Mochi: Composing Data Services for High-Performance Computing Environments
Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of...
Saved in:
| Published in: | Journal of computer science and technology Vol. 35; no. 1; pp. 121 - 144 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2020
Springer Springer Nature B.V Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A Springer Nature |
| Subjects: | |
| ISSN: | 1000-9000, 1860-4749 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size-fits-all data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work. |
|---|---|
| AbstractList | Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size- fitsall data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work. Keywords storage and I/O, data-intensive computing, distributed services, high-performance computing Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size-fits-all data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work. |
| Audience | Academic |
| Author | Latham, Robert Settlemyer, Bradley Ross, Robert B. Carns, Philip Gibson, Garth Soumagne, Jerome Zheng, Qing Gutierrez, Samuel K. Shipman, Galen Amvrosiadis, George Robinson, Dana Snyder, Shane Dorier, Matthieu Harms, Kevin Cranor, Charles D. Robey, Bob Ganger, Greg |
| AuthorAffiliation | Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A |
| AuthorAffiliation_xml | – name: Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A |
| Author_xml | – sequence: 1 givenname: Robert B. surname: Ross fullname: Ross, Robert B. email: rross@mcs.anl.gov organization: Argonne National Laboratory – sequence: 2 givenname: George surname: Amvrosiadis fullname: Amvrosiadis, George organization: Parallel Data Laboratory, Carnegie Mellon University – sequence: 3 givenname: Philip surname: Carns fullname: Carns, Philip organization: Argonne National Laboratory – sequence: 4 givenname: Charles D. surname: Cranor fullname: Cranor, Charles D. organization: Parallel Data Laboratory, Carnegie Mellon University – sequence: 5 givenname: Matthieu surname: Dorier fullname: Dorier, Matthieu organization: Argonne National Laboratory – sequence: 6 givenname: Kevin surname: Harms fullname: Harms, Kevin organization: Argonne National Laboratory – sequence: 7 givenname: Greg surname: Ganger fullname: Ganger, Greg organization: Parallel Data Laboratory, Carnegie Mellon University – sequence: 8 givenname: Garth surname: Gibson fullname: Gibson, Garth organization: Vector Institute for Artificial Intelligence – sequence: 9 givenname: Samuel K. surname: Gutierrez fullname: Gutierrez, Samuel K. organization: Los Alamos National Laboratory – sequence: 10 givenname: Robert surname: Latham fullname: Latham, Robert organization: Argonne National Laboratory – sequence: 11 givenname: Bob surname: Robey fullname: Robey, Bob organization: Los Alamos National Laboratory – sequence: 12 givenname: Dana surname: Robinson fullname: Robinson, Dana organization: The HDF Group – sequence: 13 givenname: Bradley surname: Settlemyer fullname: Settlemyer, Bradley organization: Los Alamos National Laboratory – sequence: 14 givenname: Galen surname: Shipman fullname: Shipman, Galen organization: Los Alamos National Laboratory – sequence: 15 givenname: Shane surname: Snyder fullname: Snyder, Shane organization: Argonne National Laboratory – sequence: 16 givenname: Jerome surname: Soumagne fullname: Soumagne, Jerome organization: The HDF Group – sequence: 17 givenname: Qing surname: Zheng fullname: Zheng, Qing organization: Parallel Data Laboratory, Carnegie Mellon University |
| BackLink | https://www.osti.gov/servlets/purl/1596688$$D View this record in Osti.gov |
| BookMark | eNp9kV1vFCEUhiemJvbDH-DdRG-dlgPMMHjXrK2tqdHE3hNkYJZxB1Zga_vvPdsxaWJSQ3I4gec9n0fVQYjBVtUbIKdAiDjLAEyShlDSyJ7QhryoDqHvSMMFlwfoE4I_aF5VRzlPhDBBOD-sPn-JZu0_1Ks4b2P2Yaw_6qLr7zbdeWNz7WKqr_y4br7ZhP6sg7GP8K7s4Ytw51MMsw0ln1Qvnd5k-_rvfVzdXl7crq6am6-frlfnN43hHS2NEa0DZqAFJ1gPzgwUnBzQDnzALrSUmnWaA2jNnBg6Ijg3rRVugKFl7Lh6u4SNuXiVjS_WrE0MwZqioJVd1_cIvV-g3zo4HUY1xV0KWJWa8vTzfsr3P5SlOC2Cg9nj7xZ8m-Kvnc3liacSx8g6_hj0dKFGvbHKBxdL0gbPYGePFVjn8f1cQE-hk5yiABaBSTHnZJ3aJj_r9KCAqP3a1LI2hYWo_doUQY34R4Md6uJjwGR-818lXZQZs4TRpqcmnhf9AakZq_o |
| CitedBy_id | crossref_primary_10_1016_j_future_2025_107815 crossref_primary_10_1145_3415581 crossref_primary_10_1109_MCSE_2023_3326436 crossref_primary_10_1177_10943420241303145 crossref_primary_10_1016_j_future_2024_07_016 crossref_primary_10_1109_TPDS_2021_3086302 crossref_primary_10_1016_j_future_2022_12_010 crossref_primary_10_1002_cpe_8141 crossref_primary_10_1111_cgf_70108 crossref_primary_10_1145_3588926 crossref_primary_10_1016_j_jpdc_2023_02_014 crossref_primary_10_3389_fhpcp_2025_1638203 crossref_primary_10_1016_j_jmsy_2025_05_020 crossref_primary_10_1109_TPDS_2021_3097884 crossref_primary_10_1177_10943420251334456 crossref_primary_10_1177_10943420251316253 crossref_primary_10_1007_s11432_021_3578_6 crossref_primary_10_3389_fhpcp_2024_1472719 |
| Cites_doi | 10.1109/PDSW-DISCS.2018.00013 10.1145/1374596.1374606 10.1109/SC.2016.68 10.1109/CLUSTER.2013.6702617 10.1016/S0168-9002(97)00048-X 10.1007/978-3-319-92040-5_15 10.1002/cpe.1567 10.1021/acs.jctc.5b00916 10.1109/CCGRID.2018.00026 10.1007/s10586-011-0162-y 10.1145/2464996.2465020 10.1109/SC.2014.34 10.1007/11846802_40 10.1109/BigData.2014.7004214 10.1109/CLUSTER.2018.00049 10.2172/1632124 10.1145/3064176.3064208 10.1109/SC.2018.00005 10.1109/NVMTS.2018.8603104 10.1145/3126908.3126943 10.1109/PDSW-DISCS.2018.00005 10.1109/HiPINEB.2017.11 10.1109/JPROC.2017.2731776 10.1109/MCSE.2011.37 10.1109/TPDS.2017.2766062 10.1145/146941.146943 10.1145/1394608.1382129 10.1109/SC.2018.00006 10.1109/CCGRID.2018.00035 10.1145/3307681.3325405 |
| ContentType | Journal Article |
| Copyright | Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020 COPYRIGHT 2020 Springer Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020 – notice: COPYRIGHT 2020 Springer – notice: Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ OIOZB OTOTI |
| DOI | 10.1007/s11390-020-9802-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-4749 |
| EndPage | 144 |
| ExternalDocumentID | 1596688 jsjkxjsxb_e202001008 A718216942 10_1007_s11390_020_9802_0 |
| GrantInformation_xml | – fundername: This work is in part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357; in part supported by the Exascale Computing Project under Grant No. 17-SC-20-SC, a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware; in part supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing program funderid: This work is in part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357; in part supported by the Exascale Computing Project under Grant No. 17-SC-20-SC, a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware; (SciDAC) program |
| GroupedDBID | -4Z -59 -5G -BR -EM -SI -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 5XA 5XJ 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CAJEI CCEZO CCPQU CHBEP COF CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q-- Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z7R Z7U Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 4A8 PMFND PSX AAFGU ABFGW ABKAS ACBMV ACBRV ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV CDYEO OIOZB OTOTI UNUBA Z7Z |
| ID | FETCH-LOGICAL-c462t-c75f13c151f7381fcd21f9dd21d4d113a99a36a411aa3f7d60744c5e7fd1d533 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512098800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1000-9000 |
| IngestDate | Fri May 19 01:41:22 EDT 2023 Thu May 29 04:00:16 EDT 2025 Wed Nov 05 04:14:52 EST 2025 Sat Nov 29 09:49:12 EST 2025 Sat Nov 29 03:05:39 EST 2025 Tue Nov 18 20:44:44 EST 2025 Fri Feb 21 02:40:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | data-intensive computing storage and I/O high-performance computing distributed services |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-c75f13c151f7381fcd21f9dd21d4d113a99a36a411aa3f7d60744c5e7fd1d533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) AC02-06CH11357; AC02-05CH11231 USDOE National Nuclear Security Administration (NNSA) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1596688 |
| PQID | 2918636488 |
| PQPubID | 326258 |
| PageCount | 24 |
| ParticipantIDs | osti_scitechconnect_1596688 wanfang_journals_jsjkxjsxb_e202001008 proquest_journals_2918636488 gale_infotracacademiconefile_A718216942 crossref_primary_10_1007_s11390_020_9802_0 crossref_citationtrail_10_1007_s11390_020_9802_0 springer_journals_10_1007_s11390_020_9802_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Beijing – name: United States |
| PublicationTitle | Journal of computer science and technology |
| PublicationTitleAbbrev | J. Comput. Sci. Technol |
| PublicationTitle_FL | Journal of Computer Science & Technology |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A Springer Nature |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: Argonne National Laboratory, Lemont, IL 60439, U.S.A.%Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.%Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada%Los Alamos National Laboratory, Los Alamos NM, U.S.A.%The HDF Group, Champaign IL, U.S.A – name: Springer Nature |
| References | van der WaltSColbertSCVaroquauxGThe NumPy array: A structure for efficient numerical computationComputing in Science & Engineering2011132223010.1109/MCSE.2011.37 Liu J L, Koziol Q, Butler G F, Fortner N, Chaarawi M, Tang H J, Byna S, Lockwood G K, Cheema R, Kallback-Rose K A, Hazen D, Prabhat. Evaluation of HPC application I/O on object storage systems. In Proc. the 3rd IEEE/ACM International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.24-34. Intel Corporation. DAOS: Revolutionizing high-performance storage with Intel Optane technology. https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-storage-brief.pdf, June 2019. Dorier M, Carns P, Harms K et al. Methodology for the rapid development of scalable HPC data services. In Proc. the 3rd Joint International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.76-87. HadyFTFoongAVealBWilliamsDPlatform storage performance with 3D XPoint technologyProceedings of the IEEE201710591822183310.1109/JPROC.2017.2731776 Escriva R, Sirer E G. The design and implementation of the warp transactional file system. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.469-483. Zhao D F, Zhang Z, Zhou X B, Li T L, Wang K, Kimpe D, Carns P, Ross R, Raicu I. FusionFS: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In Proc. the 2014 IEEE International Conference on Big Data, October 2014, pp.61-70. RudoffAPersistent memory programmingLogin: The Usenix Magazine20174223440 KunkelJulianBetkeEugenAn MPI-IO In-Memory Driver for Non-volatile Pooled Memory of the Kove XPDLecture Notes in Computer Science2017ChamSpringer International Publishing679690 Sivaraman G, Beard E, Vazquez-Mayagoitia A, Vishwanath V, Cole J. UV/vis absorption spectra database autogenerated for optical applications via the Argonne data science program. In Proc. the 2019 APS March Meeting, March 2019. Soumagne J, Kimpe D, Zounmevo J, Chaarawi M, Koziol Q, Afsahi A, Ross R. Mercury: Enabling remote procedure call for high-performance computing. In Proc. the 2013 IEEE International Conference on Cluster Computing, September 2013, Article No. 50. KimJDallyWJScottSAbtsDTechnology-driven, highly-scalable dragonfly topologyACM SIGARCH Comput. Architecture News2008363778810.1145/1394608.1382129 Ghemawat S, Dean J. Level DB — A fast and lightweight key/value database library by Google. https://github.com/google/leveldb, Sept. 2019. Flajslik M, Borch E, Parker M A. Megafly: A topology for exascale systems. In Proc. the 33rd International Conference on High Performance Computing, June 2018, pp.289-310. Besta M, Hoeer T. Slim Fly: A cost effective low-diameter network topology. In Proc. the Int. Conf. for High Performance Comput., Networking, Storage and Anal., November 2014, pp.348-359. Ulmer C, Mukherjee S, Templet G, Levy S, Lofstead J, Widener P, Kordenbrock T, Lawson M. Faodel: Data management for next-generation application workflows. In Proc. the 9th Workshop on Scientific Cloud Computing, June 2018, Article No. 8. Tang H J, Byna S, Tessier F et al. Toward scalable and asynchronous object-centric data management for HPC. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.113-122. BrunRRademakersFROOT — An object oriented data analysis frameworkNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment19973891/2818610.1016/S0168-9002(97)00048-X Zheng Q, Cranor C D, Guo D H, Ganger G R, Amvrosiadis G, Gibson G A, Settlemyer B W, Grider G, Guo F. Scaling embedded in-situ indexing with deltaFS. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 3. Weil S A, Brandt S A, Miller E L, Long D D E, Maltzahn C. Ceph: A scalable, high-performance distributed file system. In Proc. the 7th USENIX Symposium on Operating Systems Design and Implementation, November 2006, pp.307-320. Sevilla M A, Watkins N, Jimenez I, Alvaro P, Finkelstein S, LeFevre J, Maltzahn C. Malacology: A programmable storage system. In Proc. the 12th European Conference on Computer Systems, April 2017, pp.175-190. Greenberg H, Bent J, Grider G. MDHIM: A parallel key/value framework for HPC. In Proc. the 7th USENIX Workshop on Hot Topics in Storage and File Systems, July 2015, Article No. 10. Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Zahavi E. Dragonfly+: Low cost topology for scaling datacenters. In Proc. the 3rd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era, February 2017, pp.1-8. LathamRobertRossRobertThakurRajeevCan MPI Be Used for Persistent Parallel Services?Recent Advances in Parallel Virtual Machine and Message Passing Interface2006Berlin, HeidelbergSpringer Berlin Heidelberg27528410.1007/11846802_40 FitzpatrickBDistributed caching with MemcachedLinux Journal200420041247276 Anwar A, Cheng Y, Huang H, Han J, Sim H, Lee D, Douglis F, Butt A R. BESPOKV: Application tailored scale-out key-value stores. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 2. Olson M A, Bostic K, Seltzer M I. Berkeley DB. In Proc. the 1999 USENIX Annual Technical Conference, June 1999, pp.183-191. Carns P, Jenkins J, Cranor C, Atchley S, Seo S, Snyder S, Hoeer T, Ross R. Enabling NVM for data-intensive scientific services. In Proc. the 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads, November 2016, Article No. 4. PerezDCubukEDWaterlandAKaxirasEVoterAFLong-time dynamics through parallel trajectory splicingJournal of Chemical Theory and Computation2015121182810.1021/acs.jctc.5b00916 Kim J, Lee S, Vetter J S. PapyrusKV: A high-performance parallel key-value store for distributed NVM architectures. In Proc. the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2017, Article No. 57. Duro F R, Blas J G, Isaila F, Pérez J C, Wozniak J M, Ross R. Exploiting data locality in Swift/T workflows using Hercules. In Proc. the 1st Network for Sustainable Ultrascale Computing Workshop, October 2014. DocanCParasharMKlaskySDataSpaces: An interaction and coordination framework for coupled simulation workflowsCluster Computing201115216318110.1007/s10586-011-0162-y DocanCParasharMKlaskySEnabling high-speed asynchronous data extraction and transfer using DARTConcurrency and Computation: Practice and Experience201022911811204 FringsW, Ahn D H, LeGendre M, Gamblin T, de Supinski B R, Wolf F. Massively parallel loading. In Proc. the 27th International ACM Conference on International Conference on Supercomputing, June 2013, pp.389-398. Venkatesan S, Aoulaiche M. Overview of 3D NAND technologies and outlook invited paper. In Proc. the 2018 Non-Volatile Memory Technology Symposium, Oct. 2018, Article No. 15. Lockwood G K, Hazen D, Koziol Q et al. Storage 2020: A vision for the future of HPC storage. Technical Report, National Energy Research Scientific Computing Center, 2017. https://escholarship.org/content/qt744479dp/qt744479dp.pdf, Sept. 2019. Das A, Gupta I, Motivala A. SWIM: Scalable weaklyconsistent infection-style process group membership protocol. In Proc. the 2002 International Conference on Dependable Systems and Networks, June 2002, pp.303-312. VefM A,Moti N, Süß T, Tocci T, Nou R,Miranda A, Cortes T, Brinkmann A. GekkoFS — A temporary distributed file system for HPC applications. In Proc. the 2018 IEEE International Conference on Cluster Computing, September 2018, pp.319-324. Weil S A, Leung A W, Brandt S A, Maltzahn C. RADOS: A scalable, reliable storage service for petabyte-scale storage clusters. In Proc. the 2nd International Petascale Data Storage Workshop, November 2007, pp.35-44. Kougkas A, Devarajan H, Lofstead J, Sun X H. LABIOS: A distributed label-based I/O system. In Proc. the 28th International Symposium on High-Performance Parallel and Distributed Computing, June 2019, pp.13-24. Wang T, Mohror K, Moody A, Sato K, Yu W K. An ephemeral burst-buffer file system for scientific applications. In Proc. the 2016 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2016, pp.807-818. Sevilla M A, Maltzahn C, Alvaro P, Nasirigerdeh R, Settlemyer B W, Perez D, Rich D, Shipman G M. Programmable caches with a data management language and policy engine. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.203-212. SeoSAmerABalajiPArgobots: A lightweight lowlevel 1threading and tasking frameworkIEEE Transactions on Parallel and Distributed Systems201829351252610.1109/TPDS.2017.2766062 RosenblumMOusterhoutJKThe design and implementation of a log-structured file systemACM Transactions on Computer Systems1992101265210.1145/146941.146943 FT Hady (9802_CR2) 2017; 105 9802_CR27 9802_CR25 9802_CR26 M Rosenblum (9802_CR18) 1992; 10 B Fitzpatrick (9802_CR38) 2004; 2004 Julian Kunkel (9802_CR28) 2017 R Brun (9802_CR19) 1997; 389 9802_CR1 9802_CR4 J Kim (9802_CR3) 2008; 36 9802_CR23 C Docan (9802_CR35) 2011; 15 D Perez (9802_CR20) 2015; 12 9802_CR24 9802_CR21 9802_CR43 9802_CR22 9802_CR44 9802_CR6 9802_CR41 9802_CR5 9802_CR42 9802_CR8 9802_CR7 9802_CR40 A Rudoff (9802_CR12) 2017; 42 9802_CR16 S van der Walt (9802_CR17) 2011; 13 C Docan (9802_CR36) 2010; 22 9802_CR39 9802_CR14 9802_CR15 9802_CR37 S Seo (9802_CR9) 2018; 29 9802_CR34 9802_CR13 9802_CR10 9802_CR32 9802_CR11 9802_CR33 9802_CR30 Robert Latham (9802_CR29) 2006 9802_CR31 |
| References_xml | – reference: Lockwood G K, Hazen D, Koziol Q et al. Storage 2020: A vision for the future of HPC storage. Technical Report, National Energy Research Scientific Computing Center, 2017. https://escholarship.org/content/qt744479dp/qt744479dp.pdf, Sept. 2019. – reference: Sevilla M A, Watkins N, Jimenez I, Alvaro P, Finkelstein S, LeFevre J, Maltzahn C. Malacology: A programmable storage system. In Proc. the 12th European Conference on Computer Systems, April 2017, pp.175-190. – reference: Intel Corporation. DAOS: Revolutionizing high-performance storage with Intel Optane technology. https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-storage-brief.pdf, June 2019. – reference: Duro F R, Blas J G, Isaila F, Pérez J C, Wozniak J M, Ross R. Exploiting data locality in Swift/T workflows using Hercules. In Proc. the 1st Network for Sustainable Ultrascale Computing Workshop, October 2014. – reference: RudoffAPersistent memory programmingLogin: The Usenix Magazine20174223440 – reference: Ghemawat S, Dean J. Level DB — A fast and lightweight key/value database library by Google. https://github.com/google/leveldb, Sept. 2019. – reference: Sevilla M A, Maltzahn C, Alvaro P, Nasirigerdeh R, Settlemyer B W, Perez D, Rich D, Shipman G M. Programmable caches with a data management language and policy engine. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.203-212. – reference: Flajslik M, Borch E, Parker M A. Megafly: A topology for exascale systems. In Proc. the 33rd International Conference on High Performance Computing, June 2018, pp.289-310. – reference: Olson M A, Bostic K, Seltzer M I. Berkeley DB. In Proc. the 1999 USENIX Annual Technical Conference, June 1999, pp.183-191. – reference: LathamRobertRossRobertThakurRajeevCan MPI Be Used for Persistent Parallel Services?Recent Advances in Parallel Virtual Machine and Message Passing Interface2006Berlin, HeidelbergSpringer Berlin Heidelberg27528410.1007/11846802_40 – reference: van der WaltSColbertSCVaroquauxGThe NumPy array: A structure for efficient numerical computationComputing in Science & Engineering2011132223010.1109/MCSE.2011.37 – reference: Carns P, Jenkins J, Cranor C, Atchley S, Seo S, Snyder S, Hoeer T, Ross R. Enabling NVM for data-intensive scientific services. In Proc. the 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads, November 2016, Article No. 4. – reference: Das A, Gupta I, Motivala A. SWIM: Scalable weaklyconsistent infection-style process group membership protocol. In Proc. the 2002 International Conference on Dependable Systems and Networks, June 2002, pp.303-312. – reference: Weil S A, Leung A W, Brandt S A, Maltzahn C. RADOS: A scalable, reliable storage service for petabyte-scale storage clusters. In Proc. the 2nd International Petascale Data Storage Workshop, November 2007, pp.35-44. – reference: DocanCParasharMKlaskySEnabling high-speed asynchronous data extraction and transfer using DARTConcurrency and Computation: Practice and Experience201022911811204 – reference: HadyFTFoongAVealBWilliamsDPlatform storage performance with 3D XPoint technologyProceedings of the IEEE201710591822183310.1109/JPROC.2017.2731776 – reference: Kougkas A, Devarajan H, Lofstead J, Sun X H. LABIOS: A distributed label-based I/O system. In Proc. the 28th International Symposium on High-Performance Parallel and Distributed Computing, June 2019, pp.13-24. – reference: FringsW, Ahn D H, LeGendre M, Gamblin T, de Supinski B R, Wolf F. Massively parallel loading. In Proc. the 27th International ACM Conference on International Conference on Supercomputing, June 2013, pp.389-398. – reference: KunkelJulianBetkeEugenAn MPI-IO In-Memory Driver for Non-volatile Pooled Memory of the Kove XPDLecture Notes in Computer Science2017ChamSpringer International Publishing679690 – reference: Wang T, Mohror K, Moody A, Sato K, Yu W K. An ephemeral burst-buffer file system for scientific applications. In Proc. the 2016 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2016, pp.807-818. – reference: DocanCParasharMKlaskySDataSpaces: An interaction and coordination framework for coupled simulation workflowsCluster Computing201115216318110.1007/s10586-011-0162-y – reference: PerezDCubukEDWaterlandAKaxirasEVoterAFLong-time dynamics through parallel trajectory splicingJournal of Chemical Theory and Computation2015121182810.1021/acs.jctc.5b00916 – reference: Escriva R, Sirer E G. The design and implementation of the warp transactional file system. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.469-483. – reference: Kim J, Lee S, Vetter J S. PapyrusKV: A high-performance parallel key-value store for distributed NVM architectures. In Proc. the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2017, Article No. 57. – reference: Sivaraman G, Beard E, Vazquez-Mayagoitia A, Vishwanath V, Cole J. UV/vis absorption spectra database autogenerated for optical applications via the Argonne data science program. In Proc. the 2019 APS March Meeting, March 2019. – reference: BrunRRademakersFROOT — An object oriented data analysis frameworkNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment19973891/2818610.1016/S0168-9002(97)00048-X – reference: Zheng Q, Cranor C D, Guo D H, Ganger G R, Amvrosiadis G, Gibson G A, Settlemyer B W, Grider G, Guo F. Scaling embedded in-situ indexing with deltaFS. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 3. – reference: Dorier M, Carns P, Harms K et al. Methodology for the rapid development of scalable HPC data services. In Proc. the 3rd Joint International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.76-87. – reference: Liu J L, Koziol Q, Butler G F, Fortner N, Chaarawi M, Tang H J, Byna S, Lockwood G K, Cheema R, Kallback-Rose K A, Hazen D, Prabhat. Evaluation of HPC application I/O on object storage systems. In Proc. the 3rd IEEE/ACM International Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems, November 2018, pp.24-34. – reference: VefM A,Moti N, Süß T, Tocci T, Nou R,Miranda A, Cortes T, Brinkmann A. GekkoFS — A temporary distributed file system for HPC applications. In Proc. the 2018 IEEE International Conference on Cluster Computing, September 2018, pp.319-324. – reference: SeoSAmerABalajiPArgobots: A lightweight lowlevel 1threading and tasking frameworkIEEE Transactions on Parallel and Distributed Systems201829351252610.1109/TPDS.2017.2766062 – reference: Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Zahavi E. Dragonfly+: Low cost topology for scaling datacenters. In Proc. the 3rd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era, February 2017, pp.1-8. – reference: Tang H J, Byna S, Tessier F et al. Toward scalable and asynchronous object-centric data management for HPC. In Proc. the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, pp.113-122. – reference: KimJDallyWJScottSAbtsDTechnology-driven, highly-scalable dragonfly topologyACM SIGARCH Comput. Architecture News2008363778810.1145/1394608.1382129 – reference: Weil S A, Brandt S A, Miller E L, Long D D E, Maltzahn C. Ceph: A scalable, high-performance distributed file system. In Proc. the 7th USENIX Symposium on Operating Systems Design and Implementation, November 2006, pp.307-320. – reference: FitzpatrickBDistributed caching with MemcachedLinux Journal200420041247276 – reference: Zhao D F, Zhang Z, Zhou X B, Li T L, Wang K, Kimpe D, Carns P, Ross R, Raicu I. FusionFS: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In Proc. the 2014 IEEE International Conference on Big Data, October 2014, pp.61-70. – reference: Anwar A, Cheng Y, Huang H, Han J, Sim H, Lee D, Douglis F, Butt A R. BESPOKV: Application tailored scale-out key-value stores. In Proc. the 2018 International Conference for High Performance Computing, Networking, Storage and Analysis, November 2018, Article No. 2. – reference: Ulmer C, Mukherjee S, Templet G, Levy S, Lofstead J, Widener P, Kordenbrock T, Lawson M. Faodel: Data management for next-generation application workflows. In Proc. the 9th Workshop on Scientific Cloud Computing, June 2018, Article No. 8. – reference: Venkatesan S, Aoulaiche M. Overview of 3D NAND technologies and outlook invited paper. In Proc. the 2018 Non-Volatile Memory Technology Symposium, Oct. 2018, Article No. 15. – reference: Besta M, Hoeer T. Slim Fly: A cost effective low-diameter network topology. In Proc. the Int. Conf. for High Performance Comput., Networking, Storage and Anal., November 2014, pp.348-359. – reference: Soumagne J, Kimpe D, Zounmevo J, Chaarawi M, Koziol Q, Afsahi A, Ross R. Mercury: Enabling remote procedure call for high-performance computing. In Proc. the 2013 IEEE International Conference on Cluster Computing, September 2013, Article No. 50. – reference: RosenblumMOusterhoutJKThe design and implementation of a log-structured file systemACM Transactions on Computer Systems1992101265210.1145/146941.146943 – reference: Greenberg H, Bent J, Grider G. MDHIM: A parallel key/value framework for HPC. In Proc. the 7th USENIX Workshop on Hot Topics in Storage and File Systems, July 2015, Article No. 10. – ident: 9802_CR14 – ident: 9802_CR16 doi: 10.1109/PDSW-DISCS.2018.00013 – ident: 9802_CR24 doi: 10.1145/1374596.1374606 – start-page: 679 volume-title: Lecture Notes in Computer Science year: 2017 ident: 9802_CR28 – ident: 9802_CR31 doi: 10.1109/SC.2016.68 – ident: 9802_CR10 doi: 10.1109/CLUSTER.2013.6702617 – volume: 389 start-page: 81 issue: 1/2 year: 1997 ident: 9802_CR19 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/S0168-9002(97)00048-X – ident: 9802_CR43 – ident: 9802_CR37 – ident: 9802_CR33 – ident: 9802_CR5 doi: 10.1007/978-3-319-92040-5_15 – volume: 22 start-page: 1181 issue: 9 year: 2010 ident: 9802_CR36 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.1567 – volume: 12 start-page: 18 issue: 1 year: 2015 ident: 9802_CR20 publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.5b00916 – ident: 9802_CR32 doi: 10.1109/CCGRID.2018.00026 – volume: 15 start-page: 163 issue: 2 year: 2011 ident: 9802_CR35 publication-title: Cluster Computing doi: 10.1007/s10586-011-0162-y – ident: 9802_CR40 doi: 10.1145/2464996.2465020 – ident: 9802_CR4 doi: 10.1109/SC.2014.34 – start-page: 275 volume-title: Recent Advances in Parallel Virtual Machine and Message Passing Interface year: 2006 ident: 9802_CR29 doi: 10.1007/11846802_40 – ident: 9802_CR34 doi: 10.1109/BigData.2014.7004214 – ident: 9802_CR7 – ident: 9802_CR30 doi: 10.1109/CLUSTER.2018.00049 – ident: 9802_CR8 doi: 10.2172/1632124 – volume: 42 start-page: 34 issue: 2 year: 2017 ident: 9802_CR12 publication-title: Login: The Usenix Magazine – ident: 9802_CR44 doi: 10.1145/3064176.3064208 – ident: 9802_CR15 – ident: 9802_CR42 doi: 10.1109/SC.2018.00005 – ident: 9802_CR1 doi: 10.1109/NVMTS.2018.8603104 – ident: 9802_CR13 – ident: 9802_CR39 doi: 10.1145/3126908.3126943 – ident: 9802_CR26 doi: 10.1109/PDSW-DISCS.2018.00005 – ident: 9802_CR6 doi: 10.1109/HiPINEB.2017.11 – ident: 9802_CR11 – volume: 2004 start-page: 72 issue: 124 year: 2004 ident: 9802_CR38 publication-title: Linux Journal – volume: 105 start-page: 1822 issue: 9 year: 2017 ident: 9802_CR2 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2017.2731776 – volume: 13 start-page: 22 issue: 2 year: 2011 ident: 9802_CR17 publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2011.37 – ident: 9802_CR25 – volume: 29 start-page: 512 issue: 3 year: 2018 ident: 9802_CR9 publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2017.2766062 – volume: 10 start-page: 26 issue: 1 year: 1992 ident: 9802_CR18 publication-title: ACM Transactions on Computer Systems doi: 10.1145/146941.146943 – ident: 9802_CR23 – volume: 36 start-page: 77 issue: 3 year: 2008 ident: 9802_CR3 publication-title: ACM SIGARCH Comput. Architecture News doi: 10.1145/1394608.1382129 – ident: 9802_CR22 doi: 10.1109/SC.2018.00006 – ident: 9802_CR27 – ident: 9802_CR21 doi: 10.1109/CCGRID.2018.00035 – ident: 9802_CR41 doi: 10.1145/3307681.3325405 |
| SSID | ssj0037044 |
| Score | 2.4735258 |
| Snippet | Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new... |
| SourceID | osti wanfang proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | Analysis Artificial Intelligence Computation Computational linguistics Computer Science Data Structures and Information Theory data-intensive computing distributed services High performance computing Information storage and retrieval Information Systems Applications (incl.Internet) Language processing MATHEMATICS AND COMPUTING Natural language interfaces New technology Performance evaluation Regular Paper Software Engineering storage and I/O Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEA569MEX6xWPrZIHRVACu9lsLr4VbRHBUrRI30I2F9uj7JHuKv35zuxJui1IQV_2JReGSWbm28yNkBetxyrkXctCqzsmeB1Yp6RnoC0b08GZR6enZhPq4EAfH5vDnMc9lGj34pKcNPWc7AZgpWL4u2M0hs3eJLfA2mns1_D5y9eifhtVTR1c8d2aYUfM4sr82xZXjFFWyYs1yNYVvHnhIp0Se_rk-m-XbND-1n9Rf4_czZCT7m7uyH1yI_YPyFZp50CzdD8kHz-t_cnpW4oja3xCoO_d6GjRJhTgLcWwEHY4JxvQzTY4ee9SytwjcrS_d_TuA8utFpgXko_MqzbVjQfznxTY8OQDr5MJ8A0iAOnOGNdIJ-rauSapIAF5CN9GlUIdADE-Jot-3ccnhDa6jUYa7rXgQidlpEPXdkyqanXs3JJUheXW5zLk2A3jh50LKCOrLLDKIqtstSSvL5b83NTguG7yKzxHi_IJ-3qX0wyAOqx0ZXfBGPNaGsGXZBuP2gLUwHq5HgOL_GgB30mp9ZLslBtgs1gPlptay0YKHH5Tznkevoaol_nizJNXw-r7-Wo472zkFUa2ARp7-k-7bpM7uHLzILRDFuPZr_iM3Pa_x9Ph7PkkFX8AMvgC-Q priority: 102 providerName: Springer Nature |
| Title | Mochi: Composing Data Services for High-Performance Computing Environments |
| URI | https://link.springer.com/article/10.1007/s11390-020-9802-0 https://www.proquest.com/docview/2918636488 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202001008 https://www.osti.gov/servlets/purl/1596688 |
| Volume | 35 |
| WOSCitedRecordID | wos000512098800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1860-4749 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1860-4749 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1860-4749 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1860-4749 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1860-4749 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1860-4749 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQculKcaWlY5gJBAFnn6wQWVshUCdbVqKyhcLMdOoAtKShNQfz4zWadpL3vhYimK4zgez_jLPAGe5ZaykBc5c7ksWJbEjhWCW4bSMlUF0rw0si82IeZzeXqqFl7h1nq3ykEm9oLaNZZ05K8TFUuectxvb89_M6oaRdZVX0JjAzYpS0Lcu-4dD5I4FVFfzJVU2IyKYw5WzT50DqFPxOjnSUlywr1xLnnpPGmQzW5AzytraR_jU1em_n7tODrY-t8PuQd3PRAN91Y75z7cKusHsDUUeQg9zz-Ej4eN_XH2JqQ7DSkWwvemM-EgY0IEvSE5i7DFGIIQroahzrNrgXSP4ORgdrL_gfkCDMxmPOmYFXkVpxYXthJ4slfWJXGlHLYuc7iARimTcpPFsTFpJRxHPJLZvBSVix3iyMcwqZu63IYwlXmpuEqszJJMVkJxQwbvshJRLsvCBBANq6-tT05ONTJ-6TGtMhFMI8E0EUxHAby8euR8lZljXecXRFJNXIvjWuODD3B2lP9K7-ERncRcZUkAO0R1jQCEsuhacjeynUbUx7mUAewORNWe2Vs9UjSAV8MGGW-vmdRzv4fGzst2-fNy2V4Wukwi8ndDjPZk_Ut34A51XemFdmHSXfwpn8Jt-7c7ay-msCG-fJ3C5rvZfHGEV58Ew_Yw2p_2vILtIv-G7dHx539ZCRRH |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBQkulKcILeADFRLIInYSP5AQqmirlm1XPeyhN8uxHeiCktIEKD-K_4gnibvtZW89cMkljuPEn78Zj-eB0KvCQhbysiCukCXJGXWkFNySwJaZKsOceyP7YhNiNpMnJ-p4Df2NsTDgVhk5sSdq11iwkb9jikqe8YC3j2c_CFSNgtPVWEJjgMXU__kdtmzth4OdML9bjO3tzj_tk7GqALE5Zx2xoqhoZoOkq0QQV5V1jFbKhavLHaWZUcpk3OSUGpNVwvEgZHNbeFE56gqwfwbGv5VnUsCymgoSiT8TaV87FizmBGpxxkPUPlIvaFopgb2akuDze00MjsJg0oRVfU3TvTyc7UOK6srUX65Iv731_-y_3Uf3RjUbbw_r4gFa8_VDtB5LWOCR0R6hz0eN_Xr6HsOdBswmeMd0BkcGxUGlx-AKQ46XARZ46AYa714JE3yM5jfxQU_QpG5q_xThTBZeccWszFkuK6G4geN8X4m0kL40CUrjZGs7pl6HCiDf9TJpNOBDB3xowIdOE_Tm8pGzIe_IqsavAUEaOCn0a80YWhFGB9m99HZQQBjlKmcJ2gCQ6aBeQY5gC85UttNBp-VcygRtRgzpkcpavQRQgt5GPC5vrxjU1gjZZeNFu_h2sWgvSu1ZCt58QQN9tvqlL9Gd_fnRoT48mE030F14bLCAbaJJd_7TP0e37a_utD1_0S9GjPQNg_gf_BJpYQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgQYhLy6ti2wI-gJBAVhPH8YNbRbviuVqJCvVmOX5AF5StmoD68_Fs7KaVUCXEJRc7I2fGM_7ieSH0vLZQhbypiatlQxgtHWkEtyRay0o1UebeyHWzCTGfy-NjtUh9Trsc7Z5dkkNOA1Rpavu9Uxf2xsS3CFwKAr8-SkII7U10i0EcPfyuf_maTXElinU3V7jDJtAdM7s1_0biysGUzPNkFfXsCva8cJeuk3zaYNpvl86j2eZ_f8k9tJGgKN4f9s59dMO3D9BmbvOAk9Y_RB8-r-z3kzcYRlZwtYAPTG9wtjI4wl4M4SJkMSYh4IEMTD68lEr3CB3NDo_eviOpBQOxjNOeWFGHsrIRFgQRz_ZgHS2DcvHpmItLN0qZihtWlsZUQTgeEQmztRfBlS4iyS00aVetf4xwJWuvuKJWMspkEIobcHn7IIpa-sZMUZHZr20qTw5dMn7qsbAysEpHVmlglS6m6NXFK6dDbY7rJr8EmWrQ20jXmpR-EFcHFbD0fjykackVo1O0A2LXEYJAHV0LAUe21xH3cS7lFO3m3aCTuneaqlLyijMYfp1lPg5fs6gXaRONk5fd8sf5sjtvtKcFRLxFlLb9T1SfoTuLg5n-9H7-cQfdBSLDndEumvRnv_wTdNv-7k-6s6drZfkD4VwOwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mochi%3A+Composing+Data+Services+for+High-Performance+Computing+Environments&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Ross%2C+Robert+B&rft.au=Amvrosiadis%2C+George&rft.au=Carns%2C+Philip&rft.au=Cranor%2C+Charles+D&rft.date=2020-01-01&rft.pub=Springer&rft.issn=1000-9000&rft.volume=35&rft.issue=1&rft.spage=121&rft_id=info:doi/10.1007%2Fs11390-020-9802-0&rft.externalDocID=A718216942 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |