Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis

Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biochimica et biophysica acta Ročník 1853; číslo 7; s. 1574 - 1585
Hlavní autoři: Singh, François, Charles, Anne-Laure, Schlagowski, Anna-Isabel, Bouitbir, Jamal, Bonifacio, Annalisa, Piquard, François, Krähenbühl, Stephan, Geny, Bernard, Zoll, Joffrey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.07.2015
Témata:
ISSN:0167-4889, 0006-3002, 1879-2596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H2O2 production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon. •NAC reductive stress impairs myoblasts mitochondrial respiratory chain function.•Mitochondrial malfunction leads to mitochondrial ROS production.•Mitochondrial oxidation triggers the mitochondrial hormesis phenomenon.•Mitochondrial hormesis protects myoblasts from the toxic effects of statins.
AbstractList Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.
Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H2O2 production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon. •NAC reductive stress impairs myoblasts mitochondrial respiratory chain function.•Mitochondrial malfunction leads to mitochondrial ROS production.•Mitochondrial oxidation triggers the mitochondrial hormesis phenomenon.•Mitochondrial hormesis protects myoblasts from the toxic effects of statins.
Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.
Author Zoll, Joffrey
Singh, François
Charles, Anne-Laure
Bonifacio, Annalisa
Geny, Bernard
Schlagowski, Anna-Isabel
Piquard, François
Krähenbühl, Stephan
Bouitbir, Jamal
Author_xml – sequence: 1
  givenname: François
  surname: Singh
  fullname: Singh, François
  organization: University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
– sequence: 2
  givenname: Anne-Laure
  surname: Charles
  fullname: Charles, Anne-Laure
  organization: University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
– sequence: 3
  givenname: Anna-Isabel
  surname: Schlagowski
  fullname: Schlagowski, Anna-Isabel
  organization: University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
– sequence: 4
  givenname: Jamal
  surname: Bouitbir
  fullname: Bouitbir, Jamal
  organization: Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
– sequence: 5
  givenname: Annalisa
  surname: Bonifacio
  fullname: Bonifacio, Annalisa
  organization: Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
– sequence: 6
  givenname: François
  surname: Piquard
  fullname: Piquard, François
  organization: University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
– sequence: 7
  givenname: Stephan
  surname: Krähenbühl
  fullname: Krähenbühl, Stephan
  organization: Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
– sequence: 8
  givenname: Bernard
  surname: Geny
  fullname: Geny, Bernard
  organization: University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
– sequence: 9
  givenname: Joffrey
  surname: Zoll
  fullname: Zoll, Joffrey
  email: zolljoffrey@yahoo.com
  organization: University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25769432$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3DAQhq2Kqiy0b4BQjlySju3YsXtAQqgtSEiVqnJElu3MgldJvLUdJN6ebBcuHOhcZg7f_0vzHZGDKU5IyAmFhgKVXzeNc3b0qWFARQO8AZAfyIqqTtdMaHlAVgvW1a1S-pAc5byBZdpOfCKHTHRSt5ytyN1v7GdfwiNWuSTMuQrj1oaUq_EpusHmslyhRP8Qpz4FO1TreVr4OFV26quSwv09prfMQ0wj5pA_k49rO2T88rKPye2P738ur-qbXz-vLy9uat9KVmonPfOMO8dQCy5YpzRIB0ohFVZaEEKzHlE7qVSrNAfOaCu6VoEUnDrLj8nZvneb4t8ZczFjyB6HwU4Y52yoVMAoSJALevqCzm7E3mxTGG16Mq9KFuDbHvAp5pxwbXwodvdxSTYMhoLZ-Tcbs_dvdv4NcAP_2ts34df-_8TO9zFcJD0GTCb7gJPHPiT0xfQxvF_wDN7hoXQ
CitedBy_id crossref_primary_10_1016_j_bcp_2023_115929
crossref_primary_10_1042_BCJ20190591
crossref_primary_10_1016_j_freeradbiomed_2021_12_312
crossref_primary_10_1016_j_pharmthera_2018_10_004
crossref_primary_10_1016_j_cotox_2017_10_008
crossref_primary_10_1016_j_pnpbp_2019_109708
crossref_primary_10_1016_j_bcp_2020_113860
crossref_primary_10_1016_j_biopha_2021_111945
crossref_primary_10_1016_j_ejvs_2018_07_025
crossref_primary_10_1186_s12915_020_00812_5
crossref_primary_10_1080_15384101_2016_1218104
crossref_primary_10_1089_ars_2014_6190
crossref_primary_10_3390_antiox10111834
crossref_primary_10_3390_antiox9070612
crossref_primary_10_1002_jcp_70072
crossref_primary_10_1111_acel_13710
crossref_primary_10_1016_j_drudis_2018_10_011
crossref_primary_10_5534_wjmh_210153
crossref_primary_10_1007_s00401_017_1731_9
crossref_primary_10_1089_ars_2019_7828
crossref_primary_10_1007_s00204_018_2369_7
crossref_primary_10_1016_j_freeradbiomed_2016_12_006
crossref_primary_10_1016_j_freeradbiomed_2025_03_029
crossref_primary_10_14814_phy2_70016
crossref_primary_10_1016_j_drudis_2016_09_001
crossref_primary_10_1007_s10522_024_10112_y
crossref_primary_10_1186_s12610_023_00197_9
crossref_primary_10_7554_eLife_67604
crossref_primary_10_1016_j_bbrc_2023_08_032
crossref_primary_10_1074_jbc_RA118_004253
crossref_primary_10_3390_antiox14080984
crossref_primary_10_1016_j_freeradbiomed_2020_03_008
crossref_primary_10_1016_j_xfnr_2021_12_001
crossref_primary_10_3390_antiox12020479
crossref_primary_10_3390_ijms26051910
crossref_primary_10_3390_medicina59101769
crossref_primary_10_1016_j_biopha_2019_108911
crossref_primary_10_1016_j_cjca_2016_01_003
crossref_primary_10_3892_mmr_2017_7442
crossref_primary_10_1038_s41467_021_24634_3
crossref_primary_10_1016_j_freeradbiomed_2017_01_024
crossref_primary_10_1093_femsyr_foz085
crossref_primary_10_3390_antiox10020175
crossref_primary_10_1093_abbs_gmw125
crossref_primary_10_1016_j_freeradbiomed_2021_03_013
crossref_primary_10_1186_s40659_024_00494_1
crossref_primary_10_1016_j_tiv_2017_05_013
crossref_primary_10_1186_s12915_024_01858_5
crossref_primary_10_3390_ijms18102098
crossref_primary_10_3390_ijms22073603
crossref_primary_10_1155_2020_5136957
crossref_primary_10_1080_19396368_2022_2119181
crossref_primary_10_1155_2020_8819719
crossref_primary_10_1089_ars_2019_7803
crossref_primary_10_1073_pnas_2317343121
crossref_primary_10_1002_jcph_1008
crossref_primary_10_3390_antiox12071471
crossref_primary_10_1089_ars_2017_7216
crossref_primary_10_1016_j_bbamcr_2020_118643
crossref_primary_10_1016_j_heliyon_2023_e20020
crossref_primary_10_1177_0960327115618247
crossref_primary_10_1007_s11033_020_05590_5
crossref_primary_10_1016_j_tice_2025_102736
crossref_primary_10_1074_jbc_RA119_011989
crossref_primary_10_1007_s12035_020_02212_w
crossref_primary_10_1016_j_jim_2018_09_003
crossref_primary_10_4103_1673_5374_206640
crossref_primary_10_1161_CIRCRESAHA_116_309854
crossref_primary_10_1016_j_jconrel_2022_01_033
crossref_primary_10_1155_2017_7612182
Cites_doi 10.1016/B978-0-12-152818-8.50009-8
10.1152/japplphysiol.00107.2011
10.1093/eurheartj/ehr224
10.2478/v10181-011-0104-x
10.1016/0003-9861(85)90293-0
10.1016/S0304-3940(02)01423-4
10.1016/j.freeradbiomed.2006.10.048
10.1096/fj.11-199869
10.1177/1753465812437563
10.1113/jphysiol.2003.049478
10.1016/S0076-6879(81)77050-2
10.1186/1742-4933-10-15
10.1016/j.molcel.2007.03.016
10.1016/j.exger.2010.03.014
10.1016/j.taap.2007.02.015
10.1002/mus.23309
10.1016/j.bcp.2006.12.012
10.1016/j.pupt.2005.12.007
10.1249/MSS.0b013e31822b0bd4
10.1016/j.amjcard.2008.02.003
10.1016/j.cmet.2005.05.006
10.1089/ars.2011.4336
10.1002/jcb.20743
10.2203/dose-response.12-005.Gao
10.1089/ars.2012.5028
10.1152/japplphysiol.00371.2004
10.1001/jama.279.20.1615
10.1016/j.bbamcr.2013.04.014
10.1016/j.cmet.2007.08.011
10.1111/acel.12076
10.1249/MSS.0b013e318203afa3
10.1016/j.coph.2007.12.008
10.1089/ars.2012.4914
10.1074/jbc.C100631200
10.1006/abio.2001.5530
10.1074/jbc.M304854200
10.1093/cvr/cvn098
10.1161/CIRCRESAHA.108.189092
10.1378/chest.46.4.469
10.1016/S0891-5849(99)00242-7
10.1016/j.cmet.2008.01.001
10.1158/0008-5472.CAN-07-0225
10.1152/ajpcell.00402.2005
10.1039/C1MB05315A
10.1016/j.bbagen.2009.07.031
10.1016/S0140-6736(11)61305-6
10.1124/jpet.112.192120
10.1152/ajpcell.00428.2006
10.1152/ajpcell.2001.280.4.C867
10.1016/j.cardiores.2006.09.003
10.1172/JCI21025
10.1128/MCB.25.4.1354-1366.2005
10.1016/j.cmet.2005.05.001
10.1016/j.mehy.2005.09.009
10.1016/j.cub.2010.10.057
10.1210/er.2002-0012
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbamcr.2015.03.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-2596
EndPage 1585
ExternalDocumentID 25769432
10_1016_j_bbamcr_2015_03_006
S0167488915000804
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
IXB
J1W
KOM
LX3
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
OHT
TWZ
UHS
VH1
X7M
Y6R
YYP
ZGI
~KM
7X8
ID FETCH-LOGICAL-c462t-b6c2c23bb2e9535278906b088e15a6a05592dee9b688489303214574806531ba3
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355352300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4889
0006-3002
IngestDate Thu Oct 02 07:36:53 EDT 2025
Mon Jul 21 05:55:28 EDT 2025
Sat Nov 29 07:23:52 EST 2025
Tue Nov 18 21:50:46 EST 2025
Fri Feb 23 02:30:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Myoblast
Reductive stress
Statin
Mitohormesis
N-acetylcysteine
Apoptosis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-b6c2c23bb2e9535278906b088e15a6a05592dee9b688489303214574806531ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.bbamcr.2015.03.006
PMID 25769432
PQID 1680210606
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1680210606
pubmed_primary_25769432
crossref_citationtrail_10_1016_j_bbamcr_2015_03_006
crossref_primary_10_1016_j_bbamcr_2015_03_006
elsevier_sciencedirect_doi_10_1016_j_bbamcr_2015_03_006
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wilson, Yang, Szustakowski, Gullicksen, Halse (bb0075) 2007; 292
Sano, Fukuda (bb0035) 2008; 103
Medved, Brown, Bjorksten, Murphy, Petersen, Sostaric, Gong, McKenna (bb0275) 2004; 97
Yuyun, Jinjun, Minfang, Jing, Juan, Rui, Li, Jing (bb0165) 2013; 11
Chandel, Budinger (bb0235) 2007; 42
Downs, Clearfield, Weis, Whitney, Shapiro, Beere, Langendorfer, Stein, Kruyer, Gotto (bb0300) 1998; 279
Dam, Mitchell, Quadrilatero (bb0305) 2013
Barbieri, Sestili (bb0145) 2012; 982794
Bouitbir, Charles, Rasseneur, Dufour, Piquard, Geny, Zoll (bb0160) 2011; 111
Schulz, Zarse, Voigt, Urban, Birringer, Ristow (bb0040) 2007; 6
Watanabe, Houten, Wang, Moschetta, Mangelsdorf, Heyman, Moore, Auwerx (bb0120) 2004; 113
Gleyzer, Vercauteren, Scarpulla (bb0215) 2005; 25
Zhang, Limphong, Pieper, Liu, Rodesch, Christians, Benjamin (bb0100) 2012; 26
Gems, Partridge (bb0025) 2008; 7
Calabrese, Bachmann, Bailer, Bolger, Borak, Cai, Cedergreen, Cherian, Chiueh, Clarkson, Cook, Diamond, Doolittle, Dorato, Duke, Feinendegen, Gardner, Hart, Hastings, Hayes, Hoffmann, Ives, Jaworowski, Johnson, Jonas, Kaminski, Keller, Klaunig, Knudsen, Kozumbo (bb0260) 2007; 222
Chen, Vazquez, Moghaddas, Hoppel, Lesnefsky (bb0150) 2003; 278
Ljubicic, Joseph, Saleem, Uguccioni, Collu-Marchese, Lai, Nguyen, Hood (bb0200) 2010; 1800
Finn, Kemp (bb0265) 2012; 8
Naviaux (bb0270) 2012; 342
Cornelius, Perrotta, Graziano, Calabrese, Calabrese (bb0060) 2013; 10
Turrens (bb0180) 2003; 552
Kaelin (bb0245) 2005; 1
Puigserver, Spiegelman (bb0205) 2003; 24
Meister (bb0085) 1981; 18
Tapia (bb0045) 2006; 66
Bouitbir, Daussin, Charles, Rasseneur, Dufour, Richard, Piquard, Geny, Zoll (bb0155) 2012; 46
Dumaswala, Zhuo, Mahajan, Nair, Shertzer, Dibello, Jacobsen (bb0080) 2001; 280
Pimentel, Haeussler, Matsui, Burgoyne, Cohen, Bachschmid (bb0140) 2012; 16
Ristow, Zarse (bb0030) 2010; 45
Turrens, Alexandre, Lehninger (bb0175) 1985; 237
Sadowska (bb0095) 03/01/2012; 6
Veal, Day, Morgan (bb0255) 2007; 26
Dikalov, Li, Mehranpour, Wang, Zafari (bb0115) 2007; 73
Menon, Sarsour, Kalen, Venkataraman, Hitchler, Domann, Oberley, Goswami (bb0190) 2007; 67
Otrocka-Domagała (bb0005) 2011; 14
Brewer, Mustafi, Murray, Rajasekaran, Benjamin (bb0010) 2013; 18
Scarpulla (bb0220) 2006; 97
Bernstein, Ausdenmoore (bb0090) 1964; 46
Schapira (bb0065) 2012; 379
Allen, Tresini (bb0015) 2000; 28
Guzy, Hoyos, Robin, Chen, Liu, Mansfield, Simon, Hammerling, Schumacker (bb0240) 2005; 1
Ventura-Clapier, Mettauer, Bigard (bb0070) 2007; 73
Scarpulla (bb0225) 2001; 21
Bouitbir, Charles, Echaniz-Laguna, Kindo, Daussin, Auwerx, Piquard, Geny, Zoll (bb0020) 2012; 33
Anderson, Neufer (bb0105) 2006; 290
Ventura-Clapier, Garnier, Veksler (bb0210) 2008; 79
Woolley, Corcoran, Groeger, Landry, Cotter (bb0050) 2013; 19
Liu, Saint (bb0125) 2002; 302
Lee, Hwang, Kenyon (bb0250) 2010; 20
Sadowska, Manuel, De Backer (bb0280) 2007; 20
Gutteridge, Halliwell (bb0285) 2010; 393
Lin, Puigserver, Donovan, Tarr, Spiegelman (bb0195) 2002; 277
Daussin, Rasseneur, Bouitbir, Charles, Dufour, Geny, Burelle, Richard (bb0230) 2012; 44
Steinhubl (bb0295) 2008; 101
Ramakers, Ruijter, Deprez, Moorman (bb0130) 2003; 339
Schmeisser, Schmeisser, Weimer, Groth, Priebe, Fazius, Kuhlow, Pick, Einax, Guthke, Platzer, Zarse, Ristow (bb0170) 03/29/2013; 12
Schwartz, Sack (bb0055) 2008; 8
Akerboom, Sies (bb0135) 1981; 77
Strobel, Peake, Matsumoto, Marsh, Coombes, Wadley (bb0290) 2011; 43
Scarpulla (10.1016/j.bbamcr.2015.03.006_bb0220) 2006; 97
Lee (10.1016/j.bbamcr.2015.03.006_bb0250) 2010; 20
Dam (10.1016/j.bbamcr.2015.03.006_bb0305) 2013
Sano (10.1016/j.bbamcr.2015.03.006_bb0035) 2008; 103
Tapia (10.1016/j.bbamcr.2015.03.006_bb0045) 2006; 66
Bernstein (10.1016/j.bbamcr.2015.03.006_bb0090) 1964; 46
Chandel (10.1016/j.bbamcr.2015.03.006_bb0235) 2007; 42
Daussin (10.1016/j.bbamcr.2015.03.006_bb0230) 2012; 44
Sadowska (10.1016/j.bbamcr.2015.03.006_bb0280) 2007; 20
Cornelius (10.1016/j.bbamcr.2015.03.006_bb0060) 2013; 10
Dumaswala (10.1016/j.bbamcr.2015.03.006_bb0080) 2001; 280
Allen (10.1016/j.bbamcr.2015.03.006_bb0015) 2000; 28
Steinhubl (10.1016/j.bbamcr.2015.03.006_bb0295) 2008; 101
Finn (10.1016/j.bbamcr.2015.03.006_bb0265) 2012; 8
Ljubicic (10.1016/j.bbamcr.2015.03.006_bb0200) 2010; 1800
Ventura-Clapier (10.1016/j.bbamcr.2015.03.006_bb0210) 2008; 79
Menon (10.1016/j.bbamcr.2015.03.006_bb0190) 2007; 67
Pimentel (10.1016/j.bbamcr.2015.03.006_bb0140) 2012; 16
Puigserver (10.1016/j.bbamcr.2015.03.006_bb0205) 2003; 24
Chen (10.1016/j.bbamcr.2015.03.006_bb0150) 2003; 278
Zhang (10.1016/j.bbamcr.2015.03.006_bb0100) 2012; 26
Bouitbir (10.1016/j.bbamcr.2015.03.006_bb0155) 2012; 46
Gleyzer (10.1016/j.bbamcr.2015.03.006_bb0215) 2005; 25
Gems (10.1016/j.bbamcr.2015.03.006_bb0025) 2008; 7
Turrens (10.1016/j.bbamcr.2015.03.006_bb0180) 2003; 552
Otrocka-Domagała (10.1016/j.bbamcr.2015.03.006_bb0005) 2011; 14
Veal (10.1016/j.bbamcr.2015.03.006_bb0255) 2007; 26
Bouitbir (10.1016/j.bbamcr.2015.03.006_bb0020) 2012; 33
Dikalov (10.1016/j.bbamcr.2015.03.006_bb0115) 2007; 73
Medved (10.1016/j.bbamcr.2015.03.006_bb0275) 2004; 97
Scarpulla (10.1016/j.bbamcr.2015.03.006_bb0225) 2001; 21
Naviaux (10.1016/j.bbamcr.2015.03.006_bb0270) 2012; 342
Akerboom (10.1016/j.bbamcr.2015.03.006_bb0135) 1981; 77
Strobel (10.1016/j.bbamcr.2015.03.006_bb0290) 2011; 43
Schmeisser (10.1016/j.bbamcr.2015.03.006_bb0170) 2013; 12
Downs (10.1016/j.bbamcr.2015.03.006_bb0300) 1998; 279
Ristow (10.1016/j.bbamcr.2015.03.006_bb0030) 2010; 45
Woolley (10.1016/j.bbamcr.2015.03.006_bb0050) 2013; 19
Ramakers (10.1016/j.bbamcr.2015.03.006_bb0130) 2003; 339
Turrens (10.1016/j.bbamcr.2015.03.006_bb0175) 1985; 237
Liu (10.1016/j.bbamcr.2015.03.006_bb0125) 2002; 302
Schwartz (10.1016/j.bbamcr.2015.03.006_bb0055) 2008; 8
Meister (10.1016/j.bbamcr.2015.03.006_bb0085) 1981; 18
Guzy (10.1016/j.bbamcr.2015.03.006_bb0240) 2005; 1
Kaelin (10.1016/j.bbamcr.2015.03.006_bb0245) 2005; 1
Barbieri (10.1016/j.bbamcr.2015.03.006_bb0145) 2012; 982794
Yuyun (10.1016/j.bbamcr.2015.03.006_bb0165) 2013; 11
Bouitbir (10.1016/j.bbamcr.2015.03.006_bb0160) 2011; 111
Sadowska (10.1016/j.bbamcr.2015.03.006_bb0095) 2012; 6
Lin (10.1016/j.bbamcr.2015.03.006_bb0195) 2002; 277
Schulz (10.1016/j.bbamcr.2015.03.006_bb0040) 2007; 6
Wilson (10.1016/j.bbamcr.2015.03.006_bb0075) 2007; 292
Watanabe (10.1016/j.bbamcr.2015.03.006_bb0120) 2004; 113
Ventura-Clapier (10.1016/j.bbamcr.2015.03.006_bb0070) 2007; 73
Calabrese (10.1016/j.bbamcr.2015.03.006_bb0260) 2007; 222
Schapira (10.1016/j.bbamcr.2015.03.006_bb0065) 2012; 379
Brewer (10.1016/j.bbamcr.2015.03.006_bb0010) 2013; 18
Anderson (10.1016/j.bbamcr.2015.03.006_bb0105) 2006; 290
Gutteridge (10.1016/j.bbamcr.2015.03.006_bb0285) 2010; 393
References_xml – volume: 10
  start-page: 15
  year: 2013
  ident: bb0060
  article-title: Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi”
  publication-title: Immun. Ageing
– volume: 292
  start-page: C1599
  year: 2007
  end-page: C1605
  ident: bb0075
  article-title: Pyruvate induces mitochondrial biogenesis by a PGC-1 alpha-independent mechanism
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 393
  start-page: 561
  year: 2010
  end-page: 564
  ident: bb0285
  article-title: Antioxidants: molecules, medicines, and myths
  publication-title: Biochem. Biophys. Res. Commun
– year: 2013
  ident: bb0305
  article-title: Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts
  publication-title: Biochim. Biophys. Acta
– volume: 42
  start-page: 165
  year: 2007
  end-page: 174
  ident: bb0235
  article-title: The cellular basis for diverse responses to oxygen
  publication-title: Free Radic. Biol. Med.
– volume: 278
  start-page: 36027
  year: 2003
  end-page: 36031
  ident: bb0150
  article-title: Production of reactive oxygen species by mitochondria: central role of complex III
  publication-title: J. Biol. Chem.
– volume: 79
  year: 2008
  ident: bb0210
  article-title: Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
  publication-title: Cardiovasc. Res.
– volume: 7
  start-page: 200
  year: 2008
  end-page: 203
  ident: bb0025
  article-title: Stress-response hormesis and aging: “that which does not kill us makes us stronger”
  publication-title: Cell Metab.
– volume: 25
  start-page: 1354
  year: 2005
  end-page: 1366
  ident: bb0215
  article-title: Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
  publication-title: Mol. Cell. Biol.
– volume: 103
  start-page: 1191
  year: 2008
  end-page: 1193
  ident: bb0035
  article-title: Activation of mitochondrial biogenesis by hormesis
  publication-title: Circ. Res.
– volume: 8
  start-page: 160
  year: 2008
  end-page: 165
  ident: bb0055
  article-title: Targeting the mitochondria to augment myocardial protection
  publication-title: Curr. Opin. Pharmacol.
– volume: 28
  start-page: 463
  year: 2000
  end-page: 499
  ident: bb0015
  article-title: Oxidative stress and gene regulation
  publication-title: Free Radic. Biol. Med.
– volume: 237
  start-page: 408
  year: 1985
  end-page: 414
  ident: bb0175
  article-title: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
  publication-title: Arch. Biochem. Biophys.
– volume: 379
  start-page: 1825
  year: 2012
  end-page: 1834
  ident: bb0065
  article-title: Mitochondrial diseases
  publication-title: Lancet
– volume: 1
  start-page: 401
  year: 2005
  end-page: 408
  ident: bb0240
  article-title: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
  publication-title: Cell Metab.
– volume: 11
  start-page: 270
  year: 2013
  end-page: 280
  ident: bb0165
  article-title: Effects of low concentrations of rotenone upon mitohormesis in SH-SY5Y cells
  publication-title: Dose-Response
– volume: 302
  start-page: 52
  year: 2002
  end-page: 59
  ident: bb0125
  article-title: A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics
  publication-title: Anal. Biochem.
– volume: 1
  start-page: 357
  year: 2005
  end-page: 358
  ident: bb0245
  article-title: ROS: really involved in oxygen sensing
  publication-title: Cell Metab.
– volume: 97
  start-page: 673
  year: 2006
  end-page: 683
  ident: bb0220
  article-title: Nuclear control of respiratory gene expression in mammalian cells
  publication-title: J. Cell. Biochem.
– volume: 342
  start-page: 608
  year: 2012
  end-page: 618
  ident: bb0270
  article-title: Oxidative shielding or oxidative stress?
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 290
  start-page: C844
  year: 2006
  end-page: C851
  ident: bb0105
  article-title: Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 44
  start-page: 217
  year: 2012
  end-page: 224
  ident: bb0230
  article-title: Different timing of changes in mitochondrial functions following endurance training
  publication-title: Med. Sci. Sports Exerc.
– volume: 21
  start-page: 3738
  year: 2001
  end-page: 3749
  ident: bb0225
  article-title: PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian
  publication-title: Cells
– volume: 26
  start-page: 1
  year: 2007
  end-page: 14
  ident: bb0255
  article-title: Hydrogen peroxide sensing and signaling
  publication-title: Mol. Cell
– volume: 101
  start-page: 14D
  year: 2008
  end-page: 19D
  ident: bb0295
  article-title: Why have antioxidants failed in clinical trials?
  publication-title: Am. J. Cardiol.
– volume: 19
  start-page: 1815
  year: 2013
  end-page: 1827
  ident: bb0050
  article-title: Redox-regulated growth factor survival signaling
  publication-title: Antioxid. Redox Signal.
– volume: 8
  start-page: 650
  year: 2012
  end-page: 662
  ident: bb0265
  article-title: Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells
  publication-title: Mol. Biosyst.
– volume: 16
  start-page: 524
  year: 2012
  end-page: 542
  ident: bb0140
  article-title: Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system
  publication-title: Antioxid. Redox Signal.
– volume: 46
  start-page: 367
  year: 2012
  end-page: 373
  ident: bb0155
  article-title: Mitochondria of trained skeletal muscle are protected from deleterious effects of statins
  publication-title: Muscle Nerve
– volume: 43
  start-page: 1017
  year: 2011
  end-page: 1024
  ident: bb0290
  article-title: Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis
  publication-title: Med. Sci. Sports Exerc.
– volume: 18
  start-page: 21
  year: 1981
  end-page: 58
  ident: bb0085
  article-title: On the cycles of glutathione metabolism and transport
  publication-title: Curr. Top. Cell. Regul.
– volume: 6
  start-page: 127
  year: 03/01/2012
  end-page: 135
  ident: bb0095
  article-title: N-acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease
  publication-title: Ther. Adv. Respir. Dis.
– volume: 26
  start-page: 1442
  year: 2012
  end-page: 1451
  ident: bb0100
  article-title: Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity
  publication-title: FASEB J.
– volume: 20
  start-page: 2131
  year: 2010
  end-page: 2136
  ident: bb0250
  article-title: Inhibition of respiration extends
  publication-title: Curr. Biol.
– volume: 33
  start-page: 1397
  year: 2012
  end-page: 1407
  ident: bb0020
  article-title: Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a “mitohormesis” mechanism involving reactive oxygen species and PGC-1
  publication-title: Eur. Heart J.
– volume: 6
  start-page: 280
  year: 2007
  end-page: 293
  ident: bb0040
  article-title: Glucose restriction extends
  publication-title: Cell Metab.
– volume: 982794
  start-page: 2012
  year: 2012
  ident: bb0145
  article-title: Reactive oxygen species in skeletal muscle signaling
  publication-title: J. Signal Transduct.
– volume: 24
  start-page: 78
  year: 2003
  end-page: 90
  ident: bb0205
  article-title: Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
  publication-title: Endocr. Rev.
– volume: 279
  start-page: 1615
  year: 1998
  end-page: 1622
  ident: bb0300
  article-title: Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study
  publication-title: JAMA
– volume: 20
  start-page: 9
  year: 2007
  end-page: 22
  ident: bb0280
  article-title: Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review
  publication-title: Pulm. Pharmacol. Ther.
– volume: 280
  start-page: C867
  year: 2001
  end-page: C873
  ident: bb0080
  article-title: Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 1800
  start-page: 223
  year: 2010
  end-page: 234
  ident: bb0200
  article-title: Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging
  publication-title: Biochim. Biophys. Acta
– volume: 14
  start-page: 683
  year: 2011
  end-page: 694
  ident: bb0005
  article-title: Sensitivity of skeletal muscle to pro-apoptotic factors
  publication-title: Pol. J. Vet. Sci.
– volume: 552
  start-page: 335
  year: 2003
  end-page: 344
  ident: bb0180
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J. Physiol.
– volume: 18
  start-page: 1114
  year: 2013
  end-page: 1127
  ident: bb0010
  article-title: Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease
  publication-title: Antioxid. Redox Signal.
– volume: 66
  start-page: 832
  year: 2006
  end-page: 843
  ident: bb0045
  article-title: Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary p
  publication-title: Med. Hypotheses
– volume: 113
  start-page: 1408
  year: 2004
  end-page: 1418
  ident: bb0120
  article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
  publication-title: J. Clin. Invest.
– volume: 222
  start-page: 122
  year: 2007
  end-page: 128
  ident: bb0260
  article-title: Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 73
  start-page: 972
  year: 2007
  end-page: 980
  ident: bb0115
  article-title: Production of extracellular superoxide by human lymphoblast cell lines: comparison of electron spin resonance techniques and cytochrome C reduction assay
  publication-title: Biochem. Pharmacol.
– volume: 45
  start-page: 410
  year: 2010
  end-page: 418
  ident: bb0030
  article-title: How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis)
  publication-title: Exp. Gerontol.
– volume: 277
  start-page: 1645
  year: 2002
  end-page: 1648
  ident: bb0195
  article-title: Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor
  publication-title: J. Biol. Chem.
– volume: 73
  start-page: 10
  year: 2007
  end-page: 18
  ident: bb0070
  article-title: Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure
  publication-title: Cardiovasc. Res.
– volume: 12
  start-page: 508
  year: 03/29/2013
  end-page: 517
  ident: bb0170
  article-title: Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension
  publication-title: Aging Cell
– volume: 46
  start-page: 469
  year: 1964
  end-page: 473
  ident: bb0090
  article-title: Iatrogenic bronchospasm occurring during clinical trials of a new mucolytic agent, acetylcysteine
  publication-title: Dis. Chest
– volume: 111
  start-page: 1477
  year: 2011
  end-page: 1483
  ident: bb0160
  article-title: Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress
  publication-title: J. Appl. Physiol.
– volume: 97
  start-page: 1477
  year: 2004
  end-page: 1485
  ident: bb0275
  article-title: N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals
  publication-title: J. Appl. Physiol.
– volume: 339
  start-page: 62
  year: 2003
  end-page: 66
  ident: bb0130
  article-title: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data
  publication-title: Neurosci. Lett.
– volume: 67
  start-page: 6392
  year: 2007
  end-page: 6399
  ident: bb0190
  article-title: Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase
  publication-title: Cancer Res.
– volume: 77
  start-page: 373
  year: 1981
  end-page: 382
  ident: bb0135
  article-title: Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples
  publication-title: Methods Enzymol.
– volume: 18
  start-page: 21
  year: 1981
  ident: 10.1016/j.bbamcr.2015.03.006_bb0085
  article-title: On the cycles of glutathione metabolism and transport
  publication-title: Curr. Top. Cell. Regul.
  doi: 10.1016/B978-0-12-152818-8.50009-8
– volume: 111
  start-page: 1477
  year: 2011
  ident: 10.1016/j.bbamcr.2015.03.006_bb0160
  article-title: Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00107.2011
– volume: 982794
  start-page: 2012
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0145
  article-title: Reactive oxygen species in skeletal muscle signaling
  publication-title: J. Signal Transduct.
– volume: 33
  start-page: 1397
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0020
  article-title: Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a “mitohormesis” mechanism involving reactive oxygen species and PGC-1
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehr224
– volume: 14
  start-page: 683
  year: 2011
  ident: 10.1016/j.bbamcr.2015.03.006_bb0005
  article-title: Sensitivity of skeletal muscle to pro-apoptotic factors
  publication-title: Pol. J. Vet. Sci.
  doi: 10.2478/v10181-011-0104-x
– volume: 237
  start-page: 408
  year: 1985
  ident: 10.1016/j.bbamcr.2015.03.006_bb0175
  article-title: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(85)90293-0
– volume: 339
  start-page: 62
  year: 2003
  ident: 10.1016/j.bbamcr.2015.03.006_bb0130
  article-title: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(02)01423-4
– volume: 42
  start-page: 165
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0235
  article-title: The cellular basis for diverse responses to oxygen
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.10.048
– volume: 26
  start-page: 1442
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0100
  article-title: Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity
  publication-title: FASEB J.
  doi: 10.1096/fj.11-199869
– volume: 6
  start-page: 127
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0095
  article-title: N-acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease
  publication-title: Ther. Adv. Respir. Dis.
  doi: 10.1177/1753465812437563
– volume: 552
  start-page: 335
  year: 2003
  ident: 10.1016/j.bbamcr.2015.03.006_bb0180
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.049478
– volume: 21
  start-page: 3738
  year: 2001
  ident: 10.1016/j.bbamcr.2015.03.006_bb0225
  article-title: PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian
  publication-title: Cells
– volume: 77
  start-page: 373
  year: 1981
  ident: 10.1016/j.bbamcr.2015.03.006_bb0135
  article-title: Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(81)77050-2
– volume: 10
  start-page: 15
  year: 2013
  ident: 10.1016/j.bbamcr.2015.03.006_bb0060
  article-title: Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi”
  publication-title: Immun. Ageing
  doi: 10.1186/1742-4933-10-15
– volume: 26
  start-page: 1
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0255
  article-title: Hydrogen peroxide sensing and signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.03.016
– volume: 393
  start-page: 561
  year: 2010
  ident: 10.1016/j.bbamcr.2015.03.006_bb0285
  article-title: Antioxidants: molecules, medicines, and myths
– volume: 45
  start-page: 410
  year: 2010
  ident: 10.1016/j.bbamcr.2015.03.006_bb0030
  article-title: How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis)
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2010.03.014
– volume: 222
  start-page: 122
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0260
  article-title: Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2007.02.015
– volume: 46
  start-page: 367
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0155
  article-title: Mitochondria of trained skeletal muscle are protected from deleterious effects of statins
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23309
– volume: 73
  start-page: 972
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0115
  article-title: Production of extracellular superoxide by human lymphoblast cell lines: comparison of electron spin resonance techniques and cytochrome C reduction assay
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.12.012
– volume: 20
  start-page: 9
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0280
  article-title: Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review
  publication-title: Pulm. Pharmacol. Ther.
  doi: 10.1016/j.pupt.2005.12.007
– volume: 44
  start-page: 217
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0230
  article-title: Different timing of changes in mitochondrial functions following endurance training
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e31822b0bd4
– volume: 101
  start-page: 14D
  year: 2008
  ident: 10.1016/j.bbamcr.2015.03.006_bb0295
  article-title: Why have antioxidants failed in clinical trials?
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2008.02.003
– volume: 1
  start-page: 357
  year: 2005
  ident: 10.1016/j.bbamcr.2015.03.006_bb0245
  article-title: ROS: really involved in oxygen sensing
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.05.006
– volume: 16
  start-page: 524
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0140
  article-title: Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4336
– volume: 97
  start-page: 673
  year: 2006
  ident: 10.1016/j.bbamcr.2015.03.006_bb0220
  article-title: Nuclear control of respiratory gene expression in mammalian cells
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20743
– volume: 11
  start-page: 270
  year: 2013
  ident: 10.1016/j.bbamcr.2015.03.006_bb0165
  article-title: Effects of low concentrations of rotenone upon mitohormesis in SH-SY5Y cells
  publication-title: Dose-Response
  doi: 10.2203/dose-response.12-005.Gao
– volume: 19
  start-page: 1815
  year: 2013
  ident: 10.1016/j.bbamcr.2015.03.006_bb0050
  article-title: Redox-regulated growth factor survival signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5028
– volume: 97
  start-page: 1477
  year: 2004
  ident: 10.1016/j.bbamcr.2015.03.006_bb0275
  article-title: N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00371.2004
– volume: 279
  start-page: 1615
  year: 1998
  ident: 10.1016/j.bbamcr.2015.03.006_bb0300
  article-title: Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study
  publication-title: JAMA
  doi: 10.1001/jama.279.20.1615
– year: 2013
  ident: 10.1016/j.bbamcr.2015.03.006_bb0305
  article-title: Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts
  doi: 10.1016/j.bbamcr.2013.04.014
– volume: 6
  start-page: 280
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0040
  article-title: Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.08.011
– volume: 12
  start-page: 508
  year: 2013
  ident: 10.1016/j.bbamcr.2015.03.006_bb0170
  article-title: Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension
  publication-title: Aging Cell
  doi: 10.1111/acel.12076
– volume: 43
  start-page: 1017
  year: 2011
  ident: 10.1016/j.bbamcr.2015.03.006_bb0290
  article-title: Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e318203afa3
– volume: 8
  start-page: 160
  year: 2008
  ident: 10.1016/j.bbamcr.2015.03.006_bb0055
  article-title: Targeting the mitochondria to augment myocardial protection
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2007.12.008
– volume: 18
  start-page: 1114
  year: 2013
  ident: 10.1016/j.bbamcr.2015.03.006_bb0010
  article-title: Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4914
– volume: 277
  start-page: 1645
  year: 2002
  ident: 10.1016/j.bbamcr.2015.03.006_bb0195
  article-title: Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C100631200
– volume: 302
  start-page: 52
  year: 2002
  ident: 10.1016/j.bbamcr.2015.03.006_bb0125
  article-title: A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5530
– volume: 278
  start-page: 36027
  year: 2003
  ident: 10.1016/j.bbamcr.2015.03.006_bb0150
  article-title: Production of reactive oxygen species by mitochondria: central role of complex III
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304854200
– volume: 79
  year: 2008
  ident: 10.1016/j.bbamcr.2015.03.006_bb0210
  article-title: Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvn098
– volume: 103
  start-page: 1191
  year: 2008
  ident: 10.1016/j.bbamcr.2015.03.006_bb0035
  article-title: Activation of mitochondrial biogenesis by hormesis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.189092
– volume: 46
  start-page: 469
  year: 1964
  ident: 10.1016/j.bbamcr.2015.03.006_bb0090
  article-title: Iatrogenic bronchospasm occurring during clinical trials of a new mucolytic agent, acetylcysteine
  publication-title: Dis. Chest
  doi: 10.1378/chest.46.4.469
– volume: 28
  start-page: 463
  year: 2000
  ident: 10.1016/j.bbamcr.2015.03.006_bb0015
  article-title: Oxidative stress and gene regulation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00242-7
– volume: 7
  start-page: 200
  year: 2008
  ident: 10.1016/j.bbamcr.2015.03.006_bb0025
  article-title: Stress-response hormesis and aging: “that which does not kill us makes us stronger”
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.01.001
– volume: 67
  start-page: 6392
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0190
  article-title: Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0225
– volume: 290
  start-page: C844
  year: 2006
  ident: 10.1016/j.bbamcr.2015.03.006_bb0105
  article-title: Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00402.2005
– volume: 8
  start-page: 650
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0265
  article-title: Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells
  publication-title: Mol. Biosyst.
  doi: 10.1039/C1MB05315A
– volume: 1800
  start-page: 223
  year: 2010
  ident: 10.1016/j.bbamcr.2015.03.006_bb0200
  article-title: Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2009.07.031
– volume: 379
  start-page: 1825
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0065
  article-title: Mitochondrial diseases
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61305-6
– volume: 342
  start-page: 608
  year: 2012
  ident: 10.1016/j.bbamcr.2015.03.006_bb0270
  article-title: Oxidative shielding or oxidative stress?
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.112.192120
– volume: 292
  start-page: C1599
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0075
  article-title: Pyruvate induces mitochondrial biogenesis by a PGC-1 alpha-independent mechanism
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00428.2006
– volume: 280
  start-page: C867
  year: 2001
  ident: 10.1016/j.bbamcr.2015.03.006_bb0080
  article-title: Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.2001.280.4.C867
– volume: 73
  start-page: 10
  year: 2007
  ident: 10.1016/j.bbamcr.2015.03.006_bb0070
  article-title: Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2006.09.003
– volume: 113
  start-page: 1408
  year: 2004
  ident: 10.1016/j.bbamcr.2015.03.006_bb0120
  article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21025
– volume: 25
  start-page: 1354
  year: 2005
  ident: 10.1016/j.bbamcr.2015.03.006_bb0215
  article-title: Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.4.1354-1366.2005
– volume: 1
  start-page: 401
  year: 2005
  ident: 10.1016/j.bbamcr.2015.03.006_bb0240
  article-title: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.05.001
– volume: 66
  start-page: 832
  year: 2006
  ident: 10.1016/j.bbamcr.2015.03.006_bb0045
  article-title: Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary p
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2005.09.009
– volume: 20
  start-page: 2131
  year: 2010
  ident: 10.1016/j.bbamcr.2015.03.006_bb0250
  article-title: Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.10.057
– volume: 24
  start-page: 78
  year: 2003
  ident: 10.1016/j.bbamcr.2015.03.006_bb0205
  article-title: Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2002-0012
SSID ssj0000475
ssj0025309
Score 2.4677114
Snippet Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1574
SubjectTerms Acetylcysteine - pharmacology
Animals
Apoptosis
Cell Respiration - drug effects
Cell Survival - drug effects
Cytoprotection - drug effects
Hormesis - drug effects
Hydroxymethylglutaryl-CoA Reductase Inhibitors - pharmacology
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Turnover - drug effects
Mitohormesis
Myoblast
Myoblasts - drug effects
Myoblasts - metabolism
N-acetylcysteine
Oxidation-Reduction - drug effects
Protective Agents - pharmacology
Rats
Reactive Oxygen Species - metabolism
Reductive stress
Statin
Stress, Physiological - drug effects
Time Factors
Title Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis
URI https://dx.doi.org/10.1016/j.bbamcr.2015.03.006
https://www.ncbi.nlm.nih.gov/pubmed/25769432
https://www.proquest.com/docview/1680210606
Volume 1853
WOSCitedRecordID wos000355352300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2596
  dateEnd: 20210131
  omitProxy: false
  ssIdentifier: ssj0000475
  issn: 0167-4889
  databaseCode: AIEXJ
  dateStart: 19950216
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpu7G9jK376j6KB3sLDpa_ZD92pWMdLJSlg7wMI9ly45LaJXa69h_d37M766NLQ-k22ItxjBQb3U-n0-nud4S8F55kAZXMZRIQHOYidkWaUMwCEWkoaFmyoi82wcbjZDpNjwaDnyYX5mLO6jq5vEzP_6uo4RkIG1Nn_0Lc9k_hAdyD0OEKYofrHwn-K5Kx9gFBOg8EEyGrRTs8u2oE2Mod3ME0BrVXF33JDlzaOhOV3MFu_QSTelfbzMC0lW3VrpwBV9CgQrqBoeyGomqUl4QjPwcfgbbQhXeHeDgw1KxC1vs8gTVzZkzn_rieNZU18HUUgAq5rKWL6dsWgpN8NucnzQ9dchs5oN3Dlgtpo0U-NMuqE9VCxwHrIdPODRrZQFjtcVvLulFOUORqT1TpoZFUijthqQtbuXhVsysiYo1h9puippEqDqQXfRqpwkFrC4rybZyOhOBnOfLH0kiR4t7g7-4tgkmf0wEfRqPeFA83yJbPohS07dbe4cH087WNELLIss5DB5PU2Ucerr_rNqPptk1RbxwdPyaP9K7G2VNofEIGst4m91Wd06tt8mDflBV8Sr5bfDoKn47Gp2Px6axgzzH4dACfjsHnjTYGn8_It48Hx_ufXF3jw83D2O9cEed-7gdC-DJFpiHMy44FLH2SRjzmHmx4_ULKVMRJgjxJHhbWAtlhPEBABQ-ek826qeVL4pSlVxZ5LhOf8jAAPIjCC2NRUp_7UVGwHRKYQcxyTYCPdVjmmYl0PM3U0Gc49JkXZDD0O8S1vc4VAcwd7ZmRT6aNWGWcZgCpO3q-M-LMQCY4N3ktm2Wb0ThB10yMbV4oOdtvQYdBGgb-q39-72vy8HrqvSGb3WIp35J7-UVXtYtdssGmya7GL_waH335BVd33Qc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reductive+stress+impairs+myoblasts+mitochondrial+function+and+triggers+mitochondrial+hormesis&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Singh%2C+Fran%C3%A7ois&rft.au=Charles%2C+Anne-Laure&rft.au=Schlagowski%2C+Anna-Isabel&rft.au=Bouitbir%2C+Jamal&rft.date=2015-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-4889&rft.eissn=1879-2596&rft.volume=1853&rft.issue=7&rft.spage=1574&rft.epage=1585&rft_id=info:doi/10.1016%2Fj.bbamcr.2015.03.006&rft.externalDocID=S0167488915000804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon