Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization

Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 22; číslo 2; s. 197
Hlavní autoři: Choong, Jun Jin, Liu, Xin, Murata, Tsuyoshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI 01.02.2020
MDPI AG
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists in Variational Autoencoder (VAE)-based approaches. Specifically, merely minimizing the loss of VAE increases the deviation from its primary objective. Focusing on Variational Graph Autoencoder for Community Detection (VGAECD) we found that optimizing the loss using the stochastic gradient descent often leads to sub-optimal community structure especially when initialized poorly. We address this shortcoming by introducing a dual optimization procedure. This procedure aims to guide the optimization process and encourage learning of the primary objective. Additionally, we linearize the encoder to reduce the number of learning parameters. The outcome is a robust algorithm that outperforms its predecessor.
AbstractList Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists in Variational Autoencoder (VAE)-based approaches. Specifically, merely minimizing the loss of VAE increases the deviation from its primary objective. Focusing on Variational Graph Autoencoder for Community Detection (VGAECD) we found that optimizing the loss using the stochastic gradient descent often leads to sub-optimal community structure especially when initialized poorly. We address this shortcoming by introducing a dual optimization procedure. This procedure aims to guide the optimization process and encourage learning of the primary objective. Additionally, we linearize the encoder to reduce the number of learning parameters. The outcome is a robust algorithm that outperforms its predecessor.Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists in Variational Autoencoder (VAE)-based approaches. Specifically, merely minimizing the loss of VAE increases the deviation from its primary objective. Focusing on Variational Graph Autoencoder for Community Detection (VGAECD) we found that optimizing the loss using the stochastic gradient descent often leads to sub-optimal community structure especially when initialized poorly. We address this shortcoming by introducing a dual optimization procedure. This procedure aims to guide the optimization process and encourage learning of the primary objective. Additionally, we linearize the encoder to reduce the number of learning parameters. The outcome is a robust algorithm that outperforms its predecessor.
Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists in Variational Autoencoder (VAE)-based approaches. Specifically, merely minimizing the loss of VAE increases the deviation from its primary objective. Focusing on Variational Graph Autoencoder for Community Detection (VGAECD) we found that optimizing the loss using the stochastic gradient descent often leads to sub-optimal community structure especially when initialized poorly. We address this shortcoming by introducing a dual optimization procedure. This procedure aims to guide the optimization process and encourage learning of the primary objective. Additionally, we linearize the encoder to reduce the number of learning parameters. The outcome is a robust algorithm that outperforms its predecessor.
Author Murata, Tsuyoshi
Choong, Jun Jin
Liu, Xin
AuthorAffiliation 2 National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; xin.liu@aist.go.jp
1 Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan; murata@c.titech.ac.jp
AuthorAffiliation_xml – name: 1 Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan; murata@c.titech.ac.jp
– name: 2 National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; xin.liu@aist.go.jp
Author_xml – sequence: 1
  givenname: Jun Jin
  orcidid: 0000-0001-6078-1636
  surname: Choong
  fullname: Choong, Jun Jin
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-2336-7409
  surname: Liu
  fullname: Liu, Xin
– sequence: 3
  givenname: Tsuyoshi
  surname: Murata
  fullname: Murata, Tsuyoshi
BookMark eNptkU1v1DAQhi1U1C964B_kCIel_nZyQaq2UCpV6oWWozVxxruuEntxnKLy60l3VxVFnGz5feaZkeeEHMQUkZD3jH4SoqHnyDnllDXmDTlmtGkWUlB68Nf9iJyM4wOlXHCmD8mRELxWjeHH5MftpoQh_A5xVd1DDlBCitBXVxk26-piKgmjSx3myqdcLdMwTDGUp-oSC7pntvoVyrq6nOaavWqreEfeeuhHPNufp-Tu65fvy2-Lm9ur6-XFzcJJzcsC0NWuNc6gU9oz3XoONXCtUTNvvKINCBTcaejaRkvwErmmruvmnEqO4pRc77xdgge7yWGA_GQTBLt9SHllIZfgerQGuPAC0VHPpKJYK9PyVnRU1VwqbGbX551rM7UDdg5jydC_kr5OYljbVXq0RjGtuZoFH_aCnH5OOBY7hNFh30PENI2WS10LSY1hM_pxh7qcxjGjf2nDqH1eqn1Z6sye_8O6ULa_PE8R-v9U_AEHoaX4
CitedBy_id crossref_primary_10_3390_e23020192
crossref_primary_10_1007_s12652_024_04871_2
crossref_primary_10_1155_2023_9011738
crossref_primary_10_1016_j_neunet_2022_06_021
crossref_primary_10_1016_j_eswa_2023_119775
crossref_primary_10_1109_ACCESS_2023_3257021
crossref_primary_10_3390_e23040403
crossref_primary_10_1007_s00521_025_11028_5
crossref_primary_10_1016_j_cageo_2024_105621
crossref_primary_10_1007_s00202_024_02520_7
crossref_primary_10_3390_e24020276
crossref_primary_10_3390_e22080819
crossref_primary_10_3390_info15090568
crossref_primary_10_3390_electronics12112437
crossref_primary_10_3390_app11167179
Cites_doi 10.1109/TBDATA.2016.2631512
10.1073/pnas.98.2.404
10.1007/978-1-4614-7163-9_239-1
10.1103/PhysRevE.69.026113
10.1016/j.physrep.2016.09.002
10.1145/1134271.1134277
10.1073/pnas.122653799
10.1145/2939672.2939754
10.24963/ijcai.2018/362
10.1023/A:1009953814988
10.1088/1742-5468/2008/10/P10008
10.1145/3159652.3159706
10.1073/pnas.0601602103
10.1103/PhysRevE.81.046106
10.1109/TKDE.2018.2846555
10.1016/j.engappai.2019.08.003
10.1103/PhysRevE.78.046110
10.1007/s003579900004
10.1145/2736277.2741093
10.1145/2287076.2287104
10.1086/jar.33.4.3629752
10.1145/990308.990313
10.1109/ICDM.2018.00022
10.1103/PhysRevE.85.056109
10.1145/2623330.2623732
10.1023/A:1007665907178
10.1103/PhysRevE.76.036106
10.1111/j.2517-6161.1977.tb01600.x
10.1371/journal.pone.0018209
10.1109/TII.2019.2908056
10.1073/pnas.0605965104
10.1145/3289600.3291029
10.1109/TIT.2015.2490670
10.1609/aaai.v28i1.8916
10.1007/s10115-013-0693-z
10.1109/TPAMI.2013.50
10.1016/j.physrep.2009.11.002
10.1007/978-3-540-87700-4_107
10.1145/2806416.2806512
10.1103/PhysRevE.83.016107
10.1214/09-SS057
10.1103/PhysRevE.90.012805
10.1007/11569596_31
10.1145/168304.168306
10.1109/FOCS.2015.47
10.1088/1742-5468/2005/09/P09008
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/e22020197
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_7a23f3eec0f1450e857b2b3d058245e9
PMC7516625
10_3390_e22020197
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7X8
5PM
ID FETCH-LOGICAL-c462t-aec8cb7c7ec56f16bf2a8a266e61f7f509a3e32c6adb964af4e260cdde61042e3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521371400057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:27:29 EDT 2025
Tue Nov 04 01:59:38 EST 2025
Sun Nov 09 10:59:27 EST 2025
Sat Nov 29 07:14:09 EST 2025
Tue Nov 18 22:13:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-aec8cb7c7ec56f16bf2a8a266e61f7f509a3e32c6adb964af4e260cdde61042e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2336-7409
0000-0001-6078-1636
OpenAccessLink https://doaj.org/article/7a23f3eec0f1450e857b2b3d058245e9
PMID 33285972
PQID 2468340771
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7a23f3eec0f1450e857b2b3d058245e9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516625
proquest_miscellaneous_2468340771
crossref_primary_10_3390_e22020197
crossref_citationtrail_10_3390_e22020197
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_50
Snijders (ref_18) 1997; 14
Good (ref_40) 2010; 81
ref_14
Dempster (ref_65) 1977; 39
ref_13
ref_57
ref_12
Blondel (ref_38) 2008; 2008
Newman (ref_2) 2001; 98
ref_11
Fortunato (ref_39) 2007; 104
ref_10
ref_53
ref_52
ref_51
Seshadhri (ref_55) 2012; 85
ref_17
Kannan (ref_37) 2004; 51
ref_16
Fortunato (ref_62) 2016; 659
Airoldi (ref_58) 2008; 9
Higgins (ref_64) 2017; 2
ref_60
Jordan (ref_29) 1999; 37
ref_25
ref_24
ref_68
ref_23
ref_67
ref_22
ref_66
Bengio (ref_9) 2013; 35
ref_21
ref_20
ref_63
Danon (ref_72) 2005; 2005
Newman (ref_73) 2004; 69
Larremore (ref_59) 2014; 90
ref_28
ref_27
ref_26
Leskovec (ref_54) 2010; 11
Pearl (ref_15) 2009; 3
Fortunato (ref_7) 2010; 486
Karrer (ref_19) 2011; 83
ref_36
ref_34
ref_33
Yang (ref_71) 2015; 42
ref_31
ref_30
Raghavan (ref_41) 2007; 76
Abbe (ref_61) 2016; 62
Harper (ref_3) 2016; 5
Guo (ref_46) 2018; 31
Girvan (ref_35) 2002; 99
Murphy (ref_32) 2010; 19
Lancichinetti (ref_56) 2008; 78
Zachary (ref_1) 1977; 33
Newman (ref_8) 2006; 103
Su (ref_4) 2019; 15
ref_45
ref_43
ref_42
McCallum (ref_70) 2000; 3
Agreste (ref_44) 2017; 3
Moscato (ref_47) 2019; 85
ref_49
ref_48
Sen (ref_69) 2008; 29
ref_5
ref_6
References_xml – volume: 3
  start-page: 289
  year: 2017
  ident: ref_44
  article-title: An Empirical Comparison of Algorithms to Find Communities in Directed Graphs and Their Application in Web Data Analytics
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2631512
– volume: 98
  start-page: 404
  year: 2001
  ident: ref_2
  article-title: The Structure of Scientific Collaboration Networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.2.404
– ident: ref_49
– ident: ref_57
  doi: 10.1007/978-1-4614-7163-9_239-1
– ident: ref_5
– volume: 69
  start-page: 026113
  year: 2004
  ident: ref_73
  article-title: Finding and Evaluating Community Structure in Networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– ident: ref_26
– ident: ref_51
– volume: 659
  start-page: 1
  year: 2016
  ident: ref_62
  article-title: Community Detection in Networks: A User Guide
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.09.002
– ident: ref_68
  doi: 10.1145/1134271.1134277
– volume: 99
  start-page: 7821
  year: 2002
  ident: ref_35
  article-title: Community Structure in Social and Biological Networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122653799
– ident: ref_11
  doi: 10.1145/2939672.2939754
– ident: ref_23
  doi: 10.24963/ijcai.2018/362
– ident: ref_16
– volume: 3
  start-page: 127
  year: 2000
  ident: ref_70
  article-title: Automating the Construction of Internet Portals with Machine Learning
  publication-title: Inf. Retr.
  doi: 10.1023/A:1009953814988
– volume: 2008
  start-page: P10008
  year: 2008
  ident: ref_38
  article-title: Fast Unfolding of Communities in Large Networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref_52
  doi: 10.1145/3159652.3159706
– volume: 103
  start-page: 8577
  year: 2006
  ident: ref_8
  article-title: Modularity and Community Structure in Networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601602103
– volume: 81
  start-page: 046106
  year: 2010
  ident: ref_40
  article-title: The Performance of Modularity Maximization in Practical Contexts
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.046106
– volume: 31
  start-page: 706
  year: 2018
  ident: ref_46
  article-title: CFOND: Consensus Factorization for Co-Clustering Networked Data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2846555
– volume: 19
  start-page: 45
  year: 2010
  ident: ref_32
  article-title: Introducing the Graph 500
  publication-title: Cray Users Group (CUG)
– volume: 85
  start-page: 773
  year: 2019
  ident: ref_47
  article-title: Community Detection Based on Game Theory
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.003
– ident: ref_31
– volume: 78
  start-page: 046110
  year: 2008
  ident: ref_56
  article-title: Benchmark Graphs for Testing Community Detection Algorithms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.046110
– ident: ref_27
– volume: 14
  start-page: 75
  year: 1997
  ident: ref_18
  article-title: Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure
  publication-title: J. Classif.
  doi: 10.1007/s003579900004
– ident: ref_48
– volume: 9
  start-page: 1981
  year: 2008
  ident: ref_58
  article-title: Mixed Membership Stochastic Blockmodels
  publication-title: J. Mach. Learn. Res.
– ident: ref_10
– ident: ref_13
  doi: 10.1145/2736277.2741093
– ident: ref_33
  doi: 10.1145/2287076.2287104
– volume: 33
  start-page: 452
  year: 1977
  ident: ref_1
  article-title: An Information Flow Model for Conflict and Fission in Small Groups
  publication-title: J. Anthropol. Res.
  doi: 10.1086/jar.33.4.3629752
– volume: 51
  start-page: 497
  year: 2004
  ident: ref_37
  article-title: On Clusterings: Good, Bad and Spectral
  publication-title: J. ACM
  doi: 10.1145/990308.990313
– ident: ref_66
– ident: ref_17
– ident: ref_20
– ident: ref_22
  doi: 10.1109/ICDM.2018.00022
– ident: ref_28
– volume: 11
  start-page: 985
  year: 2010
  ident: ref_54
  article-title: Kronecker Graphs: An Approach to Modeling Networks
  publication-title: J. Mach. Learn. Res.
– ident: ref_30
– volume: 85
  start-page: 056109
  year: 2012
  ident: ref_55
  article-title: Community Structure and Scale-Free Collections of Erdos-Rényi Graphs
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.056109
– volume: 29
  start-page: 93
  year: 2008
  ident: ref_69
  article-title: Collective Classification in Network Data
  publication-title: AI Mag.
– ident: ref_24
– ident: ref_34
– ident: ref_12
  doi: 10.1145/2623330.2623732
– volume: 37
  start-page: 183
  year: 1999
  ident: ref_29
  article-title: An Introduction to Variational Methods for Graphical Models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 76
  start-page: 036106
  year: 2007
  ident: ref_41
  article-title: Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.036106
– volume: 2
  start-page: 6
  year: 2017
  ident: ref_64
  article-title: Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
  publication-title: ICLR
– volume: 39
  start-page: 1
  year: 1977
  ident: ref_65
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref_43
  doi: 10.1371/journal.pone.0018209
– volume: 15
  start-page: 4266
  year: 2019
  ident: ref_4
  article-title: An Edge Intelligence Empowered Recommender System Enabling Cultural Heritage Applications
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2908056
– volume: 104
  start-page: 36
  year: 2007
  ident: ref_39
  article-title: Resolution Limit in Community Detection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0605965104
– ident: ref_14
– ident: ref_63
– ident: ref_21
– volume: 5
  start-page: 19
  year: 2016
  ident: ref_3
  article-title: The Movielens Datasets: History and Context
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
– ident: ref_53
  doi: 10.1145/3289600.3291029
– volume: 62
  start-page: 471
  year: 2016
  ident: ref_61
  article-title: Exact Recovery in the Stochastic Block Model
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2490670
– ident: ref_50
  doi: 10.1609/aaai.v28i1.8916
– ident: ref_6
– volume: 42
  start-page: 181
  year: 2015
  ident: ref_71
  article-title: Defining and Evaluating Network Communities Based on Ground-Truth
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0693-z
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_9
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 486
  start-page: 75
  year: 2010
  ident: ref_7
  article-title: Community Detection in Graphs
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.11.002
– ident: ref_25
– ident: ref_36
  doi: 10.1007/978-3-540-87700-4_107
– ident: ref_45
  doi: 10.1145/2806416.2806512
– volume: 83
  start-page: 016107
  year: 2011
  ident: ref_19
  article-title: Stochastic Blockmodels and Community Structure in Networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.016107
– volume: 3
  start-page: 96
  year: 2009
  ident: ref_15
  article-title: Causal Inference in Statistics: An Overview
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS057
– volume: 90
  start-page: 012805
  year: 2014
  ident: ref_59
  article-title: Efficiently Inferring Community Structure in Bipartite Networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012805
– ident: ref_42
  doi: 10.1007/11569596_31
– ident: ref_67
  doi: 10.1145/168304.168306
– ident: ref_60
  doi: 10.1109/FOCS.2015.47
– volume: 2005
  start-page: P09008
  year: 2005
  ident: ref_72
  article-title: Comparing Community Structure Identification
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2005/09/P09008
SSID ssj0023216
Score 2.3517451
Snippet Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 197
SubjectTerms graph neural network
network embedding
variational autoencoder
variational inference
Title Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization
URI https://www.proquest.com/docview/2468340771
https://pubmed.ncbi.nlm.nih.gov/PMC7516625
https://doaj.org/article/7a23f3eec0f1450e857b2b3d058245e9
Volume 22
WOSCitedRecordID wos000521371400057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5iY4ddEIhNlB-VQRx2iZbYju0cV9YCEpQK9qM7RY7zrFWCFHUpEhz423lO0mqRkHbZJYfEdpz34nzvc54_A7x1RKtUUfrIEpxGMjMyIljQUSxLS3AVo2kW0l580tOpmc-z2a2tvkJOWCsP3BruWFsuvEB0sU9kGurqgheijFPDZYrN0r1YZxsy1VEtwRPV6ggJIvXHyInjUzCje-jTiPT3Ist-XuQtoJk8hkddhMhO2p49gQdYPYXLLzS0fyz-ENCwC6K33RQeex_0ptnJul4GQcoSV4yCUNat-qh_s1Osm1yrioUJV3a6pjpdU00TB3A-GZ-9-xB1eyJETipeRxadcYV2Gl2qfKIKz62xhLKoEq89wb8VKLhTtiwyJa2XSIzF0UeM4iTJURzCbrWs8BmwUpdGGOW8Lb1MtSh8ETvpuc_IuuS1ARxtbJW7TjA87FvxPSfiEMyab806gDfboj9blYz_FRoFg28LBGHr5gS5O-_cnd_l7gG83rgrp4EQ_m7YCpfrm5xLZQTRU50MQPf82Ltj_0q1uG4ktXWaKGKCz--jiy9gPzxxm9r9Enbr1RpfwZ77VS9uVkPY0XMzhIej8XT2ddi8tcOQcPotHP-O6crs4-fZ1T9B6vcw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Variational+Graph+Autoencoder+for+Community+Detection+with+Dual+Optimization&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Choong%2C+Jun+Jin&rft.au=Liu%2C+Xin&rft.au=Murata%2C+Tsuyoshi&rft.date=2020-02-01&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=22&rft.issue=2&rft_id=info:doi/10.3390%2Fe22020197&rft_id=info%3Apmid%2F33285972&rft.externalDocID=PMC7516625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon