Mutating for Good: DNA Damage Responses During Somatic Hypermutation
Somatic hypermutation (SHM) of immunoglobulin ( ) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activ...
Saved in:
| Published in: | Frontiers in immunology Vol. 10; p. 438 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media S.A
12.03.2019
|
| Subjects: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Somatic hypermutation (SHM) of immunoglobulin (
) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of
genes. The mutation rate of this programmed mutagenesis is ~10
base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the
loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle. |
|---|---|
| AbstractList | Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle. Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10−3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle. Somatic hypermutation (SHM) of immunoglobulin ( ) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of genes. The mutation rate of this programmed mutagenesis is ~10 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle. |
| Author | Jacobs, Heinz Pilzecker, Bas |
| AuthorAffiliation | Division of Tumor Biology & Immunology, The Netherlands Cancer Institute , Amsterdam , Netherlands |
| AuthorAffiliation_xml | – name: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute , Amsterdam , Netherlands |
| Author_xml | – sequence: 1 givenname: Bas surname: Pilzecker fullname: Pilzecker, Bas – sequence: 2 givenname: Heinz surname: Jacobs fullname: Jacobs, Heinz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30915081$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtPGzEUhS0EKo9mz6qaZTcJfo3H7qISIpBEglbqY2157Ot00Mw4tWeQ-Pc4CSCoVG9sXZ9z7rW_U3TYhx4QOid4xphUF77punFGMVEzjDmTB-iECMGnjFJ--OZ8jCYp3eO8uGKMlR_QMcOKlFiSEzS_GwczNP268CEWixDcl2L-7bKYm86sofgBaRP6BKmYj3Gr-hm6LLfF8nEDsdt5Q_8RHXnTJpg872fo9831r6vl9Pb7YnV1eTu1XNBhqpg1VgnuKiw4eCdUXRPKvcCshNpWtObWW0ykcFwqUdL8NuKFrAjDBDxhZ2i1z3XB3OtNbDoTH3Uwjd4VQlxrE_N0LWhXs4rkXyGOA6dSKVKBo2XFHZYKhMlZX_dZm7HuwFnoh2jad6Hvb_rmj16HBy04ZbjiOeDzc0AMf0dIg-6aZKFtTQ9hTJoSJUuBBd3O_eltr9cmLxiyAO8FNoaUIvhXCcF6C1vvYOstbL2DnS3iH4tt9jTytE37f-MTUlqtwA |
| CitedBy_id | crossref_primary_10_1016_j_dnarep_2023_103607 crossref_primary_10_3389_fgene_2021_671866 crossref_primary_10_3389_fimmu_2021_728694 crossref_primary_10_3389_fimmu_2022_871766 crossref_primary_10_1016_j_dnarep_2025_103888 crossref_primary_10_1113_JP285478 crossref_primary_10_7554_eLife_105471_3 crossref_primary_10_1038_s41541_019_0145_1 crossref_primary_10_1371_journal_pbio_3002389 crossref_primary_10_1007_s10875_022_01233_5 crossref_primary_10_1016_j_blre_2022_100969 crossref_primary_10_1093_nar_gkz531 crossref_primary_10_3389_fimmu_2022_986863 crossref_primary_10_1073_pnas_2104013118 crossref_primary_10_3390_ijms26083596 crossref_primary_10_3389_fonc_2021_634383 crossref_primary_10_3389_fimmu_2022_881656 crossref_primary_10_3390_vaccines9121376 crossref_primary_10_1016_j_bbagen_2019_129415 crossref_primary_10_1016_j_intimp_2024_111544 crossref_primary_10_1158_0008_5472_CAN_20_3761 crossref_primary_10_1038_s41388_024_03192_0 crossref_primary_10_1080_10985549_2023_2224199 crossref_primary_10_1089_crispr_2023_0027 crossref_primary_10_1038_s41416_024_02840_2 crossref_primary_10_1016_j_molimm_2022_11_013 crossref_primary_10_3390_ijms24010225 crossref_primary_10_1016_j_isci_2021_103668 crossref_primary_10_3389_fcimb_2020_00154 crossref_primary_10_15252_embr_202051184 crossref_primary_10_1093_nar_gkz821 crossref_primary_10_1186_s13059_024_03451_z crossref_primary_10_1002_bies_202000032 crossref_primary_10_1016_j_dnarep_2022_103381 crossref_primary_10_3389_fimmu_2020_00788 crossref_primary_10_1038_s41375_025_02650_2 crossref_primary_10_1080_14728222_2021_1864321 crossref_primary_10_3389_fcell_2022_884873 crossref_primary_10_4049_jimmunol_1900483 crossref_primary_10_1007_s11010_025_05291_2 crossref_primary_10_1093_nar_gkaa825 crossref_primary_10_3389_fimmu_2022_834889 crossref_primary_10_1002_2211_5463_13467 crossref_primary_10_1038_s41423_022_00954_2 crossref_primary_10_1134_S002689332201006X crossref_primary_10_3390_ijms21239226 crossref_primary_10_1007_s11427_024_2615_1 crossref_primary_10_1038_s43018_023_00643_7 crossref_primary_10_3389_fimmu_2021_807015 crossref_primary_10_3389_fcell_2021_720798 crossref_primary_10_1016_j_cyto_2025_156969 crossref_primary_10_1093_nar_gkac1251 crossref_primary_10_1002_1878_0261_13560 crossref_primary_10_1007_s10875_021_01050_2 crossref_primary_10_3389_fcell_2020_00357 crossref_primary_10_1134_S0006297920040033 crossref_primary_10_3389_fevo_2022_836066 crossref_primary_10_1016_j_dnarep_2024_103755 crossref_primary_10_1016_j_immuni_2021_07_015 crossref_primary_10_3390_ijms25031799 crossref_primary_10_3389_fimmu_2023_1031914 crossref_primary_10_3390_life13071437 crossref_primary_10_1093_brain_awad419 crossref_primary_10_1101_gad_349438_122 crossref_primary_10_1242_jeb_243264 crossref_primary_10_3389_fimmu_2022_864949 crossref_primary_10_1096_fj_201903036RR crossref_primary_10_7554_eLife_105471 |
| Cites_doi | 10.1093/nar/gkl259 10.1084/jem.20151227 10.4049/jimmunol.166.8.5051 10.1016/S1097-2765(03)00428-3 10.1016/j.molcel.2012.07.006 10.1016/S0959-437X(99)80013-6 10.1038/sj.embor.7400582 10.4049/jimmunol.172.6.3382 10.1073/pnas.97.3.1166 10.1084/jem.20070756 10.1038/nrm1907 10.1146/annurev-genet-112414-054722 10.1002/eji.201243191 10.1016/S1471-4906(01)02111-1 10.1016/S0079-6603(08)60800-4 10.1073/pnas.0901726106 10.1074/jbc.M117.809723 10.1073/pnas.90.6.2385 10.1016/S0960-9822(02)01215-0 10.1093/intimm/dxp061 10.1038/nri1553 10.1038/nature01965 10.1038/nature00991 10.1016/S0092-8674(00)80923-X 10.1074/jbc.M110149200 10.1016/j.jmb.2010.12.016 10.1046/j.0818-9641.2004.01224.x 10.1016/S0065-2776(10)05006-6 10.1038/nature00981 10.1038/sj.embor.7400777 10.1101/cshperspect.a000745 10.1084/jem.20040691 10.1038/88732 10.1016/S1074-7613(00)80592-0 10.1007/978-3-642-71984-4_2 10.1016/j.molcel.2006.05.038 10.1016/j.dnarep.2011.08.005 10.1101/sqb.1999.64.227 10.1146/annurev.bi.65.070196.000533 10.1038/nsmb.2719 10.1038/35010014 10.1073/pnas.1719771115 10.1038/nature01760 10.1084/jem.20171738 10.1016/j.virol.2016.05.002 10.1073/pnas.0808182105 10.1016/S0952-7915(00)00206-5 10.1038/ni920 10.1084/jem.20071289 10.1016/S0092-8674(02)00706-7 10.1093/nar/gkv023 10.1002/cbic.200500139 10.1016/j.molimm.2005.09.017 10.1016/j.molimm.2017.11.012 10.1073/pnas.1405590111 10.4049/jimmunol.162.6.3121 10.1073/pnas.0504586102 10.1073/pnas.0610585104 10.1038/382729a0 10.1084/jem.20112379 10.1371/journal.pgen.1005411 10.1084/jem.20062131 10.3390/genes9120614 10.1007/s00412-011-0347-4 10.1007/978-1-61779-139-0_18 10.1083/jcb.200905144 10.4049/jimmunol.171.9.4639 10.1098/rstb.2008.0200 10.1084/jem.20061067 10.1084/jem.187.11.1729 10.1038/nri1896 10.1038/sj.emboj.7600939 10.1016/0167-4781(92)90134-L 10.1016/j.molcel.2013.09.025 10.1038/35080033 10.1101/cshperspect.a012583 10.1084/jem.20042066 10.1016/S0165-2478(03)00046-4 10.1038/nature01574 10.1084/jem.20052227 10.1016/j.molcel.2009.12.018 10.1038/s41598-017-12915-1 10.1016/j.dnarep.2016.12.008 10.1016/S0092-8674(00)00078-7 10.1016/j.cell.2015.12.050 10.1073/pnas.241525998 10.1146/annurev.biochem.76.061705.090740 10.1038/nrm3289 10.1016/j.molcel.2013.10.035 10.4049/jimmunol.0900177 10.1128/MCB.01452-13 10.1016/0952-7915(95)80010-7 10.1084/jem.20091707 10.1093/intimm/dxr109 10.1093/nar/gki189 10.1101/gr.197046.115 10.1038/sj.emboj.7600383 10.4049/jimmunol.177.8.5386 10.1093/nar/gkh872 10.1084/jem.20050042 10.1016/S1074-7613(00)80298-8 10.1038/nri3216 10.1073/pnas.0404974101 10.1038/nature05978 10.1084/jem.20161649 10.1038/sj.onc.1205996 10.1084/jem.20112234 10.4049/jimmunol.174.12.7781 10.1002/eji.201444482 10.1038/nature01408 10.1038/ni1031 10.1093/emboj/cdg626 10.1038/88740 10.1038/ni.1970 10.1084/jem.20161576 10.1101/gad.882301 10.1093/nar/gkg464 10.1016/j.molcel.2014.12.038 10.1038/211242a0 10.1098/rstb.2000.0749 10.1038/nature00862 10.1084/jem.161.4.687 10.4161/cc.7.21.6949 10.1016/j.molcel.2005.10.029 10.1084/jem.20050292 10.1084/jem.20080669 10.1093/nar/25.4.750 10.1016/j.molcel.2011.06.023 10.1084/jem.20030880 10.1016/j.dnarep.2004.06.015 10.1038/nrm1781 10.1093/nar/gkw123 10.1073/pnas.152126799 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2 10.1126/science.1145065 10.1146/annurev.immunol.26.021607.090248 10.1371/journal.pbio.1001360 10.1111/j.1356-9597.2004.00747.x 10.1084/jem.190.1.21 10.1046/j.0818-9641.2004.01221.x 10.1084/jem.20030481 10.1016/j.molcel.2004.10.011 10.1074/jbc.274.26.18470 10.1016/j.molcel.2010.09.019 10.1016/j.molcel.2017.06.034 10.1038/nri3128 10.1002/(SICI)1521-4141(199810)28:10<3384::AID-IMMU3384>3.0.CO;2-T 10.1084/jem.20070902 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 Pilzecker and Jacobs. 2019 Pilzecker and Jacobs |
| Copyright_xml | – notice: Copyright © 2019 Pilzecker and Jacobs. 2019 Pilzecker and Jacobs |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2019.00438 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_db3710431d4e4289917ed2574d089e6a PMC6423074 30915081 10_3389_fimmu_2019_00438 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: KWF Kankerbestrijding grantid: KWF NKI-2012–5243; KWF NKI-2016-10032; KWF NKI-2016-10796 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: ZonMW Top 91213018 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c462t-93cac964d7064efd69bb124f6035ebc72b4cfc0186d4896522011f6871301ef13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461085400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:44:10 EDT 2025 Tue Sep 30 16:51:52 EDT 2025 Fri Sep 05 14:51:46 EDT 2025 Thu Apr 03 06:59:14 EDT 2025 Sat Nov 29 02:50:49 EST 2025 Tue Nov 18 22:13:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | base excision repair non-canonical mismatch repair (ncMMR) abasic site translesion synthesis (TLS) DNA damage tolerance (DDT) cytosine deamination |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-93cac964d7064efd69bb124f6035ebc72b4cfc0186d4896522011f6871301ef13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Patricia Johanna Gearhart, National Institutes of Health (NIH), United States; Javier Marcelo Di Noia, Institute of Clinical Research De Montreal (IRCM), Canada Edited by: Amy L. Kenter, University of Illinois at Chicago, United States This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology |
| OpenAccessLink | https://doaj.org/article/db3710431d4e4289917ed2574d089e6a |
| PMID | 30915081 |
| PQID | 2198560621 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_db3710431d4e4289917ed2574d089e6a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423074 proquest_miscellaneous_2198560621 pubmed_primary_30915081 crossref_primary_10_3389_fimmu_2019_00438 crossref_citationtrail_10_3389_fimmu_2019_00438 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-12 |
| PublicationDateYYYYMMDD | 2019-03-12 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2019 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Clarke (B26) 1985; 161 Guan (B140) 2009; 187 Wilson (B52) 2005; 201 Shen (B76) 2006; 177 Haradhvala (B143) 2016; 164 Storb (B130) 1998; 229 Le (B145) 2015; 11 Guo (B67) 2003; 22 Franklin (B136) 2004; 82 Su (B137) 2017; 292 Tissier (B69) 2004; 3 Krijger (B36) 2009; 206 Mayorov (B131) 2005; 174 Stavnezer (B10) 2008; 26 Chaudhuri (B22) 2003; 422 Martin (B97) 2003; 198 Odegard (B28) 2006; 6 Shimizu (B109) 2003; 86 Phung (B98) 1999; 162 Schenten (B108) 2002; 32 Faili (B110) 2009; 182 Muramatsu (B12) 1999; 274 Watanabe (B64) 2004; 23 Pham (B16) 2003; 424 Simpson (B114) 2006; 7 Qiao (B127) 2017; 67 Pena-Diaz (B53) 2012; 47 Fukita (B19) 1998; 9 Zhang (B116) 2008; 7 Kinoshita (B3) 2001; 2 Jansen (B87) 2006; 203 Rada (B46) 2002; 12 Zivojnovic (B133) 2014; 34 Jansen (B88) 2005; 33 Gali (B138) 2017; 7 Norio (B139) 2005; 20 Abdouni (B128) 2018; 93 Pilzecker (B73) 2016; 44 Haracska (B83) 2001; 15 Matsuda (B104) 2000; 404 Rada (B34) 2004; 16 Storb (B2) 1999; 64 Genschel (B120) 2003; 12 Martomo (B96) 2004; 200 Bachl (B21) 2001; 166 Steele (B134) 2001; 356 Krijger (B103) 2011; 10 Bardwell (B101) 2004; 5 Betz (B33) 1993; 90 Fumasoni (B144) 2015; 57 Akbari (B79) 2004; 32 Krijger (B37) 2013; 43 Jiricny (B57) 2006; 7 Nair (B84) 2011; 406 Nilsen (B78) 1997; 25 Di Noia (B47) 2006; 25 Thientosapol (B93) 2017; 45 Schanz (B95) 2009; 106 Terai (B115) 2010; 37 Ramiro (B17) 2003; 4 Dorner (B30) 1998; 28 Friedberg (B112) 2005; 6 Seplyarskiy (B142) 2016; 26 Sabouri (B118) 2009; 21 Bonifati (B148) 2016; 495 Thientosapol (B146) 2018; 115 Neuberger (B35) 2005; 5 Kolodner (B56) 1999; 9 Zlatanou (B58) 2011; 43 Krokan (B94) 2002; 21 Sale (B63) 2012; 13 Stavnezer (B119) 2014; 111 Maul (B6) 2010; 105 Abe (B39) 2018; 9 Kleinstein (B27) 2003; 171 Ulrich (B65) 2005; 6 Schrader (B51) 2009; 364 Manis (B9) 2002; 23 Masuda (B86) 2002; 277 Papavasiliou (B4) 2002; 109 Girelli Zubani (B24) 2017; 214 Lindahl (B42) 1979; 22 Modrich (B55) 1996; 65 Rogozin (B31) 2004; 172 Garcia-Gomez (B71) 2013; 52 Maul (B121) 2016; 213 Kunkel (B54) 2015; 49 Xu (B11) 2012; 12 Wang (B25) 2017; 214 Seki (B5) 2005; 6 Nelson (B85) 1996; 382 Kavli (B80) 2005; 201 Ehrenstein (B100) 2001; 98 Neuberger (B1) 1995; 7 Zeng (B102) 2001; 2 Steele (B135) 2004; 82 Unniraman (B132) 2007; 317 Delbos (B107) 2005; 201 Pavlov (B106) 2002; 99 Esposito (B81) 2000; 97 Guo (B89) 2006; 23 Di Noia (B8) 2007; 76 Roa (B111) 2008; 105 Jacobs (B20) 2001; 13 Sharbeen (B23) 2012; 209 Ross (B90) 2006; 43 Burkovics (B49) 2006; 34 Alvarez-Prado (B32) 2018; 215 Zhang (B66) 2005; 102 Ciccia (B40) 2010; 40 Rogozin (B29) 1992; 1171 Friedberg (B62) 2003; 421 Maul (B124) 2011; 12 Stelter (B60) 2003; 425 Di Noia (B77) 2002; 419 Baker (B74) 1998; 92 Wu (B82) 2007; 204 Xue (B75) 2006; 203 Dingler (B48) 2014; 44 Petersen-Mahrt (B14) 2002; 418 Guikema (B50) 2007; 204 Brenner (B149) 1966; 211 Peters (B18) 1996; 4 Delbos (B117) 2007; 204 Ohashi (B68) 2004; 9 Demczuk (B141) 2012; 10 Kothapalli (B38) 2011; 748 Langerak (B61) 2007; 204 Mouron (B72) 2013; 20 Hirota (B92) 2015; 43 Kim (B99) 1999; 190 Sohail (B125) 2003; 31 Chabes (B147) 2007; 104 Kim (B129) 1998; 187 Jacobs (B45) 2012; 121 David (B43) 2007; 447 Muramatsu (B13) 2000; 102 Saribasak (B122) 2012; 209 Schenten (B123) 2009; 206 Rogozin (B105) 2001; 2 Hoege (B59) 2002; 419 Shen (B126) 2004; 101 Krokan (B44) 2013; 5 Kano (B91) 2012; 24 Giglia-Mari (B41) 2011; 3 McHeyzer-Williams (B7) 2011; 12 Bianchi (B70) 2013; 52 Shimizu (B113) 2017; 50 Dickerson (B15) 2003; 197 |
| References_xml | – volume: 34 start-page: 2508 year: 2006 ident: B49 article-title: Human Ape2 protein has a 3'-5' exonuclease activity that acts preferentially on mismatched base pairs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl259 – volume: 213 start-page: 1675 year: 2016 ident: B121 article-title: DNA polymerase iota functions in the generation of tandem mutations during somatic hypermutation of antibody genes publication-title: J Exp Med. doi: 10.1084/jem.20151227 – volume: 166 start-page: 5051 year: 2001 ident: B21 article-title: Increased transcription levels induce higher mutation rates in a hypermutating cell line publication-title: J Immunol. doi: 10.4049/jimmunol.166.8.5051 – volume: 12 start-page: 1077 year: 2003 ident: B120 article-title: Mechanism of 5'-directed excision in human mismatch repair publication-title: Mol Cell. doi: 10.1016/S1097-2765(03)00428-3 – volume: 47 start-page: 669 year: 2012 ident: B53 article-title: Noncanonical mismatch repair as a source of genomic instability in human cells publication-title: Mol Cell. doi: 10.1016/j.molcel.2012.07.006 – volume: 9 start-page: 89 year: 1999 ident: B56 article-title: Eukaryotic DNA mismatch repair publication-title: Curr Opin Genet Dev. doi: 10.1016/S0959-437X(99)80013-6 – volume: 6 start-page: 1143 year: 2005 ident: B5 article-title: DNA polymerases and somatic hypermutation of immunoglobulin genes publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400582 – volume: 172 start-page: 3382 year: 2004 ident: B31 article-title: Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process publication-title: J Immunol. doi: 10.4049/jimmunol.172.6.3382 – volume: 97 start-page: 1166 year: 2000 ident: B81 article-title: Mice reconstituted with DNA polymerase beta-deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.3.1166 – volume: 204 start-page: 1677 year: 2007 ident: B82 article-title: DNA polymerase beta is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination publication-title: J Exp Med. doi: 10.1084/jem.20070756 – volume: 7 start-page: 335 year: 2006 ident: B57 article-title: The multifaceted mismatch-repair system publication-title: Nat Rev Mol Cell Biol. doi: 10.1038/nrm1907 – volume: 49 start-page: 291 year: 2015 ident: B54 article-title: Eukaryotic Mismatch Repair in Relation to DNA Replication publication-title: Ann Rev Genet. doi: 10.1146/annurev-genet-112414-054722 – volume: 43 start-page: 2765 year: 2013 ident: B37 article-title: Rev1 is essential in generating G to C transversions downstream of the Ung2 pathway but not the Msh2+Ung2 hybrid pathway publication-title: Eur J Immunol. doi: 10.1002/eji.201243191 – volume: 23 start-page: 31 year: 2002 ident: B9 article-title: Mechanism and control of class-switch recombination publication-title: Trends Immunol doi: 10.1016/S1471-4906(01)02111-1 – volume: 22 start-page: 135 year: 1979 ident: B42 article-title: DNA glycosylases endonucleases for apurinic/apyrimidinic sites and base excision-repair publication-title: Progr Nucleic Acid Res Mol Biol. doi: 10.1016/S0079-6603(08)60800-4 – volume: 106 start-page: 5593 year: 2009 ident: B95 article-title: Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0901726106 – volume: 292 start-page: 18044 year: 2017 ident: B137 article-title: Human DNA polymerase eta accommodates RNA for strand extension publication-title: J Biol Chem. doi: 10.1074/jbc.M117.809723 – volume: 90 start-page: 2385 year: 1993 ident: B33 article-title: Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.90.6.2385 – volume: 12 start-page: 1748 year: 2002 ident: B46 article-title: Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice publication-title: Curr Biol. doi: 10.1016/S0960-9822(02)01215-0 – volume: 21 start-page: 947 year: 2009 ident: B118 article-title: Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes publication-title: Int Immunol. doi: 10.1093/intimm/dxp061 – volume: 5 start-page: 171 year: 2005 ident: B35 article-title: Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation publication-title: Nat Rev Immunol. doi: 10.1038/nri1553 – volume: 425 start-page: 188 year: 2003 ident: B60 article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation publication-title: Nature. doi: 10.1038/nature01965 – volume: 419 start-page: 135 year: 2002 ident: B59 article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO publication-title: Nature. doi: 10.1038/nature00991 – volume: 92 start-page: 295 year: 1998 ident: B74 article-title: Polymerases and the replisome: machines within machines publication-title: Cell. doi: 10.1016/S0092-8674(00)80923-X – volume: 277 start-page: 3040 year: 2002 ident: B86 article-title: Mechanisms of dCMP transferase reactions catalyzed by mouse Rev1 protein publication-title: J Biol Chem. doi: 10.1074/jbc.M110149200 – volume: 406 start-page: 18 year: 2011 ident: B84 article-title: DNA synthesis across an abasic lesion by yeast REV1 DNA polymerase publication-title: J Mol Biol. doi: 10.1016/j.jmb.2010.12.016 – volume: 82 start-page: 209 year: 2004 ident: B135 article-title: Genesis of the strand-biased signature in somatic hypermutation of rearranged immunoglobulin variable genes publication-title: Immunol Cell Biol. doi: 10.1046/j.0818-9641.2004.01224.x – volume: 105 start-page: 159 year: 2010 ident: B6 article-title: AID and somatic hypermutation publication-title: Adv Immunol. doi: 10.1016/S0065-2776(10)05006-6 – volume: 419 start-page: 43 year: 2002 ident: B77 article-title: Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase publication-title: Nature. doi: 10.1038/nature00981 – volume: 7 start-page: 927 year: 2006 ident: B114 article-title: RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40 publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400777 – volume: 3 start-page: a000745 year: 2011 ident: B41 article-title: DNA damage response publication-title: Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a000745 – volume: 200 start-page: 61 year: 2004 ident: B96 article-title: A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination publication-title: J Exp Med. doi: 10.1084/jem.20040691 – volume: 2 start-page: 530 year: 2001 ident: B105 article-title: Somatic mutation hotspots correlate with DNA polymerase eta error spectrum publication-title: Nat Immunol. doi: 10.1038/88732 – volume: 9 start-page: 105 year: 1998 ident: B19 article-title: Somatic hypermutation in the heavy chain locus correlates with transcription publication-title: Immunity. doi: 10.1016/S1074-7613(00)80592-0 – volume: 229 start-page: 11 year: 1998 ident: B130 article-title: Somatic hypermutation of immunoglobulin genes is linked to transcription publication-title: Curr Topics Microbiol Immunol. doi: 10.1007/978-3-642-71984-4_2 – volume: 23 start-page: 265 year: 2006 ident: B89 article-title: REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo publication-title: Mol Cell. doi: 10.1016/j.molcel.2006.05.038 – volume: 10 start-page: 1051 year: 2011 ident: B103 article-title: PCNA ubiquitination-independent activation of polymerase eta during somatic hypermutation and DNA damage tolerance publication-title: DNA Repair. doi: 10.1016/j.dnarep.2011.08.005 – volume: 64 start-page: 227 year: 1999 ident: B2 article-title: Molecular aspects of somatic hypermutation of immunoglobulin genes publication-title: Cold Spring Harb Sympos Quant Biol. doi: 10.1101/sqb.1999.64.227 – volume: 65 start-page: 101 year: 1996 ident: B55 article-title: Mismatch repair in replication fidelity, genetic recombination, and cancer biology publication-title: Ann Rev Biochem. doi: 10.1146/annurev.bi.65.070196.000533 – volume: 20 start-page: 1383 year: 2013 ident: B72 article-title: Repriming of DNA synthesis at stalled replication forks by human PrimPol publication-title: Nat Struc Mol Biol. doi: 10.1038/nsmb.2719 – volume: 404 start-page: 1011 year: 2000 ident: B104 article-title: Low fidelity DNA synthesis by human DNA polymerase-eta publication-title: Nature. doi: 10.1038/35010014 – volume: 115 start-page: 4921 year: 2018 ident: B146 article-title: SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1719771115 – volume: 424 start-page: 103 year: 2003 ident: B16 article-title: Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation publication-title: Nature. doi: 10.1038/nature01760 – volume: 215 start-page: 761 year: 2018 ident: B32 article-title: A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets publication-title: J Exp Med. doi: 10.1084/jem.20171738 – volume: 495 start-page: 92 year: 2016 ident: B148 article-title: SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells publication-title: Virology. doi: 10.1016/j.virol.2016.05.002 – volume: 105 start-page: 16248 year: 2008 ident: B111 article-title: Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0808182105 – volume: 13 start-page: 208 year: 2001 ident: B20 article-title: Towards an understanding of somatic hypermutation publication-title: Curr Opin Immunol. doi: 10.1016/S0952-7915(00)00206-5 – volume: 4 start-page: 452 year: 2003 ident: B17 article-title: Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand publication-title: Nat Immunol. doi: 10.1038/ni920 – volume: 204 start-page: 3017 year: 2007 ident: B50 article-title: APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination publication-title: J Exp Med. doi: 10.1084/jem.20071289 – volume: 109 start-page: S35 year: 2002 ident: B4 article-title: Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity publication-title: Cell. doi: 10.1016/S0092-8674(02)00706-7 – volume: 43 start-page: 1671 year: 2015 ident: B92 article-title: The POLD3 subunit of DNA polymerase delta can promote translesion synthesis independently of DNA polymerase zeta publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv023 – volume: 6 start-page: 1735 year: 2005 ident: B65 publication-title: Chembiochem. doi: 10.1002/cbic.200500139 – volume: 43 start-page: 1587 year: 2006 ident: B90 article-title: The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40 publication-title: Mol Immunol doi: 10.1016/j.molimm.2005.09.017 – volume: 93 start-page: 94 year: 2018 ident: B128 article-title: DNA/RNA hybrid substrates modulate the catalytic activity of purified AID publication-title: Mol Immunol. doi: 10.1016/j.molimm.2017.11.012 – volume: 111 start-page: 9217 year: 2014 ident: B119 article-title: Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1405590111 – volume: 162 start-page: 3121 year: 1999 ident: B98 article-title: Hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein publication-title: J Immunol. doi: 10.4049/jimmunol.162.6.3121 – volume: 102 start-page: 15954 year: 2005 ident: B66 article-title: The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504586102 – volume: 104 start-page: 1183 year: 2007 ident: B147 article-title: Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0610585104 – volume: 382 start-page: 729 year: 1996 ident: B85 article-title: Deoxycytidyl transferase activity of yeast REV1 protein publication-title: Nature. doi: 10.1038/382729a0 – volume: 209 start-page: 965 year: 2012 ident: B23 article-title: Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase publication-title: J Exp Med. doi: 10.1084/jem.20112379 – volume: 11 start-page: e1005411 year: 2015 ident: B145 article-title: Cell cycle regulates nuclear stability of AID and determines the cellular response to AID publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005411 – volume: 204 start-page: 17 year: 2007 ident: B117 article-title: DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse publication-title: J Exp Med. doi: 10.1084/jem.20062131 – volume: 9 start-page: 614 year: 2018 ident: B39 article-title: DNA damage tolerance mechanisms revealed from the analysis of immunoglobulin V gene diversification in avian DT40 cells publication-title: Genes. doi: 10.3390/genes9120614 – volume: 121 start-page: 1 year: 2012 ident: B45 article-title: DNA glycosylases: in DNA repair and beyond publication-title: Chromosoma. doi: 10.1007/s00412-011-0347-4 – volume: 748 start-page: 255 year: 2011 ident: B38 article-title: Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-139-0_18 – volume: 187 start-page: 623 year: 2009 ident: B140 article-title: Decreased replication origin activity in temporal transition regions publication-title: J Cell Biol. doi: 10.1083/jcb.200905144 – volume: 171 start-page: 4639 year: 2003 ident: B27 article-title: Estimating hypermutation rates from clonal tree data publication-title: J Immunol. doi: 10.4049/jimmunol.171.9.4639 – volume: 364 start-page: 645 year: 2009 ident: B51 article-title: The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch publication-title: Philos Trans R Soc London Series B Biol Sci. doi: 10.1098/rstb.2008.0200 – volume: 203 start-page: 2085 year: 2006 ident: B75 article-title: The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/- ung-/- mice publication-title: J Exp Med. doi: 10.1084/jem.20061067 – volume: 187 start-page: 1729 year: 1998 ident: B129 article-title: The role of DNA repair in somatic hypermutation of immunoglobulin genes publication-title: J Exp Med. doi: 10.1084/jem.187.11.1729 – volume: 6 start-page: 573 year: 2006 ident: B28 article-title: Targeting of somatic hypermutation publication-title: Nat Rev Immunol. doi: 10.1038/nri1896 – volume: 25 start-page: 585 year: 2006 ident: B47 article-title: SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair publication-title: EMBO J. doi: 10.1038/sj.emboj.7600939 – volume: 1171 start-page: 11 year: 1992 ident: B29 article-title: Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis publication-title: Biochimica Biophys Acta. doi: 10.1016/0167-4781(92)90134-L – volume: 52 start-page: 541 year: 2013 ident: B71 article-title: PrimPol, an archaic primase/polymerase operating in human cells publication-title: Mol Cell. doi: 10.1016/j.molcel.2013.09.025 – volume: 2 start-page: 493 year: 2001 ident: B3 article-title: Linking class-switch recombination with somatic hypermutation publication-title: Nat Rev Mol Cell Biol. doi: 10.1038/35080033 – volume: 5 start-page: a012583 year: 2013 ident: B44 article-title: Base excision repair publication-title: Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a012583 – volume: 201 start-page: 637 year: 2005 ident: B52 article-title: MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes publication-title: J Exp Med. doi: 10.1084/jem.20042066 – volume: 86 start-page: 265 year: 2003 ident: B109 article-title: The absence of DNA polymerase kappa does not affect somatic hypermutation of the mouse immunoglobulin heavy chain gene publication-title: Immunol Lett. doi: 10.1016/S0165-2478(03)00046-4 – volume: 422 start-page: 726 year: 2003 ident: B22 article-title: Transcription-targeted DNA deamination by the AID antibody diversification enzyme publication-title: Nature. doi: 10.1038/nature01574 – volume: 203 start-page: 319 year: 2006 ident: B87 article-title: Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice publication-title: J Exp Med. doi: 10.1084/jem.20052227 – volume: 37 start-page: 143 year: 2010 ident: B115 article-title: CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis publication-title: Mol Cell. doi: 10.1016/j.molcel.2009.12.018 – volume: 7 start-page: 13055 year: 2017 ident: B138 article-title: Translesion synthesis DNA polymerase eta exhibits a specific RNA extension activity and a transcription-associated function publication-title: Sci Rep. doi: 10.1038/s41598-017-12915-1 – volume: 50 start-page: 54 year: 2017 ident: B113 article-title: Somatic hypermutation of immunoglobulin genes in Rad18 knockout mice publication-title: DNA Repair. doi: 10.1016/j.dnarep.2016.12.008 – volume: 102 start-page: 553 year: 2000 ident: B13 article-title: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme publication-title: Cell. doi: 10.1016/S0092-8674(00)00078-7 – volume: 164 start-page: 538 year: 2016 ident: B143 article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair publication-title: Cell. doi: 10.1016/j.cell.2015.12.050 – volume: 98 start-page: 14553 year: 2001 ident: B100 article-title: Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.241525998 – volume: 76 start-page: 1 year: 2007 ident: B8 article-title: Molecular mechanisms of antibody somatic hypermutation publication-title: Ann Rev Biochem. doi: 10.1146/annurev.biochem.76.061705.090740 – volume: 13 start-page: 141 year: 2012 ident: B63 article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature reviews publication-title: Mol Cell Biol. doi: 10.1038/nrm3289 – volume: 52 start-page: 566 year: 2013 ident: B70 article-title: PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication publication-title: Mol Cell. doi: 10.1016/j.molcel.2013.10.035 – volume: 182 start-page: 6353 year: 2009 ident: B110 article-title: A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta publication-title: J Immunol. doi: 10.4049/jimmunol.0900177 – volume: 34 start-page: 2176 year: 2014 ident: B133 article-title: Somatic hypermutation at A/T-rich oligonucleotide substrates shows different strand polarities in Ung-deficient or -proficient backgrounds publication-title: Mol Cell Biol. doi: 10.1128/MCB.01452-13 – volume: 7 start-page: 248 year: 1995 ident: B1 article-title: Somatic hypermutation publication-title: Curr Opin Immunol. doi: 10.1016/0952-7915(95)80010-7 – volume: 206 start-page: 2603 year: 2009 ident: B36 article-title: Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation publication-title: J Exp Med. doi: 10.1084/jem.20091707 – volume: 24 start-page: 169 year: 2012 ident: B91 article-title: Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to G and G to C transversions during Ig gene hypermutation publication-title: Int Immunol. doi: 10.1093/intimm/dxr109 – volume: 33 start-page: 356 year: 2005 ident: B88 article-title: The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki189 – volume: 26 start-page: 174 year: 2016 ident: B142 article-title: APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication publication-title: Genome Res. doi: 10.1101/gr.197046.115 – volume: 23 start-page: 3886 year: 2004 ident: B64 article-title: Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination publication-title: EMBO J. doi: 10.1038/sj.emboj.7600383 – volume: 177 start-page: 5386 year: 2006 ident: B76 article-title: Somatic hypermutation and class switch recombination in Msh6(-/-)Ung(-/-) double-knockout mice publication-title: J Immunol. doi: 10.4049/jimmunol.177.8.5386 – volume: 32 start-page: 5486 year: 2004 ident: B79 article-title: Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh872 – volume: 201 start-page: 2011 year: 2005 ident: B80 article-title: B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil publication-title: J Exp Med doi: 10.1084/jem.20050042 – volume: 4 start-page: 57 year: 1996 ident: B18 article-title: Somatic hypermutation of immunoglobulin genes is linked to transcription initiation publication-title: Immunity. doi: 10.1016/S1074-7613(00)80298-8 – volume: 12 start-page: 517 year: 2012 ident: B11 article-title: Immunoglobulin class-switch DNA recombination: induction, targeting and beyond publication-title: Nat Rev Immunol doi: 10.1038/nri3216 – volume: 101 start-page: 12997 year: 2004 ident: B126 article-title: Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0404974101 – volume: 447 start-page: 941 year: 2007 ident: B43 article-title: Base-excision repair of oxidative DNA damage publication-title: Nature. doi: 10.1038/nature05978 – volume: 214 start-page: 49 year: 2017 ident: B25 article-title: The cell cycle restricts activation-induced cytidine deaminase activity to early G1 publication-title: J Exp Med. doi: 10.1084/jem.20161649 – volume: 21 start-page: 8935 year: 2002 ident: B94 article-title: Uracil in DNA–occurrence, consequences and repair publication-title: Oncogene. doi: 10.1038/sj.onc.1205996 – volume: 209 start-page: 1075 year: 2012 ident: B122 article-title: DNA polymerase zeta generates tandem mutations in immunoglobulin variable regions publication-title: J Exp Med. doi: 10.1084/jem.20112234 – volume: 174 start-page: 7781 year: 2005 ident: B131 article-title: DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes publication-title: J Immunol. doi: 10.4049/jimmunol.174.12.7781 – volume: 44 start-page: 1925 year: 2014 ident: B48 article-title: Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation publication-title: Eur J Immunol. doi: 10.1002/eji.201444482 – volume: 421 start-page: 436 year: 2003 ident: B62 article-title: DNA damage and repair publication-title: Nature. doi: 10.1038/nature01408 – volume: 5 start-page: 224 year: 2004 ident: B101 article-title: Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice publication-title: Nat Immunol. doi: 10.1038/ni1031 – volume: 22 start-page: 6621 year: 2003 ident: B67 article-title: Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis publication-title: EMBO J. doi: 10.1093/emboj/cdg626 – volume: 2 start-page: 537 year: 2001 ident: B102 article-title: DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes publication-title: Nat Immunol. doi: 10.1038/88740 – volume: 12 start-page: 70 year: 2011 ident: B124 article-title: Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions publication-title: Nat Immunol. doi: 10.1038/ni.1970 – volume: 214 start-page: 1169 year: 2017 ident: B24 article-title: Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs publication-title: J Exp Med. doi: 10.1084/jem.20161576 – volume: 15 start-page: 945 year: 2001 ident: B83 article-title: Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites publication-title: Genes Dev. doi: 10.1101/gad.882301 – volume: 31 start-page: 2990 year: 2003 ident: B125 article-title: Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations publication-title: Nucl Acids Res. doi: 10.1093/nar/gkg464 – volume: 57 start-page: 812 year: 2015 ident: B144 article-title: Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 Complex publication-title: Mol Cell. doi: 10.1016/j.molcel.2014.12.038 – volume: 211 start-page: 242 year: 1966 ident: B149 article-title: Origin of antibody variation publication-title: Nature. doi: 10.1038/211242a0 – volume: 356 start-page: 61 year: 2001 ident: B134 article-title: The reverse transcriptase model of somatic hypermutation publication-title: Philos Trans R Soc Lond Ser B Biol Sci. doi: 10.1098/rstb.2000.0749 – volume: 418 start-page: 99 year: 2002 ident: B14 article-title: AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification publication-title: Nature. doi: 10.1038/nature00862 – volume: 161 start-page: 687 year: 1985 ident: B26 article-title: Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin publication-title: J Exp Med. doi: 10.1084/jem.161.4.687 – volume: 7 start-page: 3399 year: 2008 ident: B116 article-title: PCNA is ubiquitinated by RNF8 publication-title: Cell Cycle. doi: 10.4161/cc.7.21.6949 – volume: 20 start-page: 575 year: 2005 ident: B139 article-title: Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development publication-title: Mol Cell. doi: 10.1016/j.molcel.2005.10.029 – volume: 201 start-page: 1191 year: 2005 ident: B107 article-title: Contribution of DNA polymerase eta to immunoglobulin gene hypermutation in the mouse publication-title: J Exp Med. doi: 10.1084/jem.20050292 – volume: 206 start-page: 477 year: 2009 ident: B123 article-title: Pol zeta ablation in B cells impairs the germinal center reaction, class switch recombination, DNA break repair, and genome stability publication-title: J Exp Med. doi: 10.1084/jem.20080669 – volume: 25 start-page: 750 year: 1997 ident: B78 article-title: Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.4.750 – volume: 43 start-page: 649 year: 2011 ident: B58 article-title: The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells publication-title: Mol Cell. doi: 10.1016/j.molcel.2011.06.023 – volume: 198 start-page: 1171 year: 2003 ident: B97 article-title: Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination publication-title: J Exp Med. doi: 10.1084/jem.20030880 – volume: 3 start-page: 1503 year: 2004 ident: B69 article-title: Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein publication-title: DNA Repair. doi: 10.1016/j.dnarep.2004.06.015 – volume: 45 start-page: 3146 year: 2017 ident: B93 article-title: Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2 publication-title: Nucleic Acids Res. – volume: 6 start-page: 943 year: 2005 ident: B112 article-title: Suffering in silence: the tolerance of DNA damage publication-title: Nat Rev. doi: 10.1038/nrm1781 – volume: 44 start-page: 4734 year: 2016 ident: B73 article-title: PrimPol prevents APOBEC/AID family mediated DNA mutagenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw123 – volume: 99 start-page: 9954 year: 2002 ident: B106 article-title: Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.152126799 – volume: 32 start-page: 3152 year: 2002 ident: B108 article-title: DNA polymerase kappa deficiency does not affect somatic hypermutation in mice publication-title: Eur J Immunol. doi: 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2 – volume: 317 start-page: 1227 year: 2007 ident: B132 article-title: Strand-biased spreading of mutations during somatic hypermutation publication-title: Science. doi: 10.1126/science.1145065 – volume: 26 start-page: 261 year: 2008 ident: B10 article-title: Mechanism and regulation of class switch recombination publication-title: Ann Rev Immunol. doi: 10.1146/annurev.immunol.26.021607.090248 – volume: 10 start-page: e1001360 year: 2012 ident: B141 article-title: Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001360 – volume: 9 start-page: 523 year: 2004 ident: B68 article-title: Interaction of hREV1 with three human Y-family DNA polymerases publication-title: Genes Cells. doi: 10.1111/j.1356-9597.2004.00747.x – volume: 190 start-page: 21 year: 1999 ident: B99 article-title: Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications publication-title: J Exp Med. doi: 10.1084/jem.190.1.21 – volume: 82 start-page: 219 year: 2004 ident: B136 article-title: Human DNA polymerase-eta, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase publication-title: Immunol Cell Biol. doi: 10.1046/j.0818-9641.2004.01221.x – volume: 197 start-page: 1291 year: 2003 ident: B15 article-title: AID mediates hypermutation by deaminating single stranded DNA publication-title: J Exp Med. doi: 10.1084/jem.20030481 – volume: 16 start-page: 163 year: 2004 ident: B34 article-title: Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation publication-title: Mol Cell. doi: 10.1016/j.molcel.2004.10.011 – volume: 274 start-page: 18470 year: 1999 ident: B12 article-title: Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells publication-title: J Biol Chem. doi: 10.1074/jbc.274.26.18470 – volume: 40 start-page: 179 year: 2010 ident: B40 article-title: The DNA damage response: making it safe to play with knives publication-title: Mol Cell. doi: 10.1016/j.molcel.2010.09.019 – volume: 67 start-page: 361 year: 2017 ident: B127 article-title: AID recognizes structured DNA for class switch recombination publication-title: Mol Cell. doi: 10.1016/j.molcel.2017.06.034 – volume: 12 start-page: 24 year: 2011 ident: B7 article-title: Molecular programming of B cell memory publication-title: Nat Rev Immunol. doi: 10.1038/nri3128 – volume: 28 start-page: 3384 year: 1998 ident: B30 article-title: Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands publication-title: Eur J Immunol. doi: 10.1002/(SICI)1521-4141(199810)28:10<3384::AID-IMMU3384>3.0.CO;2-T – volume: 204 start-page: 1989 year: 2007 ident: B61 article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification publication-title: J Exp Med. doi: 10.1084/jem.20070902 |
| SSID | ssj0000493335 |
| Score | 2.4697177 |
| SecondaryResourceType | review_article |
| Snippet | Somatic hypermutation (SHM) of immunoglobulin (
) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for... Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 438 |
| SubjectTerms | abasic site B-Lymphocytes - immunology base excision repair Cytidine Deaminase - genetics Cytidine Deaminase - metabolism cytosine deamination Deamination - physiology DNA - genetics DNA Damage - genetics DNA damage tolerance (DDT) DNA Repair - genetics Humans Immunology non-canonical mismatch repair (ncMMR) Somatic Hypermutation, Immunoglobulin - genetics translesion synthesis (TLS) VDJ Exons - genetics |
| Title | Mutating for Good: DNA Damage Responses During Somatic Hypermutation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30915081 https://www.proquest.com/docview/2198560621 https://pubmed.ncbi.nlm.nih.gov/PMC6423074 https://doaj.org/article/db3710431d4e4289917ed2574d089e6a |
| Volume | 10 |
| WOSCitedRecordID | wos000461085400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYgAokLasujaQG5EhcOq-yuHe-6t0CgHEqEeEi5WesXBHV3UZKtxIXf3rGdRElVwaWXPex6ZWtm7PlGM_4GoWNp85RIzSMbF2lEZVJEMrNFlBJCCoCwsdFe0z-zwSAfDvn1UqsvVxMW6IGD4DpaEnCC4OY0NdRFB0lmNNgZ1XHODfPQCFDPUjD1FHAvTNYNeUmIwnjHjsqycaVcjp-SuusoS37I0_X_C2P-XSq55HsuPqDtGWjEvbDYj2jNVJ_QZmgj-bKD-leNS6hXDxgQKP5R1_o77g96uF-UcFrgm1AGaya47-8k4tva87TiS4hBx2UTkvG76P7i_O7sMpp1R4gUZek04kQVijOqM0AVxmrGpQRnbVlMukaqLJVUWRUnOdM05wxwFmxlyyBAgj1tbEL2UKuqK_PZlTcZwBmym6XW0FhbnhDH3BgrDuhJqm4bdeayEmpGHe46WPwSEEI46QovXeGkK7x02-hk8cdzoM14Y-ypE_9inCO89i_ADMTMDMR7ZtBG3-bKE7BBXNajqEzdTAQcyTnAOpYmbbQflLmYigBaAoQKX7IVNa-sZfVLNXr0JNwQt8HxSL_8j8V_RVtOHK60LUkPUGs6bswh2lC_p6PJ-AitZ8P8yNs3PK9ez_8A7bT-Eg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutating+for+Good%3A+DNA+Damage+Responses+During+Somatic+Hypermutation&rft.jtitle=Frontiers+in+immunology&rft.au=Pilzecker%2C+Bas&rft.au=Jacobs%2C+Heinz&rft.date=2019-03-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=10&rft_id=info:doi/10.3389%2Ffimmu.2019.00438&rft_id=info%3Apmid%2F30915081&rft.externalDocID=PMC6423074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |