Deep Learning Role in Early Diagnosis of Prostate Cancer

The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b v...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Technology in cancer research & treatment Ročník 17; s. 1533034618775530
Hlavní autoři: Reda, Islam, Khalil, Ashraf, Elmogy, Mohammed, Abou El-Fetouh, Ahmed, Shalaby, Ahmed, Abou El-Ghar, Mohamed, Elmaghraby, Adel, Ghazal, Mohammed, El-Baz, Ayman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Angeles, CA SAGE Publications 01.01.2018
Sage Publications Ltd
Témata:
ISSN:1533-0346, 1533-0338, 1533-0338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.
AbstractList The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.
Author Abou El-Fetouh, Ahmed
El-Baz, Ayman
Elmogy, Mohammed
Abou El-Ghar, Mohamed
Elmaghraby, Adel
Khalil, Ashraf
Ghazal, Mohammed
Reda, Islam
Shalaby, Ahmed
AuthorAffiliation 2 Department of Bioengineering, University of Louisville, Louisville, KY, USA
3 Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates
5 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA
1 Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
4 Radiology Department, Mansoura University, Mansoura, Egypt
AuthorAffiliation_xml – name: 3 Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates
– name: 2 Department of Bioengineering, University of Louisville, Louisville, KY, USA
– name: 5 Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA
– name: 1 Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
– name: 4 Radiology Department, Mansoura University, Mansoura, Egypt
Author_xml – sequence: 1
  givenname: Islam
  surname: Reda
  fullname: Reda, Islam
– sequence: 2
  givenname: Ashraf
  surname: Khalil
  fullname: Khalil, Ashraf
– sequence: 3
  givenname: Mohammed
  surname: Elmogy
  fullname: Elmogy, Mohammed
– sequence: 4
  givenname: Ahmed
  surname: Abou El-Fetouh
  fullname: Abou El-Fetouh, Ahmed
– sequence: 5
  givenname: Ahmed
  surname: Shalaby
  fullname: Shalaby, Ahmed
– sequence: 6
  givenname: Mohamed
  surname: Abou El-Ghar
  fullname: Abou El-Ghar, Mohamed
– sequence: 7
  givenname: Adel
  surname: Elmaghraby
  fullname: Elmaghraby, Adel
– sequence: 8
  givenname: Mohammed
  surname: Ghazal
  fullname: Ghazal, Mohammed
– sequence: 9
  givenname: Ayman
  surname: El-Baz
  fullname: El-Baz, Ayman
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29804518$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrGzEUhUVJaB7tvqsykE03k0i6kkbaBILzBENCaNdCI99xFcaSK40L-fcZ49RtDclKQvrO4dxzj8heTBEJ-cLoKWNNc8YkAAWhmG4aKYF-IIfrp5oC6L3tXagDclTKE6VcKWAfyQE3mgrJ9CHRl4jLaoouxxDn1WPqsQqxunK5f64ug5vHVEKpUlc95FQGN2A1cdFj_kT2O9cX_Px6HpMf11ffJ7f19P7mbnIxrb1QfKiNUIgaZ7JRAlpjnBTON9oJxzsFLUgvmGNt26HiuuGegzBcAoKX2FE9g2NyvvFdrtoFzjzGIbveLnNYuPxskwv2_58Yftp5-m2laTgzZjT49mqQ068VlsEuQvHY9y5iWhXLqVCUresb0ZMd9CmtchzHsxwYGA2M65H6-m-ibZQ_pY4A3QB-rKxk7LYIo3a9N7u7t1GidiQ-jGWHtJ4p9O8J642wuDn-jfsm_wJg-qWf
CitedBy_id crossref_primary_10_3390_s22051848
crossref_primary_10_1002_jmri_28608
crossref_primary_10_1002_ima_23064
crossref_primary_10_1080_17434440_2025_2477601
crossref_primary_10_1016_j_imu_2022_100923
crossref_primary_10_1002_jbmr_4814
crossref_primary_10_1007_s00345_024_04995_2
crossref_primary_10_1016_j_compbiomed_2023_106715
crossref_primary_10_1002_ima_22976
crossref_primary_10_1177_15579883231161292
crossref_primary_10_1038_s41598_024_84516_8
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_1038_s41746_024_01190_w
crossref_primary_10_18267_j_aip_202
crossref_primary_10_3233_THC_248011
crossref_primary_10_1002_mp_16181
crossref_primary_10_1016_j_cmpb_2020_105316
crossref_primary_10_1016_j_prp_2024_155687
crossref_primary_10_1186_s13014_024_02471_0
crossref_primary_10_1007_s12553_018_0279_6
crossref_primary_10_1109_JBHI_2023_3279096
crossref_primary_10_3389_fonc_2024_1287995
crossref_primary_10_3390_electronics14101926
crossref_primary_10_1186_s12859_023_05235_x
crossref_primary_10_1016_j_heliyon_2024_e29913
crossref_primary_10_1038_s41598_022_22514_4
crossref_primary_10_1007_s10916_020_01641_3
crossref_primary_10_1109_LRA_2025_3592072
crossref_primary_10_1016_j_critrevonc_2025_104653
crossref_primary_10_1007_s11063_021_10485_y
crossref_primary_10_3390_diagnostics11060959
crossref_primary_10_1016_j_compbiomed_2025_110812
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_1007_s11063_022_10999_z
crossref_primary_10_3390_s21082586
crossref_primary_10_1016_j_bios_2024_116982
crossref_primary_10_1038_s41598_024_56405_7
crossref_primary_10_1016_j_ccell_2022_09_012
crossref_primary_10_1007_s00261_024_04241_8
crossref_primary_10_1007_s11042_023_14940_x
crossref_primary_10_1007_s11042_025_20786_2
crossref_primary_10_1111_cpf_12611
crossref_primary_10_1371_journal_pone_0303002
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1016_j_inffus_2023_101913
crossref_primary_10_1038_s41598_021_84072_5
crossref_primary_10_3390_diagnostics13132133
crossref_primary_10_3390_jimaging11080254
crossref_primary_10_1007_s11042_021_11044_2
crossref_primary_10_1007_s00261_024_04560_w
crossref_primary_10_3389_fonc_2022_971871
crossref_primary_10_1109_TETCI_2024_3449876
crossref_primary_10_1155_2021_2392395
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_1007_s11042_021_11697_z
crossref_primary_10_3390_sym13060974
crossref_primary_10_1038_s41746_020_00341_z
crossref_primary_10_3389_fonc_2021_802964
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1001_jamanetworkopen_2024_22454
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1038_s41746_022_00689_4
crossref_primary_10_1016_j_bbe_2018_06_009
crossref_primary_10_1002_mp_13849
crossref_primary_10_3389_fphar_2025_1609079
crossref_primary_10_1016_j_compmedimag_2025_102625
crossref_primary_10_3390_s21206708
crossref_primary_10_7717_peerj_cs_2298
crossref_primary_10_1007_s11042_024_19177_w
Cites_doi 10.1177/107327480100800204
10.4172/jcsb.1000158
10.3122/jabfm.16.2.95
10.3322/caac.21332
10.1002/jmri.23618
10.1016/S0022-5347(01)69087-6
10.1109/CVPR.2014.18
10.1109/ICIP.2016.7532843
10.1145/1656274.1656278
10.1109/TCYB.2015.2404432
10.1148/radiol.2431030580
10.1148/radiol.12111634
10.1088/1361-6560/aa7731
10.1109/TNNLS.2015.2479223
10.1002/jmri.24801
10.1007/978-3-319-59876-5_12
10.1016/j.clinbiochem.2013.10.023
10.1148/radiol.13130420
10.1109/ISBI.2016.7493479
10.1002/nbm.2956
10.1109/TMI.2014.2303821
10.1007/s00330-010-1960-y
10.1148/radiol.13121454
10.1109/TPAMI.2013.50
10.1118/1.4918318
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2018 2018 SAGE Publications
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2018 2018 SAGE Publications
DBID AFRWT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1177/1533034618775530
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1533-0338
ExternalDocumentID PMC5972199
29804518
10_1177_1533034618775530
10.1177_1533034618775530
Genre Journal Article
GroupedDBID ---
0R~
123
53G
54M
7X7
8FI
8FJ
AAJPV
AAJQC
AARDL
AARIX
AASGM
ABAWP
ABQXT
ABRHV
ABUWG
ABVFX
ACARO
ACDXX
ACGFS
ACROE
ADBBV
ADOGD
ADPDF
AENEX
AERKM
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AFUIA
AGNHF
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUTPY
AYAKG
BDDNI
BENPR
BKSCU
BPHCQ
BSEHC
BVXVI
CCPQU
DC.
EBS
EJD
F5P
FYUFA
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HMCUK
HYE
J8X
K.F
O9-
OK1
OVD
OVEED
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
ROL
RPM
SAUOL
SCDPB
SCNPE
SFC
SJN
TEORI
UKHRP
Y4B
ZONMY
ZPPRI
ZRKOI
ZSSAH
AAYXX
ACHEB
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
M4V
NPM
3V.
7TO
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c462t-946ee8ed57643b99a54ac78a4a2f63b35c41a1bbfe62872c2349253e3c5ef08d3
IEDL.DBID 7X7
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447146300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1533-0346
1533-0338
IngestDate Tue Nov 04 01:46:50 EST 2025
Sun Nov 09 10:10:59 EST 2025
Tue Oct 07 07:20:51 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Sat Nov 29 08:16:37 EST 2025
Tue Nov 18 21:24:55 EST 2025
Tue Jun 17 22:27:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ADC
prostate cancer
SNCSAE
CAD
PSA
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-946ee8ed57643b99a54ac78a4a2f63b35c41a1bbfe62872c2349253e3c5ef08d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2313983128?pq-origsite=%requestingapplication%
PMID 29804518
PQID 2313983128
PQPubID 4450582
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5972199
proquest_miscellaneous_2046017553
proquest_journals_2313983128
pubmed_primary_29804518
crossref_primary_10_1177_1533034618775530
crossref_citationtrail_10_1177_1533034618775530
sage_journals_10_1177_1533034618775530
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Thousand Oaks
– name: Sage CA: Los Angeles, CA
PublicationTitle Technology in cancer research & treatment
PublicationTitleAlternate Technol Cancer Res Treat
PublicationYear 2018
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Hosseini-Asl, Zurada, Nasraoui 2016; 27
Chung, Shafiee, Kumar 2015
Le Bihan 2013; 268
Viswanath, Bloch, Chappelow 2012; 36
Hricak, Choyke, Eberhardt, Leibel, Scardino 2007; 243
Hall 2009; 11
Davis, Sofer, Kim, Soloway 2002; 167
Boesen, Chabanova, Løgager, Balslev, Thomsen 2015; 42
Le, Chen, Wang 2017; 62
Liu, Zheng, Feng 2017
Siegel, Miller, Jemal 2016; 66
Mistry, Cable 2003; 16
Tan, Wang, Kundra 2011; 21
Litjens, Debats, Barentsz, Karssemeijer, Huisman 2014; 33
Han, Zhang, Wen, Guo, Liu, Li 2016; 46
Dijkstra, Mulders, Schalken 2014; 47
Kwak, Xu, Wood 2015; 42
McClure, Khalifa, Soliman 2014; 7
Skalska, Freylich 2016; 35
Peng, Jiang, Yang 2013; 267
Bengio, Courville, Vincent 2013; 35
Applewhite, Matlaga, McCullough, Hall 2000; 8
Tamada, Sone, Jo, Yamamoto, Ito 2014; 27
Hambrock, Vos, Hulsbergen-van de Kaa, Barentsz, Huisman 2013; 266
bibr11-1533034618775530
bibr3-1533034618775530
bibr24-1533034618775530
bibr8-1533034618775530
bibr17-1533034618775530
bibr10-1533034618775530
Bengio Y (bibr19-1533034618775530) 2006
Tsehay YK (bibr26-1533034618775530) 2017
bibr1-1533034618775530
bibr4-1533034618775530
bibr23-1533034618775530
bibr14-1533034618775530
bibr9-1533034618775530
bibr31-1533034618775530
Skalska H (bibr32-1533034618775530) 2016; 35
bibr18-1533034618775530
Ferlay J (bibr2-1533034618775530) 2010
bibr5-1533034618775530
bibr22-1533034618775530
bibr27-1533034618775530
Boureau Y-L (bibr21-1533034618775530) 2007
bibr13-1533034618775530
bibr15-1533034618775530
bibr28-1533034618775530
bibr6-1533034618775530
bibr25-1533034618775530
Chung AG (bibr29-1533034618775530) 2015
bibr12-1533034618775530
bibr20-1533034618775530
bibr7-1533034618775530
Liu S (bibr30-1533034618775530) 2017
bibr16-1533034618775530
References_xml – volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 1509
  year: 2015
  article-title: Discovery radiomics for multi-parametric MRI prostate cancer detection
  publication-title: arXiv preprint
– volume: 167
  start-page: 566
  issue: 2
  year: 2002
  end-page: 570
  article-title: The procedure of transrectal ultrasound guided biopsy of the prostate: a survey of patient preparation and biopsy technique
  publication-title: J Urol
– volume: 27
  start-page: 25
  issue: 1
  year: 2014
  end-page: 38
  article-title: Diffusion-weighted MRI and its role in prostate cancer
  publication-title: NMR Biomed
– volume: 47
  start-page: 889
  issue: 10-11
  year: 2014
  end-page: 896
  article-title: Clinical use of novel urine and blood based prostate cancer biomarkers: a review
  publication-title: Clin Biochem
– volume: 33
  start-page: 1083
  issue: 5
  year: 2014
  end-page: 1092
  article-title: Computer-aided detection of prostate cancer in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 7
  start-page: 209
  issue: 6
  year: 2014
  end-page: 216
  article-title: A novel NMF guided level-set for DWI prostate segmentation
  publication-title: J Comput Sci Syst Biol
– volume: 267
  start-page: 787
  issue: 3
  year: 2013
  end-page: 796
  article-title: Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study
  publication-title: Radiology
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  end-page: 30
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin
– volume: 266
  start-page: 521
  issue: 2
  year: 2013
  end-page: 530
  article-title: Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging effect on observer performance
  publication-title: Radiology
– volume: 27
  start-page: 2486
  issue: 12
  year: 2016
  end-page: 2498
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans Neural Networks Learn Syst
– volume: 16
  start-page: 95
  issue: 2
  year: 2003
  end-page: 101
  article-title: Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma
  publication-title: J Am Board Fam Pract
– volume: 243
  start-page: 28
  issue: 1
  year: 2007
  end-page: 53
  article-title: Imaging prostate cancer: a multidisciplinary perspective 1
  publication-title: Radiology
– volume: 42
  start-page: 446
  issue: 2
  year: 2015
  end-page: 453
  article-title: Apparent diffusion coefficient ratio correlates significantly with prostate cancer gleason score at final pathology
  publication-title: J Magn Reson Imaging
– volume: 268
  start-page: 318
  issue: 2
  year: 2013
  end-page: 322
  article-title: Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure
  publication-title: Radiology
– start-page: 1703
  year: 2017
  article-title: Prostate cancer diagnosis using deep learning with 3D multiparametric MRI
  publication-title: arXiv preprint
– volume: 35
  start-page: 325
  issue: 2-3
  year: 2016
  end-page: 330
  article-title: Web-bootstrap estimate of area under ROC curve
  publication-title: Austrian J Stat
– volume: 46
  start-page: 487
  issue: 2
  year: 2016
  end-page: 498
  article-title: Two-stage learning to predict human eye fixations via SDAEs
  publication-title: IEEE Trans Cybern
– volume: 21
  start-page: 593
  issue: 3
  year: 2011
  end-page: 603
  article-title: Diffusion weighted imaging in prostate cancer
  publication-title: Eur Radiol
– volume: 42
  start-page: 2368
  issue: 5
  year: 2015
  end-page: 2378
  article-title: Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging
  publication-title: Med Phys
– volume: 8
  start-page: 141
  issue: 2
  year: 2000
  end-page: 150
  article-title: Transrectal ultrasound and biopsy in the early diagnosis of prostate cancer
  publication-title: Cancer Control
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor Newsl
– volume: 62
  start-page: 6497
  issue: 16
  year: 2017
  end-page: 6514
  article-title: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks
  publication-title: Phys Med Biol
– volume: 36
  start-page: 213
  issue: 1
  year: 2012
  end-page: 224
  article-title: Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery
  publication-title: J Magn Reson Imaging
– ident: bibr7-1533034618775530
  doi: 10.1177/107327480100800204
– ident: bibr17-1533034618775530
  doi: 10.4172/jcsb.1000158
– ident: bibr3-1533034618775530
  doi: 10.3122/jabfm.16.2.95
– ident: bibr1-1533034618775530
  doi: 10.3322/caac.21332
– ident: bibr11-1533034618775530
  doi: 10.1002/jmri.23618
– ident: bibr5-1533034618775530
  doi: 10.1016/S0022-5347(01)69087-6
– ident: bibr25-1533034618775530
  doi: 10.1109/CVPR.2014.18
– ident: bibr9-1533034618775530
  doi: 10.1109/ICIP.2016.7532843
– start-page: 1185
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: bibr21-1533034618775530
– ident: bibr31-1533034618775530
  doi: 10.1145/1656274.1656278
– start-page: 153
  volume-title: Advances in Neural Information Processing Systems
  year: 2006
  ident: bibr19-1533034618775530
– ident: bibr20-1533034618775530
  doi: 10.1109/TCYB.2015.2404432
– ident: bibr6-1533034618775530
  doi: 10.1148/radiol.2431030580
– ident: bibr12-1533034618775530
  doi: 10.1148/radiol.12111634
– ident: bibr27-1533034618775530
  doi: 10.1088/1361-6560/aa7731
– start-page: 1509
  year: 2015
  ident: bibr29-1533034618775530
  publication-title: arXiv preprint
– volume: 35
  start-page: 325
  issue: 2
  year: 2016
  ident: bibr32-1533034618775530
  publication-title: Austrian J Stat
– ident: bibr22-1533034618775530
  doi: 10.1109/TNNLS.2015.2479223
– volume-title: GLOBOCAN 2008: Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10
  year: 2010
  ident: bibr2-1533034618775530
– ident: bibr16-1533034618775530
  doi: 10.1002/jmri.24801
– ident: bibr28-1533034618775530
  doi: 10.1007/978-3-319-59876-5_12
– ident: bibr4-1533034618775530
  doi: 10.1016/j.clinbiochem.2013.10.023
– ident: bibr18-1533034618775530
  doi: 10.1148/radiol.13130420
– ident: bibr24-1533034618775530
  doi: 10.1109/ISBI.2016.7493479
– ident: bibr10-1533034618775530
  doi: 10.1002/nbm.2956
– ident: bibr13-1533034618775530
  doi: 10.1109/TMI.2014.2303821
– ident: bibr8-1533034618775530
  doi: 10.1007/s00330-010-1960-y
– start-page: 1013405
  volume-title: SPIE Medical Imaging
  year: 2017
  ident: bibr26-1533034618775530
– start-page: 1703
  year: 2017
  ident: bibr30-1533034618775530
  publication-title: arXiv preprint
– ident: bibr15-1533034618775530
  doi: 10.1148/radiol.13121454
– ident: bibr23-1533034618775530
  doi: 10.1109/TPAMI.2013.50
– ident: bibr14-1533034618775530
  doi: 10.1118/1.4918318
SSID ssj0026631
Score 2.4979732
Snippet The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1533034618775530
SubjectTerms Algorithms
Antigens
Deep Learning
Diffusion Magnetic Resonance Imaging
Early Detection of Cancer - methods
Humans
Image Interpretation, Computer-Assisted
Male
NMR
Nuclear magnetic resonance
Prostate cancer
Prostatic Neoplasms - diagnosis
Reproducibility of Results
ROC Curve
Sensitivity and Specificity
Special Collection on Deep Learning in Molecular Imaging–Research Paper
Title Deep Learning Role in Early Diagnosis of Prostate Cancer
URI https://journals.sagepub.com/doi/full/10.1177/1533034618775530
https://www.ncbi.nlm.nih.gov/pubmed/29804518
https://www.proquest.com/docview/2313983128
https://www.proquest.com/docview/2046017553
https://pubmed.ncbi.nlm.nih.gov/PMC5972199
Volume 17
WOSCitedRecordID wos000447146300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1533-0338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026631
  issn: 1533-0346
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1533-0338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026631
  issn: 1533-0346
  databaseCode: 7X7
  dateStart: 20160401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1533-0338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026631
  issn: 1533-0346
  databaseCode: BENPR
  dateStart: 20160401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1533-0338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026631
  issn: 1533-0346
  databaseCode: PIMPY
  dateStart: 20160401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH9saRm77KP7qLc0aFAGO5g4kmxJp7GlLe2hwYQOslOQZXkLFDtL0v7905OVpFlZL70YWx-2LD3rffr3AI61oSKxaRGrpEQFJSvjgnIbC5069sCpFjrxySbEaCQnE5UHg9syhFWu90S_UZeNQRt538khTEnmttOv8z8xZo1C72pIofEU9jBtNtK5mGwVLsdNA14qixPG77gp-1iGRa6XwMw5u2zpnqx5P2TyTtyXZ0VnLx_7Eq_gRRBCybeWal7DE1sfwLPL4GZ_A_LE2jkJ0Ku_yLi5tmRWEw-GTE7a4LzZkjQVyfGnESeukiFSz-It_Dg7vRqexyHFQmx4Rlex4pm10pZO6-CsUEqnXBshNde0yljBUsMHelAUlc2cakUN9WCGzDKT2iqRJXsHnbqp7SEQJ5poxiqU_0ruTlRJq6riohCltoViEfTXMzw1AX8c02BcTwcBcvzfNYngy6bHvMXeeKBtdz3j0_AVLqfb6Y7g06bafT_oFNG1bW5cG_QMD_AeEbxv13jzMKokwu-43mJn9TcNEJt7t6ae_fYY3SmiIikVwWekk-2Q_jf-Dw-P_yM8d5KabG0_XeisFjf2CPbN7Wq2XPQ81fuj7MHe99NRPu5544K7yi8u859_AUqfCFA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgYAXPgcEBhgJkHiImthObT8ghFamTduqCQ2pb8FxLqPSlJS2Y9o_xd-ILx_tysTe9sBb5NjOKXc-3_nOvwN4ax1XESZZaKKcHJR-HmZcYqhs4rcHya2yUV1sQg2HejQyh2vwu7sLQ2mVnU6sFXVeOToj73k7RBgtvDr9NPkZUtUoiq52JTQasdjD8zPvss0-7g48f99xvv3laGsnbKsKhE72-ZxqyiNqzL2hLUVmjE2kdUpbaXnRF5lInIxtnGUF9r03wR2v8fsECpdgEelc-HlvwE2vxxU5e2q0dPD87t3is4owEvJCWLRHbdQUa6WoUs_qNnjJtr2conkhz6ze-rbv_28_7QHca41s9rlZFQ9hDctHcPugTSN4DHqAOGEttOwx-1qdIBuXrAZ7ZoMm-XA8Y1XBDulSjDfH2RatjukGfLsWup_AelmV-AyYN72sEAXZt7n0DybnRVFIlancYmZEAL2Oo6lr8dWpzMdJGreQ6n_LQAAfFiMmDbbIFX03Ow6nrZaZpUv2BvBm8drrBwr62BKrU9-HIt8xzRHA00amFh_jRhO8kB-tVqRt0YGwx1fflOMfNQZ5QqhPxgTwnuRySdK_6H9-Nf2v4c7O0cF-ur873HsBd71Vqptzrk1Yn09P8SXccr_m49n0Vb3iGHy_bmn9A5bRX-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Role+in+Early+Diagnosis+of+Prostate+Cancer&rft.jtitle=Technology+in+cancer+research+%26+treatment&rft.au=Reda%2C+Islam&rft.au=Khalil%2C+Ashraf&rft.au=Elmogy%2C+Mohammed&rft.au=Abou+El-Fetouh%2C+Ahmed&rft.date=2018-01-01&rft.eissn=1533-0338&rft.volume=17&rft.spage=1533034618775530&rft_id=info:doi/10.1177%2F1533034618775530&rft_id=info%3Apmid%2F29804518&rft.externalDocID=29804518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-0346&client=summon