7mUAewORNWe2Vs9UjSAV8MGGW-vmdRzv4fGzst2-fNy2V4Wukwi8ndDjPZk_Ut34A51XemFdmHSXfwpn8Jt-7c7ay-msCG-fJ3C5rvZfHGEV58Ew_Yw2p_2vILtIv-G7dHx539ZCRRH
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBQkulKcILeADFRLIInYSP5AQqmirlm1XPeyhN8uxHeiCktIEKD-K_4gnibvtZW89cMkljuPEn78Zj-eB0KvCQhbysiCukCXJGXWkFNySwJaZKsOceyP7YhNiNpMnJ-p4Df2NsTDgVhk5sSdq11iwkb9jikqe8YC3j2c_CFSNgtPVWEJjgMXU__kdtmzth4OdML9bjO3tzj_tk7GqALE5Zx2xoqhoZoOkq0QQV5V1jFbKhavLHaWZUcpk3OSUGpNVwvEgZHNbeFE56gqwfwbGv5VnUsCymgoSiT8TaV87FizmBGpxxkPUPlIvaFopgb2akuDze00MjsJg0oRVfU3TvTyc7UOK6srUX65Iv731_-y_3Uf3RjUbbw_r4gFa8_VDtB5LWOCR0R6hz0eN_Xr6HsOdBswmeMd0BkcGxUGlx-AKQ46XARZ46AYa714JE3yM5jfxQU_QpG5q_xThTBZeccWszFkuK6G4geN8X4m0kL40CUrjZGs7pl6HCiDf9TJpNOBDB3xowIdOE_Tm8pGzIe_IqsavAUEaOCn0a80YWhFGB9m99HZQQBjlKmcJ2gCQ6aBeQY5gC85UttNBp-VcygRtRgzpkcpavQRQgt5GPC5vrxjU1gjZZeNFu_h2sWgvSu1ZCt58QQN9tvqlL9Gd_fnRoT48mE030F14bLCAbaJJd_7TP0e37a_utD1_0S9GjPQNg_gf_BJpYQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgQYhLy6ti2wI-gJBAVhPH8YNbRbviuVqJCvVmOX5AF5StmoD68_Fs7KaVUCXEJRc7I2fGM_7ieSH0vLZQhbypiatlQxgtHWkEtyRay0o1UebeyHWzCTGfy-NjtUh9Trsc7Z5dkkNOA1Rpavu9Uxf2xsS3CFwKAr8-SkII7U10i0EcPfyuf_maTXElinU3V7jDJtAdM7s1_0biysGUzPNkFfXsCva8cJeuk3zaYNpvl86j2eZ_f8k9tJGgKN4f9s59dMO3D9BmbvOAk9Y_RB8-r-z3kzcYRlZwtYAPTG9wtjI4wl4M4SJkMSYh4IEMTD68lEr3CB3NDo_eviOpBQOxjNOeWFGHsrIRFgQRz_ZgHS2DcvHpmItLN0qZihtWlsZUQTgeEQmztRfBlS4iyS00aVetf4xwJWuvuKJWMspkEIobcHn7IIpa-sZMUZHZr20qTw5dMn7qsbAysEpHVmlglS6m6NXFK6dDbY7rJr8EmWrQ20jXmpR-EFcHFbD0fjykackVo1O0A2LXEYJAHV0LAUe21xH3cS7lFO3m3aCTuneaqlLyijMYfp1lPg5fs6gXaRONk5fd8sf5sjtvtKcFRLxFlLb9T1SfoTuLg5n-9H7-cQfdBSLDndEumvRnv_wTdNv-7k-6s6drZfkD4VwOwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mochi%3A+Composing+Data+Services+for+High-Performance+Computing+Environments&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Ross%2C+Robert+B&rft.au=Amvrosiadis%2C+George&rft.au=Carns%2C+Philip&rft.au=Cranor%2C+Charles+D&rft.date=2020-01-01&rft.pub=Springer&rft.issn=1000-9000&rft.volume=35&rft.issue=1&rft.spage=121&rft_id=info:doi/10.1007%2Fs11390-020-9802-0&rft.externalDocID=A718216942
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg