Deep Learning Role in Early Diagnosis of Prostate Cancer
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b v...
Uloženo v:
| Vydáno v: | Technology in cancer research & treatment Ročník 17; s. 1533034618775530 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Angeles, CA
SAGE Publications
01.01.2018
Sage Publications Ltd |
| Témata: | |
| ISSN: | 1533-0346, 1533-0338, 1533-0338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. |
|---|---|
| AbstractList | The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. |
| Author | Abou El-Fetouh, Ahmed El-Baz, Ayman Elmogy, Mohammed Abou El-Ghar, Mohamed Elmaghraby, Adel Khalil, Ashraf Ghazal, Mohammed Reda, Islam Shalaby, Ahmed |
| AuthorAffiliation | 2 Department of Bioengineering, University of Louisville, Louisville, KY, USA 3 Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates 5 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA 1 Faculty of Computers and Information, Mansoura University, Mansoura, Egypt 4 Radiology Department, Mansoura University, Mansoura, Egypt |
| AuthorAffiliation_xml | – name: 3 Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates – name: 2 Department of Bioengineering, University of Louisville, Louisville, KY, USA – name: 5 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA – name: 1 Faculty of Computers and Information, Mansoura University, Mansoura, Egypt – name: 4 Radiology Department, Mansoura University, Mansoura, Egypt |
| Author_xml | – sequence: 1 givenname: Islam surname: Reda fullname: Reda, Islam – sequence: 2 givenname: Ashraf surname: Khalil fullname: Khalil, Ashraf – sequence: 3 givenname: Mohammed surname: Elmogy fullname: Elmogy, Mohammed – sequence: 4 givenname: Ahmed surname: Abou El-Fetouh fullname: Abou El-Fetouh, Ahmed – sequence: 5 givenname: Ahmed surname: Shalaby fullname: Shalaby, Ahmed – sequence: 6 givenname: Mohamed surname: Abou El-Ghar fullname: Abou El-Ghar, Mohamed – sequence: 7 givenname: Adel surname: Elmaghraby fullname: Elmaghraby, Adel – sequence: 8 givenname: Mohammed surname: Ghazal fullname: Ghazal, Mohammed – sequence: 9 givenname: Ayman surname: El-Baz fullname: El-Baz, Ayman |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29804518$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtrGzEUhUVJaB7tvqsykE03k0i6kkbaBILzBENCaNdCI99xFcaSK40L-fcZ49RtDclKQvrO4dxzj8heTBEJ-cLoKWNNc8YkAAWhmG4aKYF-IIfrp5oC6L3tXagDclTKE6VcKWAfyQE3mgrJ9CHRl4jLaoouxxDn1WPqsQqxunK5f64ug5vHVEKpUlc95FQGN2A1cdFj_kT2O9cX_Px6HpMf11ffJ7f19P7mbnIxrb1QfKiNUIgaZ7JRAlpjnBTON9oJxzsFLUgvmGNt26HiuuGegzBcAoKX2FE9g2NyvvFdrtoFzjzGIbveLnNYuPxskwv2_58Yftp5-m2laTgzZjT49mqQ068VlsEuQvHY9y5iWhXLqVCUresb0ZMd9CmtchzHsxwYGA2M65H6-m-ibZQ_pY4A3QB-rKxk7LYIo3a9N7u7t1GidiQ-jGWHtJ4p9O8J642wuDn-jfsm_wJg-qWf |
| CitedBy_id | crossref_primary_10_3390_s22051848 crossref_primary_10_1002_jmri_28608 crossref_primary_10_1002_ima_23064 crossref_primary_10_1080_17434440_2025_2477601 crossref_primary_10_1016_j_imu_2022_100923 crossref_primary_10_1002_jbmr_4814 crossref_primary_10_1007_s00345_024_04995_2 crossref_primary_10_1016_j_compbiomed_2023_106715 crossref_primary_10_1002_ima_22976 crossref_primary_10_1177_15579883231161292 crossref_primary_10_1038_s41598_024_84516_8 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_1038_s41746_024_01190_w crossref_primary_10_18267_j_aip_202 crossref_primary_10_3233_THC_248011 crossref_primary_10_1002_mp_16181 crossref_primary_10_1016_j_cmpb_2020_105316 crossref_primary_10_1016_j_prp_2024_155687 crossref_primary_10_1186_s13014_024_02471_0 crossref_primary_10_1007_s12553_018_0279_6 crossref_primary_10_1109_JBHI_2023_3279096 crossref_primary_10_3389_fonc_2024_1287995 crossref_primary_10_3390_electronics14101926 crossref_primary_10_1186_s12859_023_05235_x crossref_primary_10_1016_j_heliyon_2024_e29913 crossref_primary_10_1038_s41598_022_22514_4 crossref_primary_10_1007_s10916_020_01641_3 crossref_primary_10_1109_LRA_2025_3592072 crossref_primary_10_1016_j_critrevonc_2025_104653 crossref_primary_10_1007_s11063_021_10485_y crossref_primary_10_3390_diagnostics11060959 crossref_primary_10_1016_j_compbiomed_2025_110812 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_1007_s11063_022_10999_z crossref_primary_10_3390_s21082586 crossref_primary_10_1016_j_bios_2024_116982 crossref_primary_10_1038_s41598_024_56405_7 crossref_primary_10_1016_j_ccell_2022_09_012 crossref_primary_10_1007_s00261_024_04241_8 crossref_primary_10_1007_s11042_023_14940_x crossref_primary_10_1007_s11042_025_20786_2 crossref_primary_10_1111_cpf_12611 crossref_primary_10_1371_journal_pone_0303002 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1016_j_inffus_2023_101913 crossref_primary_10_1038_s41598_021_84072_5 crossref_primary_10_3390_diagnostics13132133 crossref_primary_10_3390_jimaging11080254 crossref_primary_10_1007_s11042_021_11044_2 crossref_primary_10_1007_s00261_024_04560_w crossref_primary_10_3389_fonc_2022_971871 crossref_primary_10_1109_TETCI_2024_3449876 crossref_primary_10_1155_2021_2392395 crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_1007_s11042_021_11697_z crossref_primary_10_3390_sym13060974 crossref_primary_10_1038_s41746_020_00341_z crossref_primary_10_3389_fonc_2021_802964 crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1001_jamanetworkopen_2024_22454 crossref_primary_10_1016_j_eswa_2024_124838 crossref_primary_10_1038_s41746_022_00689_4 crossref_primary_10_1016_j_bbe_2018_06_009 crossref_primary_10_1002_mp_13849 crossref_primary_10_3389_fphar_2025_1609079 crossref_primary_10_1016_j_compmedimag_2025_102625 crossref_primary_10_3390_s21206708 crossref_primary_10_7717_peerj_cs_2298 crossref_primary_10_1007_s11042_024_19177_w |
| Cites_doi | 10.1177/107327480100800204 10.4172/jcsb.1000158 10.3122/jabfm.16.2.95 10.3322/caac.21332 10.1002/jmri.23618 10.1016/S0022-5347(01)69087-6 10.1109/CVPR.2014.18 10.1109/ICIP.2016.7532843 10.1145/1656274.1656278 10.1109/TCYB.2015.2404432 10.1148/radiol.2431030580 10.1148/radiol.12111634 10.1088/1361-6560/aa7731 10.1109/TNNLS.2015.2479223 10.1002/jmri.24801 10.1007/978-3-319-59876-5_12 10.1016/j.clinbiochem.2013.10.023 10.1148/radiol.13130420 10.1109/ISBI.2016.7493479 10.1002/nbm.2956 10.1109/TMI.2014.2303821 10.1007/s00330-010-1960-y 10.1148/radiol.13121454 10.1109/TPAMI.2013.50 10.1118/1.4918318 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2018 2018 SAGE Publications |
| Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2018 2018 SAGE Publications |
| DBID | AFRWT AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1177/1533034618775530 |
| DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1533-0338 |
| ExternalDocumentID | PMC5972199 29804518 10_1177_1533034618775530 10.1177_1533034618775530 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 123 53G 54M 7X7 8FI 8FJ AAJPV AAJQC AARDL AARIX AASGM ABAWP ABQXT ABRHV ABUWG ABVFX ACARO ACDXX ACGFS ACROE ADBBV ADOGD ADPDF AENEX AERKM AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AFUIA AGNHF AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AUTPY AYAKG BDDNI BENPR BKSCU BPHCQ BSEHC BVXVI CCPQU DC. EBS EJD F5P FYUFA GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HMCUK HYE J8X K.F O9- OK1 OVD OVEED P2P PHGZM PHGZT PIMPY PQQKQ ROL RPM SAUOL SCDPB SCNPE SFC SJN TEORI UKHRP Y4B ZONMY ZPPRI ZRKOI ZSSAH AAYXX ACHEB AFFHD CITATION CGR CUY CVF ECM EIF M4V NPM 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c462t-946ee8ed57643b99a54ac78a4a2f63b35c41a1bbfe62872c2349253e3c5ef08d3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447146300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1533-0346 1533-0338 |
| IngestDate | Tue Nov 04 01:46:50 EST 2025 Sun Nov 09 10:10:59 EST 2025 Tue Oct 07 07:20:51 EDT 2025 Thu Apr 03 07:09:27 EDT 2025 Sat Nov 29 08:16:37 EST 2025 Tue Nov 18 21:24:55 EST 2025 Tue Jun 17 22:27:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ADC prostate cancer SNCSAE CAD PSA |
| Language | English |
| License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-946ee8ed57643b99a54ac78a4a2f63b35c41a1bbfe62872c2349253e3c5ef08d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2313983128?pq-origsite=%requestingapplication% |
| PMID | 29804518 |
| PQID | 2313983128 |
| PQPubID | 4450582 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5972199 proquest_miscellaneous_2046017553 proquest_journals_2313983128 pubmed_primary_29804518 crossref_primary_10_1177_1533034618775530 crossref_citationtrail_10_1177_1533034618775530 sage_journals_10_1177_1533034618775530 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Angeles, CA |
| PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Thousand Oaks – name: Sage CA: Los Angeles, CA |
| PublicationTitle | Technology in cancer research & treatment |
| PublicationTitleAlternate | Technol Cancer Res Treat |
| PublicationYear | 2018 |
| Publisher | SAGE Publications Sage Publications Ltd |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
| References | Hosseini-Asl, Zurada, Nasraoui 2016; 27 Chung, Shafiee, Kumar 2015 Le Bihan 2013; 268 Viswanath, Bloch, Chappelow 2012; 36 Hricak, Choyke, Eberhardt, Leibel, Scardino 2007; 243 Hall 2009; 11 Davis, Sofer, Kim, Soloway 2002; 167 Boesen, Chabanova, Løgager, Balslev, Thomsen 2015; 42 Le, Chen, Wang 2017; 62 Liu, Zheng, Feng 2017 Siegel, Miller, Jemal 2016; 66 Mistry, Cable 2003; 16 Tan, Wang, Kundra 2011; 21 Litjens, Debats, Barentsz, Karssemeijer, Huisman 2014; 33 Han, Zhang, Wen, Guo, Liu, Li 2016; 46 Dijkstra, Mulders, Schalken 2014; 47 Kwak, Xu, Wood 2015; 42 McClure, Khalifa, Soliman 2014; 7 Skalska, Freylich 2016; 35 Peng, Jiang, Yang 2013; 267 Bengio, Courville, Vincent 2013; 35 Applewhite, Matlaga, McCullough, Hall 2000; 8 Tamada, Sone, Jo, Yamamoto, Ito 2014; 27 Hambrock, Vos, Hulsbergen-van de Kaa, Barentsz, Huisman 2013; 266 bibr11-1533034618775530 bibr3-1533034618775530 bibr24-1533034618775530 bibr8-1533034618775530 bibr17-1533034618775530 bibr10-1533034618775530 Bengio Y (bibr19-1533034618775530) 2006 Tsehay YK (bibr26-1533034618775530) 2017 bibr1-1533034618775530 bibr4-1533034618775530 bibr23-1533034618775530 bibr14-1533034618775530 bibr9-1533034618775530 bibr31-1533034618775530 Skalska H (bibr32-1533034618775530) 2016; 35 bibr18-1533034618775530 Ferlay J (bibr2-1533034618775530) 2010 bibr5-1533034618775530 bibr22-1533034618775530 bibr27-1533034618775530 Boureau Y-L (bibr21-1533034618775530) 2007 bibr13-1533034618775530 bibr15-1533034618775530 bibr28-1533034618775530 bibr6-1533034618775530 bibr25-1533034618775530 Chung AG (bibr29-1533034618775530) 2015 bibr12-1533034618775530 bibr20-1533034618775530 bibr7-1533034618775530 Liu S (bibr30-1533034618775530) 2017 bibr16-1533034618775530 |
| References_xml | – volume: 35 start-page: 1798 issue: 8 year: 2013 end-page: 1828 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 1509 year: 2015 article-title: Discovery radiomics for multi-parametric MRI prostate cancer detection publication-title: arXiv preprint – volume: 167 start-page: 566 issue: 2 year: 2002 end-page: 570 article-title: The procedure of transrectal ultrasound guided biopsy of the prostate: a survey of patient preparation and biopsy technique publication-title: J Urol – volume: 27 start-page: 25 issue: 1 year: 2014 end-page: 38 article-title: Diffusion-weighted MRI and its role in prostate cancer publication-title: NMR Biomed – volume: 47 start-page: 889 issue: 10-11 year: 2014 end-page: 896 article-title: Clinical use of novel urine and blood based prostate cancer biomarkers: a review publication-title: Clin Biochem – volume: 33 start-page: 1083 issue: 5 year: 2014 end-page: 1092 article-title: Computer-aided detection of prostate cancer in MRI publication-title: IEEE Trans Med Imaging – volume: 7 start-page: 209 issue: 6 year: 2014 end-page: 216 article-title: A novel NMF guided level-set for DWI prostate segmentation publication-title: J Comput Sci Syst Biol – volume: 267 start-page: 787 issue: 3 year: 2013 end-page: 796 article-title: Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study publication-title: Radiology – volume: 66 start-page: 7 issue: 1 year: 2016 end-page: 30 article-title: Cancer statistics, 2016 publication-title: CA Cancer J Clin – volume: 266 start-page: 521 issue: 2 year: 2013 end-page: 530 article-title: Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging effect on observer performance publication-title: Radiology – volume: 27 start-page: 2486 issue: 12 year: 2016 end-page: 2498 article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Trans Neural Networks Learn Syst – volume: 16 start-page: 95 issue: 2 year: 2003 end-page: 101 article-title: Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma publication-title: J Am Board Fam Pract – volume: 243 start-page: 28 issue: 1 year: 2007 end-page: 53 article-title: Imaging prostate cancer: a multidisciplinary perspective 1 publication-title: Radiology – volume: 42 start-page: 446 issue: 2 year: 2015 end-page: 453 article-title: Apparent diffusion coefficient ratio correlates significantly with prostate cancer gleason score at final pathology publication-title: J Magn Reson Imaging – volume: 268 start-page: 318 issue: 2 year: 2013 end-page: 322 article-title: Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure publication-title: Radiology – start-page: 1703 year: 2017 article-title: Prostate cancer diagnosis using deep learning with 3D multiparametric MRI publication-title: arXiv preprint – volume: 35 start-page: 325 issue: 2-3 year: 2016 end-page: 330 article-title: Web-bootstrap estimate of area under ROC curve publication-title: Austrian J Stat – volume: 46 start-page: 487 issue: 2 year: 2016 end-page: 498 article-title: Two-stage learning to predict human eye fixations via SDAEs publication-title: IEEE Trans Cybern – volume: 21 start-page: 593 issue: 3 year: 2011 end-page: 603 article-title: Diffusion weighted imaging in prostate cancer publication-title: Eur Radiol – volume: 42 start-page: 2368 issue: 5 year: 2015 end-page: 2378 article-title: Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging publication-title: Med Phys – volume: 8 start-page: 141 issue: 2 year: 2000 end-page: 150 article-title: Transrectal ultrasound and biopsy in the early diagnosis of prostate cancer publication-title: Cancer Control – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explor Newsl – volume: 62 start-page: 6497 issue: 16 year: 2017 end-page: 6514 article-title: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks publication-title: Phys Med Biol – volume: 36 start-page: 213 issue: 1 year: 2012 end-page: 224 article-title: Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery publication-title: J Magn Reson Imaging – ident: bibr7-1533034618775530 doi: 10.1177/107327480100800204 – ident: bibr17-1533034618775530 doi: 10.4172/jcsb.1000158 – ident: bibr3-1533034618775530 doi: 10.3122/jabfm.16.2.95 – ident: bibr1-1533034618775530 doi: 10.3322/caac.21332 – ident: bibr11-1533034618775530 doi: 10.1002/jmri.23618 – ident: bibr5-1533034618775530 doi: 10.1016/S0022-5347(01)69087-6 – ident: bibr25-1533034618775530 doi: 10.1109/CVPR.2014.18 – ident: bibr9-1533034618775530 doi: 10.1109/ICIP.2016.7532843 – start-page: 1185 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: bibr21-1533034618775530 – ident: bibr31-1533034618775530 doi: 10.1145/1656274.1656278 – start-page: 153 volume-title: Advances in Neural Information Processing Systems year: 2006 ident: bibr19-1533034618775530 – ident: bibr20-1533034618775530 doi: 10.1109/TCYB.2015.2404432 – ident: bibr6-1533034618775530 doi: 10.1148/radiol.2431030580 – ident: bibr12-1533034618775530 doi: 10.1148/radiol.12111634 – ident: bibr27-1533034618775530 doi: 10.1088/1361-6560/aa7731 – start-page: 1509 year: 2015 ident: bibr29-1533034618775530 publication-title: arXiv preprint – volume: 35 start-page: 325 issue: 2 year: 2016 ident: bibr32-1533034618775530 publication-title: Austrian J Stat – ident: bibr22-1533034618775530 doi: 10.1109/TNNLS.2015.2479223 – volume-title: GLOBOCAN 2008: Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 year: 2010 ident: bibr2-1533034618775530 – ident: bibr16-1533034618775530 doi: 10.1002/jmri.24801 – ident: bibr28-1533034618775530 doi: 10.1007/978-3-319-59876-5_12 – ident: bibr4-1533034618775530 doi: 10.1016/j.clinbiochem.2013.10.023 – ident: bibr18-1533034618775530 doi: 10.1148/radiol.13130420 – ident: bibr24-1533034618775530 doi: 10.1109/ISBI.2016.7493479 – ident: bibr10-1533034618775530 doi: 10.1002/nbm.2956 – ident: bibr13-1533034618775530 doi: 10.1109/TMI.2014.2303821 – ident: bibr8-1533034618775530 doi: 10.1007/s00330-010-1960-y – start-page: 1013405 volume-title: SPIE Medical Imaging year: 2017 ident: bibr26-1533034618775530 – start-page: 1703 year: 2017 ident: bibr30-1533034618775530 publication-title: arXiv preprint – ident: bibr15-1533034618775530 doi: 10.1148/radiol.13121454 – ident: bibr23-1533034618775530 doi: 10.1109/TPAMI.2013.50 – ident: bibr14-1533034618775530 doi: 10.1118/1.4918318 |
| SSID | ssj0026631 |
| Score | 2.4979732 |
| Snippet | The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both... |
| SourceID | pubmedcentral proquest pubmed crossref sage |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1533034618775530 |
| SubjectTerms | Algorithms Antigens Deep Learning Diffusion Magnetic Resonance Imaging Early Detection of Cancer - methods Humans Image Interpretation, Computer-Assisted Male NMR Nuclear magnetic resonance Prostate cancer Prostatic Neoplasms - diagnosis Reproducibility of Results ROC Curve Sensitivity and Specificity Special Collection on Deep Learning in Molecular Imaging–Research Paper |
| Title | Deep Learning Role in Early Diagnosis of Prostate Cancer |
| URI | https://journals.sagepub.com/doi/full/10.1177/1533034618775530 https://www.ncbi.nlm.nih.gov/pubmed/29804518 https://www.proquest.com/docview/2313983128 https://www.proquest.com/docview/2046017553 https://pubmed.ncbi.nlm.nih.gov/PMC5972199 |
| Volume | 17 |
| WOSCitedRecordID | wos000447146300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1533-0338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026631 issn: 1533-0346 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1533-0338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026631 issn: 1533-0346 databaseCode: 7X7 dateStart: 20160401 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1533-0338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026631 issn: 1533-0346 databaseCode: BENPR dateStart: 20160401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1533-0338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026631 issn: 1533-0346 databaseCode: PIMPY dateStart: 20160401 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH9saRm77KP7qLc0aFAGO5g4kmxJp7GlLe2hwYQOslOQZXkLFDtL0v7905OVpFlZL70YWx-2LD3rffr3AI61oSKxaRGrpEQFJSvjgnIbC5069sCpFjrxySbEaCQnE5UHg9syhFWu90S_UZeNQRt538khTEnmttOv8z8xZo1C72pIofEU9jBtNtK5mGwVLsdNA14qixPG77gp-1iGRa6XwMw5u2zpnqx5P2TyTtyXZ0VnLx_7Eq_gRRBCybeWal7DE1sfwLPL4GZ_A_LE2jkJ0Ku_yLi5tmRWEw-GTE7a4LzZkjQVyfGnESeukiFSz-It_Dg7vRqexyHFQmx4Rlex4pm10pZO6-CsUEqnXBshNde0yljBUsMHelAUlc2cakUN9WCGzDKT2iqRJXsHnbqp7SEQJ5poxiqU_0ruTlRJq6riohCltoViEfTXMzw1AX8c02BcTwcBcvzfNYngy6bHvMXeeKBtdz3j0_AVLqfb6Y7g06bafT_oFNG1bW5cG_QMD_AeEbxv13jzMKokwu-43mJn9TcNEJt7t6ae_fYY3SmiIikVwWekk-2Q_jf-Dw-P_yM8d5KabG0_XeisFjf2CPbN7Wq2XPQ81fuj7MHe99NRPu5544K7yi8u859_AUqfCFA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgYAXPgcEBhgJkHiImthObT8ghFamTduqCQ2pb8FxLqPSlJS2Y9o_xd-ILx_tysTe9sBb5NjOKXc-3_nOvwN4ax1XESZZaKKcHJR-HmZcYqhs4rcHya2yUV1sQg2HejQyh2vwu7sLQ2mVnU6sFXVeOToj73k7RBgtvDr9NPkZUtUoiq52JTQasdjD8zPvss0-7g48f99xvv3laGsnbKsKhE72-ZxqyiNqzL2hLUVmjE2kdUpbaXnRF5lInIxtnGUF9r03wR2v8fsECpdgEelc-HlvwE2vxxU5e2q0dPD87t3is4owEvJCWLRHbdQUa6WoUs_qNnjJtr2conkhz6ze-rbv_28_7QHca41s9rlZFQ9hDctHcPugTSN4DHqAOGEttOwx-1qdIBuXrAZ7ZoMm-XA8Y1XBDulSjDfH2RatjukGfLsWup_AelmV-AyYN72sEAXZt7n0DybnRVFIlancYmZEAL2Oo6lr8dWpzMdJGreQ6n_LQAAfFiMmDbbIFX03Ow6nrZaZpUv2BvBm8drrBwr62BKrU9-HIt8xzRHA00amFh_jRhO8kB-tVqRt0YGwx1fflOMfNQZ5QqhPxgTwnuRySdK_6H9-Nf2v4c7O0cF-ur873HsBd71Vqptzrk1Yn09P8SXccr_m49n0Vb3iGHy_bmn9A5bRX-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Role+in+Early+Diagnosis+of+Prostate+Cancer&rft.jtitle=Technology+in+cancer+research+%26+treatment&rft.au=Reda%2C+Islam&rft.au=Khalil%2C+Ashraf&rft.au=Elmogy%2C+Mohammed&rft.au=Abou+El-Fetouh%2C+Ahmed&rft.date=2018-01-01&rft.eissn=1533-0338&rft.volume=17&rft.spage=1533034618775530&rft_id=info:doi/10.1177%2F1533034618775530&rft_id=info%3Apmid%2F29804518&rft.externalDocID=29804518 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-0346&client=summon |