Mutating for Good: DNA Damage Responses During Somatic Hypermutation

Somatic hypermutation (SHM) of immunoglobulin ( ) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activ...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology Vol. 10; p. 438
Main Authors: Pilzecker, Bas, Jacobs, Heinz
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 12.03.2019
Subjects:
ISSN:1664-3224, 1664-3224
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Somatic hypermutation (SHM) of immunoglobulin ( ) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of genes. The mutation rate of this programmed mutagenesis is ~10 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
AbstractList Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10−3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Somatic hypermutation (SHM) of immunoglobulin ( ) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of genes. The mutation rate of this programmed mutagenesis is ~10 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Author Jacobs, Heinz
Pilzecker, Bas
AuthorAffiliation Division of Tumor Biology & Immunology, The Netherlands Cancer Institute , Amsterdam , Netherlands
AuthorAffiliation_xml – name: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute , Amsterdam , Netherlands
Author_xml – sequence: 1
  givenname: Bas
  surname: Pilzecker
  fullname: Pilzecker, Bas
– sequence: 2
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30915081$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtPGzEUhS0EKo9mz6qaZTcJfo3H7qISIpBEglbqY2157Ot00Mw4tWeQ-Pc4CSCoVG9sXZ9z7rW_U3TYhx4QOid4xphUF77punFGMVEzjDmTB-iECMGnjFJ--OZ8jCYp3eO8uGKMlR_QMcOKlFiSEzS_GwczNP268CEWixDcl2L-7bKYm86sofgBaRP6BKmYj3Gr-hm6LLfF8nEDsdt5Q_8RHXnTJpg872fo9831r6vl9Pb7YnV1eTu1XNBhqpg1VgnuKiw4eCdUXRPKvcCshNpWtObWW0ykcFwqUdL8NuKFrAjDBDxhZ2i1z3XB3OtNbDoTH3Uwjd4VQlxrE_N0LWhXs4rkXyGOA6dSKVKBo2XFHZYKhMlZX_dZm7HuwFnoh2jad6Hvb_rmj16HBy04ZbjiOeDzc0AMf0dIg-6aZKFtTQ9hTJoSJUuBBd3O_eltr9cmLxiyAO8FNoaUIvhXCcF6C1vvYOstbL2DnS3iH4tt9jTytE37f-MTUlqtwA
CitedBy_id crossref_primary_10_1016_j_dnarep_2023_103607
crossref_primary_10_3389_fgene_2021_671866
crossref_primary_10_3389_fimmu_2021_728694
crossref_primary_10_3389_fimmu_2022_871766
crossref_primary_10_1016_j_dnarep_2025_103888
crossref_primary_10_1113_JP285478
crossref_primary_10_7554_eLife_105471_3
crossref_primary_10_1038_s41541_019_0145_1
crossref_primary_10_1371_journal_pbio_3002389
crossref_primary_10_1007_s10875_022_01233_5
crossref_primary_10_1016_j_blre_2022_100969
crossref_primary_10_1093_nar_gkz531
crossref_primary_10_3389_fimmu_2022_986863
crossref_primary_10_1073_pnas_2104013118
crossref_primary_10_3390_ijms26083596
crossref_primary_10_3389_fonc_2021_634383
crossref_primary_10_3389_fimmu_2022_881656
crossref_primary_10_3390_vaccines9121376
crossref_primary_10_1016_j_bbagen_2019_129415
crossref_primary_10_1016_j_intimp_2024_111544
crossref_primary_10_1158_0008_5472_CAN_20_3761
crossref_primary_10_1038_s41388_024_03192_0
crossref_primary_10_1080_10985549_2023_2224199
crossref_primary_10_1089_crispr_2023_0027
crossref_primary_10_1038_s41416_024_02840_2
crossref_primary_10_1016_j_molimm_2022_11_013
crossref_primary_10_3390_ijms24010225
crossref_primary_10_1016_j_isci_2021_103668
crossref_primary_10_3389_fcimb_2020_00154
crossref_primary_10_15252_embr_202051184
crossref_primary_10_1093_nar_gkz821
crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1002_bies_202000032
crossref_primary_10_1016_j_dnarep_2022_103381
crossref_primary_10_3389_fimmu_2020_00788
crossref_primary_10_1038_s41375_025_02650_2
crossref_primary_10_1080_14728222_2021_1864321
crossref_primary_10_3389_fcell_2022_884873
crossref_primary_10_4049_jimmunol_1900483
crossref_primary_10_1007_s11010_025_05291_2
crossref_primary_10_1093_nar_gkaa825
crossref_primary_10_3389_fimmu_2022_834889
crossref_primary_10_1002_2211_5463_13467
crossref_primary_10_1038_s41423_022_00954_2
crossref_primary_10_1134_S002689332201006X
crossref_primary_10_3390_ijms21239226
crossref_primary_10_1007_s11427_024_2615_1
crossref_primary_10_1038_s43018_023_00643_7
crossref_primary_10_3389_fimmu_2021_807015
crossref_primary_10_3389_fcell_2021_720798
crossref_primary_10_1016_j_cyto_2025_156969
crossref_primary_10_1093_nar_gkac1251
crossref_primary_10_1002_1878_0261_13560
crossref_primary_10_1007_s10875_021_01050_2
crossref_primary_10_3389_fcell_2020_00357
crossref_primary_10_1134_S0006297920040033
crossref_primary_10_3389_fevo_2022_836066
crossref_primary_10_1016_j_dnarep_2024_103755
crossref_primary_10_1016_j_immuni_2021_07_015
crossref_primary_10_3390_ijms25031799
crossref_primary_10_3389_fimmu_2023_1031914
crossref_primary_10_3390_life13071437
crossref_primary_10_1093_brain_awad419
crossref_primary_10_1101_gad_349438_122
crossref_primary_10_1242_jeb_243264
crossref_primary_10_3389_fimmu_2022_864949
crossref_primary_10_1096_fj_201903036RR
crossref_primary_10_7554_eLife_105471
Cites_doi 10.1093/nar/gkl259
10.1084/jem.20151227
10.4049/jimmunol.166.8.5051
10.1016/S1097-2765(03)00428-3
10.1016/j.molcel.2012.07.006
10.1016/S0959-437X(99)80013-6
10.1038/sj.embor.7400582
10.4049/jimmunol.172.6.3382
10.1073/pnas.97.3.1166
10.1084/jem.20070756
10.1038/nrm1907
10.1146/annurev-genet-112414-054722
10.1002/eji.201243191
10.1016/S1471-4906(01)02111-1
10.1016/S0079-6603(08)60800-4
10.1073/pnas.0901726106
10.1074/jbc.M117.809723
10.1073/pnas.90.6.2385
10.1016/S0960-9822(02)01215-0
10.1093/intimm/dxp061
10.1038/nri1553
10.1038/nature01965
10.1038/nature00991
10.1016/S0092-8674(00)80923-X
10.1074/jbc.M110149200
10.1016/j.jmb.2010.12.016
10.1046/j.0818-9641.2004.01224.x
10.1016/S0065-2776(10)05006-6
10.1038/nature00981
10.1038/sj.embor.7400777
10.1101/cshperspect.a000745
10.1084/jem.20040691
10.1038/88732
10.1016/S1074-7613(00)80592-0
10.1007/978-3-642-71984-4_2
10.1016/j.molcel.2006.05.038
10.1016/j.dnarep.2011.08.005
10.1101/sqb.1999.64.227
10.1146/annurev.bi.65.070196.000533
10.1038/nsmb.2719
10.1038/35010014
10.1073/pnas.1719771115
10.1038/nature01760
10.1084/jem.20171738
10.1016/j.virol.2016.05.002
10.1073/pnas.0808182105
10.1016/S0952-7915(00)00206-5
10.1038/ni920
10.1084/jem.20071289
10.1016/S0092-8674(02)00706-7
10.1093/nar/gkv023
10.1002/cbic.200500139
10.1016/j.molimm.2005.09.017
10.1016/j.molimm.2017.11.012
10.1073/pnas.1405590111
10.4049/jimmunol.162.6.3121
10.1073/pnas.0504586102
10.1073/pnas.0610585104
10.1038/382729a0
10.1084/jem.20112379
10.1371/journal.pgen.1005411
10.1084/jem.20062131
10.3390/genes9120614
10.1007/s00412-011-0347-4
10.1007/978-1-61779-139-0_18
10.1083/jcb.200905144
10.4049/jimmunol.171.9.4639
10.1098/rstb.2008.0200
10.1084/jem.20061067
10.1084/jem.187.11.1729
10.1038/nri1896
10.1038/sj.emboj.7600939
10.1016/0167-4781(92)90134-L
10.1016/j.molcel.2013.09.025
10.1038/35080033
10.1101/cshperspect.a012583
10.1084/jem.20042066
10.1016/S0165-2478(03)00046-4
10.1038/nature01574
10.1084/jem.20052227
10.1016/j.molcel.2009.12.018
10.1038/s41598-017-12915-1
10.1016/j.dnarep.2016.12.008
10.1016/S0092-8674(00)00078-7
10.1016/j.cell.2015.12.050
10.1073/pnas.241525998
10.1146/annurev.biochem.76.061705.090740
10.1038/nrm3289
10.1016/j.molcel.2013.10.035
10.4049/jimmunol.0900177
10.1128/MCB.01452-13
10.1016/0952-7915(95)80010-7
10.1084/jem.20091707
10.1093/intimm/dxr109
10.1093/nar/gki189
10.1101/gr.197046.115
10.1038/sj.emboj.7600383
10.4049/jimmunol.177.8.5386
10.1093/nar/gkh872
10.1084/jem.20050042
10.1016/S1074-7613(00)80298-8
10.1038/nri3216
10.1073/pnas.0404974101
10.1038/nature05978
10.1084/jem.20161649
10.1038/sj.onc.1205996
10.1084/jem.20112234
10.4049/jimmunol.174.12.7781
10.1002/eji.201444482
10.1038/nature01408
10.1038/ni1031
10.1093/emboj/cdg626
10.1038/88740
10.1038/ni.1970
10.1084/jem.20161576
10.1101/gad.882301
10.1093/nar/gkg464
10.1016/j.molcel.2014.12.038
10.1038/211242a0
10.1098/rstb.2000.0749
10.1038/nature00862
10.1084/jem.161.4.687
10.4161/cc.7.21.6949
10.1016/j.molcel.2005.10.029
10.1084/jem.20050292
10.1084/jem.20080669
10.1093/nar/25.4.750
10.1016/j.molcel.2011.06.023
10.1084/jem.20030880
10.1016/j.dnarep.2004.06.015
10.1038/nrm1781
10.1093/nar/gkw123
10.1073/pnas.152126799
10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2
10.1126/science.1145065
10.1146/annurev.immunol.26.021607.090248
10.1371/journal.pbio.1001360
10.1111/j.1356-9597.2004.00747.x
10.1084/jem.190.1.21
10.1046/j.0818-9641.2004.01221.x
10.1084/jem.20030481
10.1016/j.molcel.2004.10.011
10.1074/jbc.274.26.18470
10.1016/j.molcel.2010.09.019
10.1016/j.molcel.2017.06.034
10.1038/nri3128
10.1002/(SICI)1521-4141(199810)28:10<3384::AID-IMMU3384>3.0.CO;2-T
10.1084/jem.20070902
ContentType Journal Article
Copyright Copyright © 2019 Pilzecker and Jacobs. 2019 Pilzecker and Jacobs
Copyright_xml – notice: Copyright © 2019 Pilzecker and Jacobs. 2019 Pilzecker and Jacobs
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2019.00438
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_db3710431d4e4289917ed2574d089e6a
PMC6423074
30915081
10_3389_fimmu_2019_00438
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: KWF Kankerbestrijding
  grantid: KWF NKI-2012–5243; KWF NKI-2016-10032; KWF NKI-2016-10796
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: ZonMW Top 91213018
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-93cac964d7064efd69bb124f6035ebc72b4cfc0186d4896522011f6871301ef13
IEDL.DBID DOA
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461085400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:44:10 EDT 2025
Tue Sep 30 16:51:52 EDT 2025
Fri Sep 05 14:51:46 EDT 2025
Thu Apr 03 06:59:14 EDT 2025
Sat Nov 29 02:50:49 EST 2025
Tue Nov 18 22:13:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords base excision repair
non-canonical mismatch repair (ncMMR)
abasic site
translesion synthesis (TLS)
DNA damage tolerance (DDT)
cytosine deamination
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-93cac964d7064efd69bb124f6035ebc72b4cfc0186d4896522011f6871301ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Patricia Johanna Gearhart, National Institutes of Health (NIH), United States; Javier Marcelo Di Noia, Institute of Clinical Research De Montreal (IRCM), Canada
Edited by: Amy L. Kenter, University of Illinois at Chicago, United States
This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology
OpenAccessLink https://doaj.org/article/db3710431d4e4289917ed2574d089e6a
PMID 30915081
PQID 2198560621
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_db3710431d4e4289917ed2574d089e6a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423074
proquest_miscellaneous_2198560621
pubmed_primary_30915081
crossref_primary_10_3389_fimmu_2019_00438
crossref_citationtrail_10_3389_fimmu_2019_00438
PublicationCentury 2000
PublicationDate 2019-03-12
PublicationDateYYYYMMDD 2019-03-12
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Clarke (B26) 1985; 161
Guan (B140) 2009; 187
Wilson (B52) 2005; 201
Shen (B76) 2006; 177
Haradhvala (B143) 2016; 164
Storb (B130) 1998; 229
Le (B145) 2015; 11
Guo (B67) 2003; 22
Franklin (B136) 2004; 82
Su (B137) 2017; 292
Tissier (B69) 2004; 3
Krijger (B36) 2009; 206
Mayorov (B131) 2005; 174
Stavnezer (B10) 2008; 26
Chaudhuri (B22) 2003; 422
Martin (B97) 2003; 198
Odegard (B28) 2006; 6
Shimizu (B109) 2003; 86
Phung (B98) 1999; 162
Schenten (B108) 2002; 32
Faili (B110) 2009; 182
Muramatsu (B12) 1999; 274
Watanabe (B64) 2004; 23
Pham (B16) 2003; 424
Simpson (B114) 2006; 7
Qiao (B127) 2017; 67
Pena-Diaz (B53) 2012; 47
Fukita (B19) 1998; 9
Zhang (B116) 2008; 7
Kinoshita (B3) 2001; 2
Jansen (B87) 2006; 203
Rada (B46) 2002; 12
Zivojnovic (B133) 2014; 34
Jansen (B88) 2005; 33
Gali (B138) 2017; 7
Norio (B139) 2005; 20
Abdouni (B128) 2018; 93
Pilzecker (B73) 2016; 44
Haracska (B83) 2001; 15
Matsuda (B104) 2000; 404
Rada (B34) 2004; 16
Storb (B2) 1999; 64
Genschel (B120) 2003; 12
Martomo (B96) 2004; 200
Bachl (B21) 2001; 166
Steele (B134) 2001; 356
Krijger (B103) 2011; 10
Bardwell (B101) 2004; 5
Betz (B33) 1993; 90
Fumasoni (B144) 2015; 57
Akbari (B79) 2004; 32
Krijger (B37) 2013; 43
Jiricny (B57) 2006; 7
Nair (B84) 2011; 406
Nilsen (B78) 1997; 25
Di Noia (B47) 2006; 25
Thientosapol (B93) 2017; 45
Schanz (B95) 2009; 106
Terai (B115) 2010; 37
Ramiro (B17) 2003; 4
Dorner (B30) 1998; 28
Friedberg (B112) 2005; 6
Seplyarskiy (B142) 2016; 26
Sabouri (B118) 2009; 21
Bonifati (B148) 2016; 495
Thientosapol (B146) 2018; 115
Neuberger (B35) 2005; 5
Kolodner (B56) 1999; 9
Zlatanou (B58) 2011; 43
Krokan (B94) 2002; 21
Sale (B63) 2012; 13
Stavnezer (B119) 2014; 111
Maul (B6) 2010; 105
Abe (B39) 2018; 9
Kleinstein (B27) 2003; 171
Ulrich (B65) 2005; 6
Schrader (B51) 2009; 364
Manis (B9) 2002; 23
Masuda (B86) 2002; 277
Papavasiliou (B4) 2002; 109
Girelli Zubani (B24) 2017; 214
Lindahl (B42) 1979; 22
Modrich (B55) 1996; 65
Rogozin (B31) 2004; 172
Garcia-Gomez (B71) 2013; 52
Maul (B121) 2016; 213
Kunkel (B54) 2015; 49
Xu (B11) 2012; 12
Wang (B25) 2017; 214
Seki (B5) 2005; 6
Nelson (B85) 1996; 382
Kavli (B80) 2005; 201
Ehrenstein (B100) 2001; 98
Neuberger (B1) 1995; 7
Zeng (B102) 2001; 2
Steele (B135) 2004; 82
Unniraman (B132) 2007; 317
Delbos (B107) 2005; 201
Pavlov (B106) 2002; 99
Esposito (B81) 2000; 97
Guo (B89) 2006; 23
Di Noia (B8) 2007; 76
Roa (B111) 2008; 105
Jacobs (B20) 2001; 13
Sharbeen (B23) 2012; 209
Ross (B90) 2006; 43
Burkovics (B49) 2006; 34
Alvarez-Prado (B32) 2018; 215
Zhang (B66) 2005; 102
Ciccia (B40) 2010; 40
Rogozin (B29) 1992; 1171
Friedberg (B62) 2003; 421
Maul (B124) 2011; 12
Stelter (B60) 2003; 425
Di Noia (B77) 2002; 419
Baker (B74) 1998; 92
Wu (B82) 2007; 204
Xue (B75) 2006; 203
Dingler (B48) 2014; 44
Petersen-Mahrt (B14) 2002; 418
Guikema (B50) 2007; 204
Brenner (B149) 1966; 211
Peters (B18) 1996; 4
Delbos (B117) 2007; 204
Ohashi (B68) 2004; 9
Demczuk (B141) 2012; 10
Kothapalli (B38) 2011; 748
Langerak (B61) 2007; 204
Mouron (B72) 2013; 20
Hirota (B92) 2015; 43
Kim (B99) 1999; 190
Sohail (B125) 2003; 31
Chabes (B147) 2007; 104
Kim (B129) 1998; 187
Jacobs (B45) 2012; 121
David (B43) 2007; 447
Muramatsu (B13) 2000; 102
Saribasak (B122) 2012; 209
Schenten (B123) 2009; 206
Rogozin (B105) 2001; 2
Hoege (B59) 2002; 419
Shen (B126) 2004; 101
Krokan (B44) 2013; 5
Kano (B91) 2012; 24
Giglia-Mari (B41) 2011; 3
McHeyzer-Williams (B7) 2011; 12
Bianchi (B70) 2013; 52
Shimizu (B113) 2017; 50
Dickerson (B15) 2003; 197
References_xml – volume: 34
  start-page: 2508
  year: 2006
  ident: B49
  article-title: Human Ape2 protein has a 3'-5' exonuclease activity that acts preferentially on mismatched base pairs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl259
– volume: 213
  start-page: 1675
  year: 2016
  ident: B121
  article-title: DNA polymerase iota functions in the generation of tandem mutations during somatic hypermutation of antibody genes
  publication-title: J Exp Med.
  doi: 10.1084/jem.20151227
– volume: 166
  start-page: 5051
  year: 2001
  ident: B21
  article-title: Increased transcription levels induce higher mutation rates in a hypermutating cell line
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.166.8.5051
– volume: 12
  start-page: 1077
  year: 2003
  ident: B120
  article-title: Mechanism of 5'-directed excision in human mismatch repair
  publication-title: Mol Cell.
  doi: 10.1016/S1097-2765(03)00428-3
– volume: 47
  start-page: 669
  year: 2012
  ident: B53
  article-title: Noncanonical mismatch repair as a source of genomic instability in human cells
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2012.07.006
– volume: 9
  start-page: 89
  year: 1999
  ident: B56
  article-title: Eukaryotic DNA mismatch repair
  publication-title: Curr Opin Genet Dev.
  doi: 10.1016/S0959-437X(99)80013-6
– volume: 6
  start-page: 1143
  year: 2005
  ident: B5
  article-title: DNA polymerases and somatic hypermutation of immunoglobulin genes
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400582
– volume: 172
  start-page: 3382
  year: 2004
  ident: B31
  article-title: Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.172.6.3382
– volume: 97
  start-page: 1166
  year: 2000
  ident: B81
  article-title: Mice reconstituted with DNA polymerase beta-deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.3.1166
– volume: 204
  start-page: 1677
  year: 2007
  ident: B82
  article-title: DNA polymerase beta is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination
  publication-title: J Exp Med.
  doi: 10.1084/jem.20070756
– volume: 7
  start-page: 335
  year: 2006
  ident: B57
  article-title: The multifaceted mismatch-repair system
  publication-title: Nat Rev Mol Cell Biol.
  doi: 10.1038/nrm1907
– volume: 49
  start-page: 291
  year: 2015
  ident: B54
  article-title: Eukaryotic Mismatch Repair in Relation to DNA Replication
  publication-title: Ann Rev Genet.
  doi: 10.1146/annurev-genet-112414-054722
– volume: 43
  start-page: 2765
  year: 2013
  ident: B37
  article-title: Rev1 is essential in generating G to C transversions downstream of the Ung2 pathway but not the Msh2+Ung2 hybrid pathway
  publication-title: Eur J Immunol.
  doi: 10.1002/eji.201243191
– volume: 23
  start-page: 31
  year: 2002
  ident: B9
  article-title: Mechanism and control of class-switch recombination
  publication-title: Trends Immunol
  doi: 10.1016/S1471-4906(01)02111-1
– volume: 22
  start-page: 135
  year: 1979
  ident: B42
  article-title: DNA glycosylases endonucleases for apurinic/apyrimidinic sites and base excision-repair
  publication-title: Progr Nucleic Acid Res Mol Biol.
  doi: 10.1016/S0079-6603(08)60800-4
– volume: 106
  start-page: 5593
  year: 2009
  ident: B95
  article-title: Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0901726106
– volume: 292
  start-page: 18044
  year: 2017
  ident: B137
  article-title: Human DNA polymerase eta accommodates RNA for strand extension
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M117.809723
– volume: 90
  start-page: 2385
  year: 1993
  ident: B33
  article-title: Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.90.6.2385
– volume: 12
  start-page: 1748
  year: 2002
  ident: B46
  article-title: Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice
  publication-title: Curr Biol.
  doi: 10.1016/S0960-9822(02)01215-0
– volume: 21
  start-page: 947
  year: 2009
  ident: B118
  article-title: Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes
  publication-title: Int Immunol.
  doi: 10.1093/intimm/dxp061
– volume: 5
  start-page: 171
  year: 2005
  ident: B35
  article-title: Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri1553
– volume: 425
  start-page: 188
  year: 2003
  ident: B60
  article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
  publication-title: Nature.
  doi: 10.1038/nature01965
– volume: 419
  start-page: 135
  year: 2002
  ident: B59
  article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
  publication-title: Nature.
  doi: 10.1038/nature00991
– volume: 92
  start-page: 295
  year: 1998
  ident: B74
  article-title: Polymerases and the replisome: machines within machines
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)80923-X
– volume: 277
  start-page: 3040
  year: 2002
  ident: B86
  article-title: Mechanisms of dCMP transferase reactions catalyzed by mouse Rev1 protein
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M110149200
– volume: 406
  start-page: 18
  year: 2011
  ident: B84
  article-title: DNA synthesis across an abasic lesion by yeast REV1 DNA polymerase
  publication-title: J Mol Biol.
  doi: 10.1016/j.jmb.2010.12.016
– volume: 82
  start-page: 209
  year: 2004
  ident: B135
  article-title: Genesis of the strand-biased signature in somatic hypermutation of rearranged immunoglobulin variable genes
  publication-title: Immunol Cell Biol.
  doi: 10.1046/j.0818-9641.2004.01224.x
– volume: 105
  start-page: 159
  year: 2010
  ident: B6
  article-title: AID and somatic hypermutation
  publication-title: Adv Immunol.
  doi: 10.1016/S0065-2776(10)05006-6
– volume: 419
  start-page: 43
  year: 2002
  ident: B77
  article-title: Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase
  publication-title: Nature.
  doi: 10.1038/nature00981
– volume: 7
  start-page: 927
  year: 2006
  ident: B114
  article-title: RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400777
– volume: 3
  start-page: a000745
  year: 2011
  ident: B41
  article-title: DNA damage response
  publication-title: Cold Spring Harb Perspect Biol.
  doi: 10.1101/cshperspect.a000745
– volume: 200
  start-page: 61
  year: 2004
  ident: B96
  article-title: A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination
  publication-title: J Exp Med.
  doi: 10.1084/jem.20040691
– volume: 2
  start-page: 530
  year: 2001
  ident: B105
  article-title: Somatic mutation hotspots correlate with DNA polymerase eta error spectrum
  publication-title: Nat Immunol.
  doi: 10.1038/88732
– volume: 9
  start-page: 105
  year: 1998
  ident: B19
  article-title: Somatic hypermutation in the heavy chain locus correlates with transcription
  publication-title: Immunity.
  doi: 10.1016/S1074-7613(00)80592-0
– volume: 229
  start-page: 11
  year: 1998
  ident: B130
  article-title: Somatic hypermutation of immunoglobulin genes is linked to transcription
  publication-title: Curr Topics Microbiol Immunol.
  doi: 10.1007/978-3-642-71984-4_2
– volume: 23
  start-page: 265
  year: 2006
  ident: B89
  article-title: REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2006.05.038
– volume: 10
  start-page: 1051
  year: 2011
  ident: B103
  article-title: PCNA ubiquitination-independent activation of polymerase eta during somatic hypermutation and DNA damage tolerance
  publication-title: DNA Repair.
  doi: 10.1016/j.dnarep.2011.08.005
– volume: 64
  start-page: 227
  year: 1999
  ident: B2
  article-title: Molecular aspects of somatic hypermutation of immunoglobulin genes
  publication-title: Cold Spring Harb Sympos Quant Biol.
  doi: 10.1101/sqb.1999.64.227
– volume: 65
  start-page: 101
  year: 1996
  ident: B55
  article-title: Mismatch repair in replication fidelity, genetic recombination, and cancer biology
  publication-title: Ann Rev Biochem.
  doi: 10.1146/annurev.bi.65.070196.000533
– volume: 20
  start-page: 1383
  year: 2013
  ident: B72
  article-title: Repriming of DNA synthesis at stalled replication forks by human PrimPol
  publication-title: Nat Struc Mol Biol.
  doi: 10.1038/nsmb.2719
– volume: 404
  start-page: 1011
  year: 2000
  ident: B104
  article-title: Low fidelity DNA synthesis by human DNA polymerase-eta
  publication-title: Nature.
  doi: 10.1038/35010014
– volume: 115
  start-page: 4921
  year: 2018
  ident: B146
  article-title: SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1719771115
– volume: 424
  start-page: 103
  year: 2003
  ident: B16
  article-title: Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation
  publication-title: Nature.
  doi: 10.1038/nature01760
– volume: 215
  start-page: 761
  year: 2018
  ident: B32
  article-title: A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets
  publication-title: J Exp Med.
  doi: 10.1084/jem.20171738
– volume: 495
  start-page: 92
  year: 2016
  ident: B148
  article-title: SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells
  publication-title: Virology.
  doi: 10.1016/j.virol.2016.05.002
– volume: 105
  start-page: 16248
  year: 2008
  ident: B111
  article-title: Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0808182105
– volume: 13
  start-page: 208
  year: 2001
  ident: B20
  article-title: Towards an understanding of somatic hypermutation
  publication-title: Curr Opin Immunol.
  doi: 10.1016/S0952-7915(00)00206-5
– volume: 4
  start-page: 452
  year: 2003
  ident: B17
  article-title: Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand
  publication-title: Nat Immunol.
  doi: 10.1038/ni920
– volume: 204
  start-page: 3017
  year: 2007
  ident: B50
  article-title: APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination
  publication-title: J Exp Med.
  doi: 10.1084/jem.20071289
– volume: 109
  start-page: S35
  year: 2002
  ident: B4
  article-title: Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity
  publication-title: Cell.
  doi: 10.1016/S0092-8674(02)00706-7
– volume: 43
  start-page: 1671
  year: 2015
  ident: B92
  article-title: The POLD3 subunit of DNA polymerase delta can promote translesion synthesis independently of DNA polymerase zeta
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv023
– volume: 6
  start-page: 1735
  year: 2005
  ident: B65
  publication-title: Chembiochem.
  doi: 10.1002/cbic.200500139
– volume: 43
  start-page: 1587
  year: 2006
  ident: B90
  article-title: The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2005.09.017
– volume: 93
  start-page: 94
  year: 2018
  ident: B128
  article-title: DNA/RNA hybrid substrates modulate the catalytic activity of purified AID
  publication-title: Mol Immunol.
  doi: 10.1016/j.molimm.2017.11.012
– volume: 111
  start-page: 9217
  year: 2014
  ident: B119
  article-title: Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1405590111
– volume: 162
  start-page: 3121
  year: 1999
  ident: B98
  article-title: Hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.162.6.3121
– volume: 102
  start-page: 15954
  year: 2005
  ident: B66
  article-title: The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504586102
– volume: 104
  start-page: 1183
  year: 2007
  ident: B147
  article-title: Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0610585104
– volume: 382
  start-page: 729
  year: 1996
  ident: B85
  article-title: Deoxycytidyl transferase activity of yeast REV1 protein
  publication-title: Nature.
  doi: 10.1038/382729a0
– volume: 209
  start-page: 965
  year: 2012
  ident: B23
  article-title: Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase
  publication-title: J Exp Med.
  doi: 10.1084/jem.20112379
– volume: 11
  start-page: e1005411
  year: 2015
  ident: B145
  article-title: Cell cycle regulates nuclear stability of AID and determines the cellular response to AID
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005411
– volume: 204
  start-page: 17
  year: 2007
  ident: B117
  article-title: DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse
  publication-title: J Exp Med.
  doi: 10.1084/jem.20062131
– volume: 9
  start-page: 614
  year: 2018
  ident: B39
  article-title: DNA damage tolerance mechanisms revealed from the analysis of immunoglobulin V gene diversification in avian DT40 cells
  publication-title: Genes.
  doi: 10.3390/genes9120614
– volume: 121
  start-page: 1
  year: 2012
  ident: B45
  article-title: DNA glycosylases: in DNA repair and beyond
  publication-title: Chromosoma.
  doi: 10.1007/s00412-011-0347-4
– volume: 748
  start-page: 255
  year: 2011
  ident: B38
  article-title: Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-139-0_18
– volume: 187
  start-page: 623
  year: 2009
  ident: B140
  article-title: Decreased replication origin activity in temporal transition regions
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.200905144
– volume: 171
  start-page: 4639
  year: 2003
  ident: B27
  article-title: Estimating hypermutation rates from clonal tree data
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.171.9.4639
– volume: 364
  start-page: 645
  year: 2009
  ident: B51
  article-title: The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch
  publication-title: Philos Trans R Soc London Series B Biol Sci.
  doi: 10.1098/rstb.2008.0200
– volume: 203
  start-page: 2085
  year: 2006
  ident: B75
  article-title: The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/- ung-/- mice
  publication-title: J Exp Med.
  doi: 10.1084/jem.20061067
– volume: 187
  start-page: 1729
  year: 1998
  ident: B129
  article-title: The role of DNA repair in somatic hypermutation of immunoglobulin genes
  publication-title: J Exp Med.
  doi: 10.1084/jem.187.11.1729
– volume: 6
  start-page: 573
  year: 2006
  ident: B28
  article-title: Targeting of somatic hypermutation
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri1896
– volume: 25
  start-page: 585
  year: 2006
  ident: B47
  article-title: SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600939
– volume: 1171
  start-page: 11
  year: 1992
  ident: B29
  article-title: Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis
  publication-title: Biochimica Biophys Acta.
  doi: 10.1016/0167-4781(92)90134-L
– volume: 52
  start-page: 541
  year: 2013
  ident: B71
  article-title: PrimPol, an archaic primase/polymerase operating in human cells
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2013.09.025
– volume: 2
  start-page: 493
  year: 2001
  ident: B3
  article-title: Linking class-switch recombination with somatic hypermutation
  publication-title: Nat Rev Mol Cell Biol.
  doi: 10.1038/35080033
– volume: 5
  start-page: a012583
  year: 2013
  ident: B44
  article-title: Base excision repair
  publication-title: Cold Spring Harb Perspect Biol.
  doi: 10.1101/cshperspect.a012583
– volume: 201
  start-page: 637
  year: 2005
  ident: B52
  article-title: MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes
  publication-title: J Exp Med.
  doi: 10.1084/jem.20042066
– volume: 86
  start-page: 265
  year: 2003
  ident: B109
  article-title: The absence of DNA polymerase kappa does not affect somatic hypermutation of the mouse immunoglobulin heavy chain gene
  publication-title: Immunol Lett.
  doi: 10.1016/S0165-2478(03)00046-4
– volume: 422
  start-page: 726
  year: 2003
  ident: B22
  article-title: Transcription-targeted DNA deamination by the AID antibody diversification enzyme
  publication-title: Nature.
  doi: 10.1038/nature01574
– volume: 203
  start-page: 319
  year: 2006
  ident: B87
  article-title: Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice
  publication-title: J Exp Med.
  doi: 10.1084/jem.20052227
– volume: 37
  start-page: 143
  year: 2010
  ident: B115
  article-title: CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2009.12.018
– volume: 7
  start-page: 13055
  year: 2017
  ident: B138
  article-title: Translesion synthesis DNA polymerase eta exhibits a specific RNA extension activity and a transcription-associated function
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-12915-1
– volume: 50
  start-page: 54
  year: 2017
  ident: B113
  article-title: Somatic hypermutation of immunoglobulin genes in Rad18 knockout mice
  publication-title: DNA Repair.
  doi: 10.1016/j.dnarep.2016.12.008
– volume: 102
  start-page: 553
  year: 2000
  ident: B13
  article-title: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)00078-7
– volume: 164
  start-page: 538
  year: 2016
  ident: B143
  article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.12.050
– volume: 98
  start-page: 14553
  year: 2001
  ident: B100
  article-title: Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.241525998
– volume: 76
  start-page: 1
  year: 2007
  ident: B8
  article-title: Molecular mechanisms of antibody somatic hypermutation
  publication-title: Ann Rev Biochem.
  doi: 10.1146/annurev.biochem.76.061705.090740
– volume: 13
  start-page: 141
  year: 2012
  ident: B63
  article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature reviews
  publication-title: Mol Cell Biol.
  doi: 10.1038/nrm3289
– volume: 52
  start-page: 566
  year: 2013
  ident: B70
  article-title: PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2013.10.035
– volume: 182
  start-page: 6353
  year: 2009
  ident: B110
  article-title: A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.0900177
– volume: 34
  start-page: 2176
  year: 2014
  ident: B133
  article-title: Somatic hypermutation at A/T-rich oligonucleotide substrates shows different strand polarities in Ung-deficient or -proficient backgrounds
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.01452-13
– volume: 7
  start-page: 248
  year: 1995
  ident: B1
  article-title: Somatic hypermutation
  publication-title: Curr Opin Immunol.
  doi: 10.1016/0952-7915(95)80010-7
– volume: 206
  start-page: 2603
  year: 2009
  ident: B36
  article-title: Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation
  publication-title: J Exp Med.
  doi: 10.1084/jem.20091707
– volume: 24
  start-page: 169
  year: 2012
  ident: B91
  article-title: Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to G and G to C transversions during Ig gene hypermutation
  publication-title: Int Immunol.
  doi: 10.1093/intimm/dxr109
– volume: 33
  start-page: 356
  year: 2005
  ident: B88
  article-title: The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki189
– volume: 26
  start-page: 174
  year: 2016
  ident: B142
  article-title: APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication
  publication-title: Genome Res.
  doi: 10.1101/gr.197046.115
– volume: 23
  start-page: 3886
  year: 2004
  ident: B64
  article-title: Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600383
– volume: 177
  start-page: 5386
  year: 2006
  ident: B76
  article-title: Somatic hypermutation and class switch recombination in Msh6(-/-)Ung(-/-) double-knockout mice
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.177.8.5386
– volume: 32
  start-page: 5486
  year: 2004
  ident: B79
  article-title: Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh872
– volume: 201
  start-page: 2011
  year: 2005
  ident: B80
  article-title: B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil
  publication-title: J Exp Med
  doi: 10.1084/jem.20050042
– volume: 4
  start-page: 57
  year: 1996
  ident: B18
  article-title: Somatic hypermutation of immunoglobulin genes is linked to transcription initiation
  publication-title: Immunity.
  doi: 10.1016/S1074-7613(00)80298-8
– volume: 12
  start-page: 517
  year: 2012
  ident: B11
  article-title: Immunoglobulin class-switch DNA recombination: induction, targeting and beyond
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3216
– volume: 101
  start-page: 12997
  year: 2004
  ident: B126
  article-title: Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0404974101
– volume: 447
  start-page: 941
  year: 2007
  ident: B43
  article-title: Base-excision repair of oxidative DNA damage
  publication-title: Nature.
  doi: 10.1038/nature05978
– volume: 214
  start-page: 49
  year: 2017
  ident: B25
  article-title: The cell cycle restricts activation-induced cytidine deaminase activity to early G1
  publication-title: J Exp Med.
  doi: 10.1084/jem.20161649
– volume: 21
  start-page: 8935
  year: 2002
  ident: B94
  article-title: Uracil in DNA–occurrence, consequences and repair
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1205996
– volume: 209
  start-page: 1075
  year: 2012
  ident: B122
  article-title: DNA polymerase zeta generates tandem mutations in immunoglobulin variable regions
  publication-title: J Exp Med.
  doi: 10.1084/jem.20112234
– volume: 174
  start-page: 7781
  year: 2005
  ident: B131
  article-title: DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.174.12.7781
– volume: 44
  start-page: 1925
  year: 2014
  ident: B48
  article-title: Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation
  publication-title: Eur J Immunol.
  doi: 10.1002/eji.201444482
– volume: 421
  start-page: 436
  year: 2003
  ident: B62
  article-title: DNA damage and repair
  publication-title: Nature.
  doi: 10.1038/nature01408
– volume: 5
  start-page: 224
  year: 2004
  ident: B101
  article-title: Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice
  publication-title: Nat Immunol.
  doi: 10.1038/ni1031
– volume: 22
  start-page: 6621
  year: 2003
  ident: B67
  article-title: Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg626
– volume: 2
  start-page: 537
  year: 2001
  ident: B102
  article-title: DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes
  publication-title: Nat Immunol.
  doi: 10.1038/88740
– volume: 12
  start-page: 70
  year: 2011
  ident: B124
  article-title: Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions
  publication-title: Nat Immunol.
  doi: 10.1038/ni.1970
– volume: 214
  start-page: 1169
  year: 2017
  ident: B24
  article-title: Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs
  publication-title: J Exp Med.
  doi: 10.1084/jem.20161576
– volume: 15
  start-page: 945
  year: 2001
  ident: B83
  article-title: Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites
  publication-title: Genes Dev.
  doi: 10.1101/gad.882301
– volume: 31
  start-page: 2990
  year: 2003
  ident: B125
  article-title: Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations
  publication-title: Nucl Acids Res.
  doi: 10.1093/nar/gkg464
– volume: 57
  start-page: 812
  year: 2015
  ident: B144
  article-title: Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 Complex
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2014.12.038
– volume: 211
  start-page: 242
  year: 1966
  ident: B149
  article-title: Origin of antibody variation
  publication-title: Nature.
  doi: 10.1038/211242a0
– volume: 356
  start-page: 61
  year: 2001
  ident: B134
  article-title: The reverse transcriptase model of somatic hypermutation
  publication-title: Philos Trans R Soc Lond Ser B Biol Sci.
  doi: 10.1098/rstb.2000.0749
– volume: 418
  start-page: 99
  year: 2002
  ident: B14
  article-title: AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification
  publication-title: Nature.
  doi: 10.1038/nature00862
– volume: 161
  start-page: 687
  year: 1985
  ident: B26
  article-title: Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin
  publication-title: J Exp Med.
  doi: 10.1084/jem.161.4.687
– volume: 7
  start-page: 3399
  year: 2008
  ident: B116
  article-title: PCNA is ubiquitinated by RNF8
  publication-title: Cell Cycle.
  doi: 10.4161/cc.7.21.6949
– volume: 20
  start-page: 575
  year: 2005
  ident: B139
  article-title: Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2005.10.029
– volume: 201
  start-page: 1191
  year: 2005
  ident: B107
  article-title: Contribution of DNA polymerase eta to immunoglobulin gene hypermutation in the mouse
  publication-title: J Exp Med.
  doi: 10.1084/jem.20050292
– volume: 206
  start-page: 477
  year: 2009
  ident: B123
  article-title: Pol zeta ablation in B cells impairs the germinal center reaction, class switch recombination, DNA break repair, and genome stability
  publication-title: J Exp Med.
  doi: 10.1084/jem.20080669
– volume: 25
  start-page: 750
  year: 1997
  ident: B78
  article-title: Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.4.750
– volume: 43
  start-page: 649
  year: 2011
  ident: B58
  article-title: The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2011.06.023
– volume: 198
  start-page: 1171
  year: 2003
  ident: B97
  article-title: Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination
  publication-title: J Exp Med.
  doi: 10.1084/jem.20030880
– volume: 3
  start-page: 1503
  year: 2004
  ident: B69
  article-title: Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein
  publication-title: DNA Repair.
  doi: 10.1016/j.dnarep.2004.06.015
– volume: 45
  start-page: 3146
  year: 2017
  ident: B93
  article-title: Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 943
  year: 2005
  ident: B112
  article-title: Suffering in silence: the tolerance of DNA damage
  publication-title: Nat Rev.
  doi: 10.1038/nrm1781
– volume: 44
  start-page: 4734
  year: 2016
  ident: B73
  article-title: PrimPol prevents APOBEC/AID family mediated DNA mutagenesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw123
– volume: 99
  start-page: 9954
  year: 2002
  ident: B106
  article-title: Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.152126799
– volume: 32
  start-page: 3152
  year: 2002
  ident: B108
  article-title: DNA polymerase kappa deficiency does not affect somatic hypermutation in mice
  publication-title: Eur J Immunol.
  doi: 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2
– volume: 317
  start-page: 1227
  year: 2007
  ident: B132
  article-title: Strand-biased spreading of mutations during somatic hypermutation
  publication-title: Science.
  doi: 10.1126/science.1145065
– volume: 26
  start-page: 261
  year: 2008
  ident: B10
  article-title: Mechanism and regulation of class switch recombination
  publication-title: Ann Rev Immunol.
  doi: 10.1146/annurev.immunol.26.021607.090248
– volume: 10
  start-page: e1001360
  year: 2012
  ident: B141
  article-title: Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001360
– volume: 9
  start-page: 523
  year: 2004
  ident: B68
  article-title: Interaction of hREV1 with three human Y-family DNA polymerases
  publication-title: Genes Cells.
  doi: 10.1111/j.1356-9597.2004.00747.x
– volume: 190
  start-page: 21
  year: 1999
  ident: B99
  article-title: Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications
  publication-title: J Exp Med.
  doi: 10.1084/jem.190.1.21
– volume: 82
  start-page: 219
  year: 2004
  ident: B136
  article-title: Human DNA polymerase-eta, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase
  publication-title: Immunol Cell Biol.
  doi: 10.1046/j.0818-9641.2004.01221.x
– volume: 197
  start-page: 1291
  year: 2003
  ident: B15
  article-title: AID mediates hypermutation by deaminating single stranded DNA
  publication-title: J Exp Med.
  doi: 10.1084/jem.20030481
– volume: 16
  start-page: 163
  year: 2004
  ident: B34
  article-title: Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2004.10.011
– volume: 274
  start-page: 18470
  year: 1999
  ident: B12
  article-title: Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.274.26.18470
– volume: 40
  start-page: 179
  year: 2010
  ident: B40
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2010.09.019
– volume: 67
  start-page: 361
  year: 2017
  ident: B127
  article-title: AID recognizes structured DNA for class switch recombination
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2017.06.034
– volume: 12
  start-page: 24
  year: 2011
  ident: B7
  article-title: Molecular programming of B cell memory
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri3128
– volume: 28
  start-page: 3384
  year: 1998
  ident: B30
  article-title: Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands
  publication-title: Eur J Immunol.
  doi: 10.1002/(SICI)1521-4141(199810)28:10<3384::AID-IMMU3384>3.0.CO;2-T
– volume: 204
  start-page: 1989
  year: 2007
  ident: B61
  article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification
  publication-title: J Exp Med.
  doi: 10.1084/jem.20070902
SSID ssj0000493335
Score 2.4697177
SecondaryResourceType review_article
Snippet Somatic hypermutation (SHM) of immunoglobulin ( ) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for...
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 438
SubjectTerms abasic site
B-Lymphocytes - immunology
base excision repair
Cytidine Deaminase - genetics
Cytidine Deaminase - metabolism
cytosine deamination
Deamination - physiology
DNA - genetics
DNA Damage - genetics
DNA damage tolerance (DDT)
DNA Repair - genetics
Humans
Immunology
non-canonical mismatch repair (ncMMR)
Somatic Hypermutation, Immunoglobulin - genetics
translesion synthesis (TLS)
VDJ Exons - genetics
Title Mutating for Good: DNA Damage Responses During Somatic Hypermutation
URI https://www.ncbi.nlm.nih.gov/pubmed/30915081
https://www.proquest.com/docview/2198560621
https://pubmed.ncbi.nlm.nih.gov/PMC6423074
https://doaj.org/article/db3710431d4e4289917ed2574d089e6a
Volume 10
WOSCitedRecordID wos000461085400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYgAokLasujaQG5EhcOq-yuHe-6t0CgHEqEeEi5WesXBHV3UZKtxIXf3rGdRElVwaWXPex6ZWtm7PlGM_4GoWNp85RIzSMbF2lEZVJEMrNFlBJCCoCwsdFe0z-zwSAfDvn1UqsvVxMW6IGD4DpaEnCC4OY0NdRFB0lmNNgZ1XHODfPQCFDPUjD1FHAvTNYNeUmIwnjHjsqycaVcjp-SuusoS37I0_X_C2P-XSq55HsuPqDtGWjEvbDYj2jNVJ_QZmgj-bKD-leNS6hXDxgQKP5R1_o77g96uF-UcFrgm1AGaya47-8k4tva87TiS4hBx2UTkvG76P7i_O7sMpp1R4gUZek04kQVijOqM0AVxmrGpQRnbVlMukaqLJVUWRUnOdM05wxwFmxlyyBAgj1tbEL2UKuqK_PZlTcZwBmym6XW0FhbnhDH3BgrDuhJqm4bdeayEmpGHe46WPwSEEI46QovXeGkK7x02-hk8cdzoM14Y-ypE_9inCO89i_ADMTMDMR7ZtBG3-bKE7BBXNajqEzdTAQcyTnAOpYmbbQflLmYigBaAoQKX7IVNa-sZfVLNXr0JNwQt8HxSL_8j8V_RVtOHK60LUkPUGs6bswh2lC_p6PJ-AitZ8P8yNs3PK9ez_8A7bT-Eg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutating+for+Good%3A+DNA+Damage+Responses+During+Somatic+Hypermutation&rft.jtitle=Frontiers+in+immunology&rft.au=Pilzecker%2C+Bas&rft.au=Jacobs%2C+Heinz&rft.date=2019-03-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=10&rft_id=info:doi/10.3389%2Ffimmu.2019.00438&rft_id=info%3Apmid%2F30915081&rft.externalDocID=PMC6423074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon