Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition

Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Oncotarget Ročník 5; číslo 22; s. 11029
Hlavní autoři: Lamb, Rebecca, Harrison, Hannah, Hulit, James, Smith, Duncan L, Lisanti, Michael P, Sotgia, Federica
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 30.11.2014
Témata:
ISSN:1949-2553, 1949-2553
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.
AbstractList Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.
Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.
Author Hulit, James
Lisanti, Michael P
Lamb, Rebecca
Smith, Duncan L
Harrison, Hannah
Sotgia, Federica
Author_xml – sequence: 1
  givenname: Rebecca
  surname: Lamb
  fullname: Lamb, Rebecca
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester. The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester
– sequence: 2
  givenname: Hannah
  surname: Harrison
  fullname: Harrison, Hannah
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester. The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester
– sequence: 3
  givenname: James
  surname: Hulit
  fullname: Hulit, James
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester. The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester
– sequence: 4
  givenname: Duncan L
  surname: Smith
  fullname: Smith, Duncan L
  organization: The Cancer Research UK Manchester Institute, University of Manchester
– sequence: 5
  givenname: Michael P
  surname: Lisanti
  fullname: Lisanti, Michael P
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester. The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester
– sequence: 6
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester. The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25415228$$D View this record in MEDLINE/PubMed
BookMark eNpNUE1PwzAMjdAQG2N3TihHLt2atEkbbmjiS9qEkMZ5ShN3C2qT0aRD_A1-MZk2JHyx_fzkZ79LNLDOAkLXJJ2Skmd05qxyQXYbCFNalOIMjYjIRUIZywb_6iGaeP-RxmB5UVJxgYaU5YRRWo7Qz9IEp7bO6s5ILD228IXDFjq5gz4YhY8CHteuwxHVRslg7AYraRV02AdosYKm8Xf4rZc2mBDne8C7zgVwrVEeS6tx3VsVjLOywXvZGC0PDd5HzeV8RWYUG7s1lTmgV-i8lo2HySmP0fvjw2r-nCxen17m94tE5ZyGpNSi1IyIWqQqFUWa87wmhADhoq4JZBnknEWMEyJEXWrNBSlYUUAllBZVRcfo9rg3nvrZgw_r1vjDK9KC6_2a8CxaWBBeRurNidpXLej1rjOt7L7Xfz7SXwODe54
CitedBy_id crossref_primary_10_1007_s12020_023_03393_9
crossref_primary_10_1016_j_neo_2019_10_006
crossref_primary_10_1016_j_canlet_2017_01_042
crossref_primary_10_1111_jcmm_15879
crossref_primary_10_3389_fcell_2020_620816
crossref_primary_10_1021_acsbiomaterials_8b00353
crossref_primary_10_1371_journal_pone_0275621
crossref_primary_10_3390_inorganics5010012
crossref_primary_10_1016_j_cellsig_2017_01_015
crossref_primary_10_1089_adt_2019_936
crossref_primary_10_1007_s10118_022_2775_4
crossref_primary_10_1016_j_semcancer_2019_09_007
crossref_primary_10_1172_JCI148550
crossref_primary_10_1186_s12951_021_00895_4
crossref_primary_10_3390_ijms21217972
crossref_primary_10_1016_j_leukres_2021_106523
crossref_primary_10_1016_j_cmet_2019_01_015
crossref_primary_10_1016_j_ab_2017_03_024
crossref_primary_10_1186_s13058_016_0712_6
crossref_primary_10_1038_s41419_024_07103_9
crossref_primary_10_1016_j_biopha_2023_114496
crossref_primary_10_1002_anie_201510443
crossref_primary_10_1016_j_ijpharm_2021_120897
crossref_primary_10_1007_s10863_018_9765_9
crossref_primary_10_1016_j_ijpharm_2024_124358
crossref_primary_10_3389_fonc_2018_00677
crossref_primary_10_3390_ijms241411540
crossref_primary_10_1007_s13237_017_0193_8
crossref_primary_10_1111_fcp_12900
crossref_primary_10_1016_j_cytogfr_2019_12_002
crossref_primary_10_3389_fimmu_2016_00052
crossref_primary_10_3390_cells14100717
crossref_primary_10_1016_j_adcanc_2022_100065
crossref_primary_10_1007_s11033_019_04810_x
crossref_primary_10_2174_0929867328666211005124015
crossref_primary_10_3390_ijms24076191
crossref_primary_10_1080_15384101_2018_1515551
crossref_primary_10_1016_j_cytogfr_2021_02_001
crossref_primary_10_1016_j_lfs_2025_123560
crossref_primary_10_1080_19336950_2021_1965422
crossref_primary_10_1016_j_cbi_2022_110167
crossref_primary_10_3390_cells10071772
crossref_primary_10_1038_s41388_019_1128_4
crossref_primary_10_1186_s12964_023_01129_w
crossref_primary_10_1007_s12032_021_01472_3
crossref_primary_10_1089_cbr_2020_3791
crossref_primary_10_1016_j_jddst_2025_107311
crossref_primary_10_3390_cancers15030571
crossref_primary_10_1080_14789450_2017_1374180
crossref_primary_10_3390_ijms21239075
crossref_primary_10_1016_j_bcp_2019_113769
crossref_primary_10_1038_s41418_021_00788_x
crossref_primary_10_1080_13880209_2017_1311351
crossref_primary_10_3390_cells10040762
crossref_primary_10_1002_cbic_201800358
crossref_primary_10_3390_ijms20205056
crossref_primary_10_1080_01616412_2021_1975225
crossref_primary_10_1038_s41598_021_92772_1
crossref_primary_10_3389_fonc_2020_01776
crossref_primary_10_3389_fonc_2021_678343
crossref_primary_10_3390_cancers14020322
crossref_primary_10_3390_cells9071693
crossref_primary_10_1016_j_canlet_2016_11_018
crossref_primary_10_1371_journal_pcbi_1011944
crossref_primary_10_1002_chem_201701837
crossref_primary_10_3389_fonc_2020_01528
crossref_primary_10_1002_hsr2_996
crossref_primary_10_1016_j_phrs_2023_106740
crossref_primary_10_1007_s11033_021_06281_5
crossref_primary_10_3390_cancers14205057
crossref_primary_10_1038_s41598_020_61381_9
crossref_primary_10_1371_journal_pone_0191511
crossref_primary_10_3390_molecules25143230
crossref_primary_10_3390_ijms23031282
crossref_primary_10_3389_fonc_2018_00237
crossref_primary_10_1016_j_cell_2016_07_002
crossref_primary_10_1002_jcp_26006
crossref_primary_10_1016_j_cmet_2017_09_009
crossref_primary_10_1002_pmic_201800015
crossref_primary_10_3892_ijo_2018_4468
crossref_primary_10_3390_ijms21207500
crossref_primary_10_1016_j_semcdb_2019_05_025
crossref_primary_10_1042_BCJ20170164
crossref_primary_10_1016_j_bbrc_2025_152079
crossref_primary_10_1038_bjc_2016_152
crossref_primary_10_1111_vco_12551
crossref_primary_10_1002_ange_201510443
crossref_primary_10_1186_s12885_017_3514_z
crossref_primary_10_3389_fendo_2021_627745
crossref_primary_10_1007_s12015_021_10216_9
crossref_primary_10_3389_fonc_2018_00203
crossref_primary_10_1039_D5BM00253B
crossref_primary_10_1016_j_semradonc_2018_10_003
crossref_primary_10_1111_bph_15401
crossref_primary_10_1002_chem_201701939
crossref_primary_10_1021_jacs_7b07490
crossref_primary_10_3389_fonc_2019_00615
crossref_primary_10_1016_j_ijpharm_2023_123071
crossref_primary_10_1007_s12015_019_09942_y
crossref_primary_10_1080_15384101_2018_1467679
crossref_primary_10_1007_s12015_019_09945_9
crossref_primary_10_3390_microbiolres14020037
crossref_primary_10_1002_prp2_632
crossref_primary_10_1002_med_21423
crossref_primary_10_1007_s12272_019_01127_y
crossref_primary_10_1016_j_bbadis_2023_166897
crossref_primary_10_1016_j_molmet_2024_101966
crossref_primary_10_1177_1010428317698391
crossref_primary_10_1186_s12885_019_5575_7
crossref_primary_10_1002_cbic_201600368
crossref_primary_10_3389_fonc_2018_00452
crossref_primary_10_3390_cancers13163946
crossref_primary_10_1155_2015_283145
crossref_primary_10_3892_ijmm_2016_2471
crossref_primary_10_1016_j_jhep_2020_12_031
crossref_primary_10_1093_carcin_bgy148
crossref_primary_10_3390_cancers13061316
crossref_primary_10_1038_s41419_021_04320_4
crossref_primary_10_1080_15384101_2016_1241929
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.18632/oncotarget.2789
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1949-2553
ExternalDocumentID 25415228
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
53G
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CGR
CUY
CVF
DIK
ECM
EIF
FRJ
GX1
HYE
KQ8
M48
NPM
OK1
PGMZT
RPM
7X8
ID FETCH-LOGICAL-c462t-8d98d519f90c0970464f111e169ff1e33e46564f61199f8dd6917577eb9cd9bb2
IEDL.DBID 7X8
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348037400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-2553
IngestDate Fri Jul 11 14:22:58 EDT 2025
Mon Jul 21 05:49:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-8d98d519f90c0970464f111e169ff1e33e46564f61199f8dd6917577eb9cd9bb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4294326
PMID 25415228
PQID 1639497168
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1639497168
pubmed_primary_25415228
PublicationCentury 2000
PublicationDate 2014-11-30
PublicationDateYYYYMMDD 2014-11-30
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncotarget
PublicationTitleAlternate Oncotarget
PublicationYear 2014
References 24185040 - Oncotarget. 2013 Nov;4(11):1948-62
25149175 - Oncotarget. 2014 Aug 30;5(16):6816-31
24699023 - J Stem Cells. 2013;8(3-4):135-49
22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7
24934860 - Aging (Albany NY). 2014 Jun;6(6):481-95
24672058 - Mol Cancer Ther. 2014 Jun;13(6):1410-8
25315652 - Mitochondrion. 2015 Jan;20:43-51
16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4
23945201 - Aging (Albany NY). 2013 Aug;5(8):588-9
18373191 - Breast Cancer Res Treat. 2009 Mar;114(1):47-62
19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16
24994116 - Oncotarget. 2014 Jun 30;5(12):3970-82
20587011 - Stem Cell Res Ther. 2010;1(2):13
19929853 - Biochem J. 2010 Feb 1;425(3):523-30
20695846 - Biochem J. 2010 Oct 15;431(2):217-25
23303788 - Nucleic Acids Res. 2013 Feb 1;41(4):2255-66
23603840 - Oncotarget. 2013 Apr;4(4):584-99
21512313 - Cell Cycle. 2011 Apr 15;10(8):1271-86
21606482 - Blood. 2011 Jul 21;118(3):638-49
23574725 - Cell Cycle. 2013 May 1;12(9):1371-84
22565037 - Oncotarget. 2012 Apr;3(4):395-8
24161908 - Oncotarget. 2013 Nov;4(11):1986-98
19812375 - FASEB J. 2010 Feb;24(2):464-78
22201672 - Oncotarget. 2011 Dec;2(12):1145-54
References_xml – reference: 24161908 - Oncotarget. 2013 Nov;4(11):1986-98
– reference: 24994116 - Oncotarget. 2014 Jun 30;5(12):3970-82
– reference: 20587011 - Stem Cell Res Ther. 2010;1(2):13
– reference: 19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16
– reference: 21512313 - Cell Cycle. 2011 Apr 15;10(8):1271-86
– reference: 22201672 - Oncotarget. 2011 Dec;2(12):1145-54
– reference: 24934860 - Aging (Albany NY). 2014 Jun;6(6):481-95
– reference: 21606482 - Blood. 2011 Jul 21;118(3):638-49
– reference: 22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7
– reference: 18373191 - Breast Cancer Res Treat. 2009 Mar;114(1):47-62
– reference: 20695846 - Biochem J. 2010 Oct 15;431(2):217-25
– reference: 23574725 - Cell Cycle. 2013 May 1;12(9):1371-84
– reference: 24699023 - J Stem Cells. 2013;8(3-4):135-49
– reference: 23945201 - Aging (Albany NY). 2013 Aug;5(8):588-9
– reference: 23603840 - Oncotarget. 2013 Apr;4(4):584-99
– reference: 25149175 - Oncotarget. 2014 Aug 30;5(16):6816-31
– reference: 19812375 - FASEB J. 2010 Feb;24(2):464-78
– reference: 16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4
– reference: 23303788 - Nucleic Acids Res. 2013 Feb 1;41(4):2255-66
– reference: 25315652 - Mitochondrion. 2015 Jan;20:43-51
– reference: 22565037 - Oncotarget. 2012 Apr;3(4):395-8
– reference: 24672058 - Mol Cancer Ther. 2014 Jun;13(6):1410-8
– reference: 19929853 - Biochem J. 2010 Feb 1;425(3):523-30
– reference: 24185040 - Oncotarget. 2013 Nov;4(11):1948-62
SSID ssj0000547829
Score 2.475745
Snippet Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 11029
SubjectTerms Breast Neoplasms - drug therapy
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Line, Tumor
Female
Humans
MCF-7 Cells
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Proteins - antagonists & inhibitors
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Molecular Targeted Therapy
Monocarboxylic Acid Transporters - antagonists & inhibitors
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Proteomics - methods
Symporters - antagonists & inhibitors
Thiophenes - pharmacology
Uracil - analogs & derivatives
Uracil - pharmacology
Title Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition
URI https://www.ncbi.nlm.nih.gov/pubmed/25415228
https://www.proquest.com/docview/1639497168
Volume 5
WOSCitedRecordID wos000348037400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELW4ChoOcV8aJFqzuTa2aRBCIAp2BRKg7VbxBdt4lw3wIXwxM044GiQkmhSRojjOeObN9Yaxo7xbSalLz9Gaal4Io7kuCsNpFFKqKyF97Hp_uBb9vhwM1E0bcKvbsspPnRgVtR0bipF3EDeogviO5OnkmdPUKMqutiM0Ztl8jlCGpFoM5FeMJSGyqjioDF11xRE9522mUpZ51hkT_UGstz6mftDfMWa0NZfL_13lCltqUSacNWKxymZcWGPvPTy9qO2CRaGDqgZE1PCj_wqaVdaAOBbwro3hvPAIhiRjCkT5DBTor0_g9rUKsT0NlSVErgfqbq6hChbIVDYRRkAxHjVDm-AN39k7v0s7GYzC00jHUrF1dn95cXd-xduRDNwUZfbCpVXSIujzKjGJEpQX9agtXVoq71OX54741wpfpqlSXlpbojvYFcJpZazSOttgc2Ec3BaDKlHGIHwwaB_RiS21y0pRJU5oTbk8t80OP7d4iCJPn1cFN36th9-bvM02m_80nDTcHEP0dxGRZHLnD0_vskWEP0VD5LjH5j0eeLfPFszby6ieHkRZwmv_pvcB8mrXQA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria+as+new+therapeutic+targets+for+eradicating+cancer+stem+cells%3A+Quantitative+proteomics+and+functional+validation+via+MCT1%2F2+inhibition&rft.jtitle=Oncotarget&rft.au=Lamb%2C+Rebecca&rft.au=Harrison%2C+Hannah&rft.au=Hulit%2C+James&rft.au=Smith%2C+Duncan+L&rft.date=2014-11-30&rft.issn=1949-2553&rft.eissn=1949-2553&rft.volume=5&rft.issue=22&rft.spage=11029&rft_id=info:doi/10.18632%2Foncotarget.2789&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon