Targeting VEGF/VEGFR to Modulate Antitumor Immunity

In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology Vol. 9; p. 978
Main Authors: Yang, Ju, Yan, Jing, Liu, Baorui
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 03.05.2018
Subjects:
ISSN:1664-3224, 1664-3224
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators.
AbstractList In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators.
In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators.In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators.
Author Yang, Ju
Liu, Baorui
Yan, Jing
AuthorAffiliation The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
AuthorAffiliation_xml – name: The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
Author_xml – sequence: 1
  givenname: Ju
  surname: Yang
  fullname: Yang, Ju
– sequence: 2
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
– sequence: 3
  givenname: Baorui
  surname: Liu
  fullname: Liu, Baorui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29774034$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAUxEVJadI0956Kj73s5kl6lq1LIYQkXUgJlLRXIctPWwXbSmW5kP--9m5SkkJ00OfMb0Dznh0McSDGPnJYS1nrUx_6floL4PUaQFf1G3bElcKVFAIPnu0P2ck43sE8UEspy3fsUOiqQpB4xOStTVvKYdgWPy-uLk-X6XuRY_EttlNnMxVnQw556mMqNnPeEPLDB_bW226kk8f1mP24vLg9_7q6vrnanJ9drxwqkVc1anLoahTgqYWm8VbZSvr5JLSwlmyD5LwXoGsvvLO8dLUvhUZeeg8gj9lmz22jvTP3KfQ2PZhog9ldxLQ1NuXgOjJ1yaF1kqTwAoF4w9FjA05qySt0amZ92bPup6an1tGQk-1eQF--DOGX2cY_ptQoS7UAPj8CUvw90ZhNH0ZHXWcHitNoBCBXolSimqWfnmf9C3n69Vmg9gKX4jgm8saFbHOIS3ToDAezNGx2DZulYbNreDbCf8Yn9quWv6mLqUs
CitedBy_id crossref_primary_10_1002_ctm2_70313
crossref_primary_10_1007_s00262_022_03341_y
crossref_primary_10_3389_fonc_2021_683502
crossref_primary_10_3390_life12020258
crossref_primary_10_1186_s12943_024_02221_6
crossref_primary_10_1016_j_trecan_2024_11_002
crossref_primary_10_1016_j_mvr_2024_104691
crossref_primary_10_3390_cancers14205154
crossref_primary_10_1124_jpet_122_001255
crossref_primary_10_3389_fimmu_2021_657326
crossref_primary_10_1158_1078_0432_CCR_21_1698
crossref_primary_10_1093_jjco_hyaa200
crossref_primary_10_1038_s41419_023_05699_y
crossref_primary_10_1186_s43094_024_00688_0
crossref_primary_10_1158_0008_5472_CAN_23_1660
crossref_primary_10_3390_cancers14205013
crossref_primary_10_3390_cancers15133312
crossref_primary_10_4254_wjh_v16_i4_537
crossref_primary_10_1158_1078_0432_CCR_22_1184
crossref_primary_10_1186_s12885_023_11408_x
crossref_primary_10_3390_ijms231810479
crossref_primary_10_3389_fphar_2022_838133
crossref_primary_10_4251_wjgo_v14_i8_1510
crossref_primary_10_3389_fonc_2021_670313
crossref_primary_10_1371_journal_pcbi_1013354
crossref_primary_10_3389_fimmu_2020_01956
crossref_primary_10_1128_jvi_01491_24
crossref_primary_10_2217_fon_2021_0424
crossref_primary_10_3389_fimmu_2020_594609
crossref_primary_10_3390_vaccines10111963
crossref_primary_10_3389_fimmu_2019_00771
crossref_primary_10_1016_j_biopha_2022_113114
crossref_primary_10_3389_fimmu_2025_1617968
crossref_primary_10_3390_cells13191666
crossref_primary_10_1038_s41467_020_20171_7
crossref_primary_10_3390_cancers14205010
crossref_primary_10_3390_cancers15235661
crossref_primary_10_1016_j_addr_2022_114482
crossref_primary_10_3390_ijms23169016
crossref_primary_10_3390_cancers13061199
crossref_primary_10_1083_jcb_201908224
crossref_primary_10_1161_HYPERTENSIONAHA_120_15112
crossref_primary_10_2147_TCRM_S251673
crossref_primary_10_1186_s13045_022_01310_7
crossref_primary_10_3389_fonc_2021_694409
crossref_primary_10_1002_cam4_6135
crossref_primary_10_4251_wjgo_v15_i1_55
crossref_primary_10_3390_cancers17183090
crossref_primary_10_3390_cancers15030579
crossref_primary_10_1016_j_cyto_2023_156389
crossref_primary_10_1007_s00253_022_12209_1
crossref_primary_10_1007_s10147_025_02721_5
crossref_primary_10_1177_17588359211034708
crossref_primary_10_3390_ijms22126290
crossref_primary_10_3389_fonc_2021_783158
crossref_primary_10_3389_fimmu_2021_775761
crossref_primary_10_1016_j_ccell_2020_11_009
crossref_primary_10_1186_s12957_018_1506_3
crossref_primary_10_34133_research_0836
crossref_primary_10_3389_fimmu_2020_584903
crossref_primary_10_3389_fphar_2020_00439
crossref_primary_10_3390_cancers13246231
crossref_primary_10_1016_j_pharmthera_2022_108255
crossref_primary_10_3390_molecules25143219
crossref_primary_10_1038_s41573_022_00415_5
crossref_primary_10_1155_2023_6886135
crossref_primary_10_2174_1381612828666220921151750
crossref_primary_10_3390_biom14121496
crossref_primary_10_3389_fimmu_2020_00438
crossref_primary_10_1080_01635581_2021_1985533
crossref_primary_10_1016_j_apsb_2020_09_014
crossref_primary_10_3389_fcell_2022_803280
crossref_primary_10_3390_cells8121647
crossref_primary_10_1016_j_bbcan_2024_189079
crossref_primary_10_3390_ijms231810677
crossref_primary_10_3892_mmr_2019_10074
crossref_primary_10_1182_blood_2022016029
crossref_primary_10_4103_aja2022102
crossref_primary_10_1111_imr_12773
crossref_primary_10_1186_s13287_023_03561_8
crossref_primary_10_1007_s12072_020_10104_3
crossref_primary_10_1016_j_ijbiomac_2024_129950
crossref_primary_10_3389_fimmu_2021_715727
crossref_primary_10_3390_cancers14174246
crossref_primary_10_1111_cpr_13009
crossref_primary_10_2174_0109298673266044231002071238
crossref_primary_10_1146_annurev_cancerbio_061421_040659
crossref_primary_10_3390_ijms20061280
crossref_primary_10_1158_1078_0432_CCR_22_3653
crossref_primary_10_3389_fimmu_2020_599253
crossref_primary_10_3389_fimmu_2023_1084887
crossref_primary_10_1016_j_ijbiomac_2023_128096
crossref_primary_10_3389_fimmu_2025_1506278
crossref_primary_10_1016_j_yexcr_2021_112685
crossref_primary_10_1136_jitc_2023_006680
crossref_primary_10_3389_fimmu_2025_1544532
crossref_primary_10_1007_s11154_020_09551_y
crossref_primary_10_1038_s41585_022_00666_2
crossref_primary_10_1016_j_ccell_2019_09_006
crossref_primary_10_3389_fimmu_2025_1550752
crossref_primary_10_3389_fonc_2022_873722
crossref_primary_10_1007_s00262_023_03520_5
crossref_primary_10_3390_cancers12123850
crossref_primary_10_3389_fendo_2019_00521
crossref_primary_10_1158_1078_0432_CCR_24_2519
crossref_primary_10_3390_cancers12113145
crossref_primary_10_1245_s10434_024_16806_4
crossref_primary_10_1002_cam4_5360
crossref_primary_10_1097_CAD_0000000000000791
crossref_primary_10_3389_fcvm_2023_1002438
crossref_primary_10_1007_s12328_024_02062_2
crossref_primary_10_3390_cells11132114
crossref_primary_10_1016_j_addr_2020_06_030
crossref_primary_10_1210_jcemcr_luae139
crossref_primary_10_1016_j_semcancer_2020_08_013
crossref_primary_10_1186_s13045_023_01473_x
crossref_primary_10_1080_16078454_2024_2340144
crossref_primary_10_1002_onco_13971
crossref_primary_10_4251_wjgo_v15_i1_1
crossref_primary_10_3390_ijms21176302
crossref_primary_10_1080_14737159_2022_2019015
crossref_primary_10_1111_1759_7714_14102
crossref_primary_10_2147_DDDT_S308578
crossref_primary_10_3389_fimmu_2020_01689
crossref_primary_10_3390_biomedicines13010006
crossref_primary_10_1016_j_biopha_2025_117921
crossref_primary_10_1016_j_omtn_2019_05_027
crossref_primary_10_3390_cancers15041164
crossref_primary_10_3390_cancers15092624
crossref_primary_10_1038_s41577_023_00973_8
crossref_primary_10_3390_ijms25105489
crossref_primary_10_1016_j_semcancer_2022_03_011
crossref_primary_10_1136_jitc_2022_004863
crossref_primary_10_15252_emmm_201809266
crossref_primary_10_3389_fimmu_2022_1024755
crossref_primary_10_1038_s41467_022_28933_1
crossref_primary_10_3390_cancers15245790
crossref_primary_10_3390_cancers13071724
crossref_primary_10_1097_PPO_0000000000000368
crossref_primary_10_1136_jitc_2021_004427
crossref_primary_10_3389_fimmu_2021_616837
crossref_primary_10_1016_S0140_6736_25_00369_1
crossref_primary_10_1111_cts_12856
crossref_primary_10_1080_14737140_2021_1882855
crossref_primary_10_3389_fimmu_2020_591741
crossref_primary_10_3390_ijms20122970
crossref_primary_10_1016_j_ctrv_2020_102017
crossref_primary_10_1186_s12877_023_04625_3
crossref_primary_10_3390_cancers13163984
crossref_primary_10_3390_life12020303
crossref_primary_10_3390_cancers16173103
crossref_primary_10_3389_fimmu_2024_1324045
crossref_primary_10_3389_fimmu_2019_00128
crossref_primary_10_1186_s12885_020_6589_x
crossref_primary_10_3390_biomedicines13051144
crossref_primary_10_1172_JCI190470
crossref_primary_10_1016_j_intimp_2021_108017
crossref_primary_10_1177_17588359241311058
crossref_primary_10_1007_s12032_024_02491_6
crossref_primary_10_3389_fimmu_2020_01376
crossref_primary_10_1186_s13058_020_01362_y
crossref_primary_10_1007_s13402_022_00718_0
crossref_primary_10_1007_s11684_021_0904_z
crossref_primary_10_2147_JHC_S478604
crossref_primary_10_1002_cnr2_1712
crossref_primary_10_4251_wjgo_v15_i2_215
crossref_primary_10_1016_j_addr_2021_05_001
crossref_primary_10_1155_2019_2084195
crossref_primary_10_3390_cancers14153779
crossref_primary_10_3390_ijms20092296
crossref_primary_10_1016_j_modpat_2022_100034
crossref_primary_10_3389_fimmu_2020_604967
crossref_primary_10_1002_ctm2_1648
crossref_primary_10_1039_D3NR06131K
crossref_primary_10_2147_IJN_S411761
crossref_primary_10_1002_ijc_33898
crossref_primary_10_1002_slct_202301098
crossref_primary_10_3389_fimmu_2020_01005
crossref_primary_10_1016_j_esmorc_2025_100002
crossref_primary_10_3389_fimmu_2021_633205
crossref_primary_10_3350_cmh_2023_0125
crossref_primary_10_1038_s41419_023_06119_x
crossref_primary_10_1038_s41575_020_00395_0
crossref_primary_10_1007_s10555_024_10213_7
crossref_primary_10_3389_fmed_2022_873836
crossref_primary_10_3389_fonc_2022_869078
crossref_primary_10_2217_fon_2020_0937
crossref_primary_10_3390_cancers13122924
crossref_primary_10_3389_fphar_2022_774440
crossref_primary_10_1371_journal_pone_0210211
crossref_primary_10_1016_j_bmc_2022_117048
crossref_primary_10_1016_j_gene_2024_148796
crossref_primary_10_1080_13543784_2022_2152324
crossref_primary_10_3389_fonc_2021_652394
crossref_primary_10_1002_cac2_12295
crossref_primary_10_1007_s40265_023_01835_2
crossref_primary_10_2147_CMAR_S241069
crossref_primary_10_3389_fphar_2021_798320
crossref_primary_10_1016_j_critrevonc_2025_104630
crossref_primary_10_1038_s43018_022_00401_1
crossref_primary_10_1002_slct_202203726
crossref_primary_10_1080_2162402X_2022_2120676
crossref_primary_10_1177_17588359221107112
crossref_primary_10_1016_j_colsurfb_2022_113017
crossref_primary_10_3390_ph15050504
crossref_primary_10_3389_fimmu_2022_733800
crossref_primary_10_3892_ol_2025_15180
crossref_primary_10_1007_s40259_020_00420_3
crossref_primary_10_1038_s41416_021_01425_7
crossref_primary_10_1016_j_lfs_2022_120500
crossref_primary_10_1055_s_0040_1721799
crossref_primary_10_1007_s00384_024_04654_3
crossref_primary_10_1155_2023_6353047
crossref_primary_10_3390_cancers13092040
crossref_primary_10_3389_fonc_2021_755433
crossref_primary_10_1016_j_canlet_2019_04_025
crossref_primary_10_3390_cancers13092164
crossref_primary_10_1002_ardp_202100246
crossref_primary_10_1016_j_cyto_2020_155089
crossref_primary_10_3390_cancers11081078
crossref_primary_10_3389_fonc_2020_01041
crossref_primary_10_1080_14728214_2019_1619696
crossref_primary_10_1146_annurev_bioeng_110220_115419
crossref_primary_10_1007_s13402_021_00634_9
crossref_primary_10_3390_biomedicines9080949
crossref_primary_10_1080_13543784_2022_2053108
crossref_primary_10_2217_fon_2020_0586
crossref_primary_10_3389_fimmu_2023_1073133
crossref_primary_10_1038_s41568_019_0224_7
crossref_primary_10_3389_fnut_2025_1611829
crossref_primary_10_1016_S1470_2045_19_30319_5
crossref_primary_10_1016_j_jtho_2020_10_002
crossref_primary_10_3390_jpm10030112
crossref_primary_10_3390_ijms23116155
crossref_primary_10_1016_j_tifs_2021_03_008
crossref_primary_10_1002_JLB_3MR0120_232R
crossref_primary_10_1016_j_jics_2022_100803
crossref_primary_10_1128_jvi_01129_24
crossref_primary_10_3390_pharmaceutics15010024
crossref_primary_10_1080_14737140_2022_2039123
crossref_primary_10_1186_s12967_024_05907_z
crossref_primary_10_1002_mco2_323
crossref_primary_10_1158_1078_0432_CCR_23_1137
crossref_primary_10_3390_ijms20010024
crossref_primary_10_2147_JHC_S532120
crossref_primary_10_1158_1078_0432_CCR_22_0630
crossref_primary_10_3390_biomedicines11030882
crossref_primary_10_3390_ijms23020931
crossref_primary_10_1016_j_bmc_2023_117490
crossref_primary_10_1038_s41388_024_03208_9
crossref_primary_10_1038_s41423_021_00735_3
crossref_primary_10_1016_S1470_2045_22_00326_6
crossref_primary_10_1038_s41467_021_25894_9
crossref_primary_10_1038_s41598_020_79907_6
crossref_primary_10_1016_j_euo_2019_06_022
crossref_primary_10_1038_s41577_022_00694_4
crossref_primary_10_4049_jimmunol_2000574
crossref_primary_10_1186_s12885_023_11139_z
crossref_primary_10_1186_s40364_021_00312_w
crossref_primary_10_3892_ol_2022_13489
crossref_primary_10_1038_s41598_023_30412_6
crossref_primary_10_3390_ijms252011235
crossref_primary_10_1002_jcb_30344
crossref_primary_10_1515_tjb_2020_0058
crossref_primary_10_3389_fimmu_2022_1033000
crossref_primary_10_2217_fon_2021_1006
crossref_primary_10_3390_cancers13143531
crossref_primary_10_1186_s13046_022_02327_z
crossref_primary_10_1080_14737140_2022_2065986
crossref_primary_10_1007_s12072_022_10450_4
crossref_primary_10_1016_j_prp_2022_154110
crossref_primary_10_1002_pbc_29084
crossref_primary_10_1016_j_ctarc_2020_100183
crossref_primary_10_2147_JHC_S327258
crossref_primary_10_1200_OA_24_00039
crossref_primary_10_1016_j_bbcan_2022_188701
crossref_primary_10_3390_medicina55100698
crossref_primary_10_3389_fimmu_2024_1333850
crossref_primary_10_3390_ijms25052985
crossref_primary_10_3390_ijms23020844
crossref_primary_10_1007_s00432_023_05231_x
crossref_primary_10_1210_clinem_dgac467
crossref_primary_10_1245_s10434_020_09371_z
crossref_primary_10_3389_fonc_2023_1135456
crossref_primary_10_1016_j_ijgc_2025_101681
crossref_primary_10_1038_s41392_020_00324_2
crossref_primary_10_3390_cancers14194899
crossref_primary_10_1007_s12072_023_10626_6
crossref_primary_10_3390_cancers13040870
crossref_primary_10_1007_s12668_024_01389_x
crossref_primary_10_1016_j_ejca_2023_01_025
crossref_primary_10_3389_fonc_2021_628124
crossref_primary_10_1007_s00262_024_03733_2
crossref_primary_10_1038_s41598_022_13484_8
crossref_primary_10_1007_s12328_020_01295_1
crossref_primary_10_1016_j_intimp_2025_114693
crossref_primary_10_1002_ctm2_434
crossref_primary_10_1159_000520501
crossref_primary_10_3390_ijms23095235
crossref_primary_10_3748_wjg_v29_i26_4174
crossref_primary_10_3389_fcimb_2025_1598193
crossref_primary_10_3389_fimmu_2020_00922
crossref_primary_10_1080_14737140_2021_1919090
crossref_primary_10_7180_kmj_25_114
crossref_primary_10_1007_s11864_022_00944_6
crossref_primary_10_1016_j_biopha_2023_115992
crossref_primary_10_1002_path_5447
crossref_primary_10_1080_14656566_2020_1775813
crossref_primary_10_1111_hepr_13773
crossref_primary_10_1080_14740338_2022_1995353
crossref_primary_10_1097_CJI_0000000000000427
crossref_primary_10_1158_2326_6066_CIR_19_0360
crossref_primary_10_3390_cells10092257
crossref_primary_10_3390_jpm9010005
crossref_primary_10_1038_s41598_021_87979_1
crossref_primary_10_1007_s11010_025_05329_5
crossref_primary_10_1080_14728222_2021_1937123
crossref_primary_10_1016_j_lungcan_2023_107287
crossref_primary_10_1016_j_semcancer_2020_07_001
crossref_primary_10_3389_fonc_2019_01554
crossref_primary_10_1016_j_canlet_2020_05_012
crossref_primary_10_1007_s11356_021_15190_w
crossref_primary_10_1016_j_yexcr_2020_112311
crossref_primary_10_1038_s41467_024_44875_2
crossref_primary_10_1016_j_dci_2021_104295
crossref_primary_10_1016_j_ctrv_2024_102700
crossref_primary_10_1186_s40364_021_00350_4
crossref_primary_10_3389_fimmu_2022_859785
crossref_primary_10_1017_S1431927620001828
crossref_primary_10_3389_fimmu_2024_1440830
crossref_primary_10_1007_s10637_022_01274_y
crossref_primary_10_3390_ijms23042313
crossref_primary_10_1097_XCS_0000000000000964
crossref_primary_10_3389_fimmu_2022_1016647
crossref_primary_10_1016_j_apsb_2022_07_023
crossref_primary_10_1016_j_ctrv_2022_102460
crossref_primary_10_3390_cancers12051107
crossref_primary_10_1080_14737140_2021_1997599
crossref_primary_10_1007_s00270_022_03327_4
crossref_primary_10_1002_adfm_202105349
crossref_primary_10_3390_cancers13061475
crossref_primary_10_1016_j_canlet_2021_01_031
crossref_primary_10_1016_j_tranon_2025_102353
crossref_primary_10_1007_s11096_025_01962_8
crossref_primary_10_1007_s00018_019_03351_7
crossref_primary_10_3389_fphar_2024_1353720
crossref_primary_10_1155_2020_8840319
crossref_primary_10_3390_cancers12113230
crossref_primary_10_1038_s41581_020_0316_3
crossref_primary_10_1177_17562848211002018
crossref_primary_10_1186_s12967_023_04238_9
crossref_primary_10_3389_fcell_2021_646981
crossref_primary_10_3389_fendo_2021_650791
crossref_primary_10_1002_advs_202205915
crossref_primary_10_1007_s11864_025_01306_8
crossref_primary_10_1016_j_bbamcr_2024_119698
crossref_primary_10_1186_s40164_024_00543_1
crossref_primary_10_3390_cancers14174192
crossref_primary_10_1158_2159_8290_CD_20_1543
crossref_primary_10_3390_cells10112940
crossref_primary_10_3390_cancers12020308
crossref_primary_10_36401_JIPO_25_10
crossref_primary_10_3892_ol_2021_13164
crossref_primary_10_1016_j_apsb_2022_12_016
crossref_primary_10_1007_s11684_025_1134_6
crossref_primary_10_1111_exd_14151
crossref_primary_10_1080_08927022_2023_2281980
crossref_primary_10_3390_cancers14030644
crossref_primary_10_1016_j_heliyon_2025_e42098
crossref_primary_10_1002_JLB_2A0420_723RR
crossref_primary_10_1016_j_ctrv_2024_102718
crossref_primary_10_1007_s00520_023_07830_3
crossref_primary_10_1002_wrna_1773
crossref_primary_10_1186_s40364_023_00537_x
crossref_primary_10_1016_j_pharmr_2025_100075
crossref_primary_10_1080_14712598_2023_2294001
crossref_primary_10_3390_ijms22179133
crossref_primary_10_3389_fimmu_2023_1188277
crossref_primary_10_3748_wjg_v27_i48_8262
crossref_primary_10_3389_fimmu_2023_1190210
crossref_primary_10_1016_j_semcancer_2023_01_001
crossref_primary_10_1186_s13569_020_00133_9
crossref_primary_10_1002_jcp_30845
crossref_primary_10_1007_s12325_024_02838_5
crossref_primary_10_1155_2021_6203759
crossref_primary_10_1016_S1470_2045_19_30153_6
crossref_primary_10_2217_imt_2022_0058
crossref_primary_10_3390_cancers16061113
crossref_primary_10_1002_ijc_70018
crossref_primary_10_1186_s12967_023_04292_3
crossref_primary_10_1089_hum_2021_132
crossref_primary_10_1016_j_pharmthera_2021_107986
crossref_primary_10_3390_cancers15082287
crossref_primary_10_2174_0115680266299112240514103048
crossref_primary_10_1136_jitc_2019_000339
crossref_primary_10_3389_fimmu_2023_1226360
crossref_primary_10_1158_0008_5472_CAN_19_1577
crossref_primary_10_1002_hep_31416
crossref_primary_10_3389_fmolb_2021_747650
crossref_primary_10_3390_ijms22147583
crossref_primary_10_3390_ijms24021538
Cites_doi 10.1056/NEJMoa020177
10.1084/jem.20140559
10.1158/1078-0432.CCR-08-1332
10.1080/2162402X.2015.1008791
10.1016/j.coi.2015.01.011
10.1158/0008-5472.CAN-16-3129
10.1002/path.3989
10.1007/978-3-319-67577-0_13
10.1158/0008-5472.CAN-15-1605
10.1158/2326-6066.CIR-14-0053
10.1038/nm.2545
10.1038/nature10908
10.1002/ijc.26094
10.1182/blood-2003-08-2729
10.20892/j.issn.2095-3941.2015.0070
10.1016/j.canlet.2015.02.005
10.1093/intimm/12.5.671
10.4161/onci.19787
10.1038/bjc.2012.468
10.1007/82_2010_95
10.4049/jimmunol.172.1.464
10.1046/j.1523-1747.1998.00262.x
10.1158/1078-0432.CCR-17-0647
10.1016/S0092-8674(00)81402-6
10.1189/jlb.1104664
10.1093/neuonc/not082
10.2174/13816128113199990590
10.4049/jimmunol.1303116
10.1096/fj.05-4493com
10.1038/nature03952
10.1038/90667
10.1038/nri3175
10.1097/CJI.0b013e3181f4c208
10.4049/jimmunol.0803831
10.1159/000086784
10.1146/annurev-cellbio-092910-154002
10.1038/onc.2017.1
10.1080/2162402X.2017.1316437
10.1016/j.it.2016.09.006
10.1158/0008-5472.CAN-06-4102
10.1074/jbc.M103213200
10.1158/1078-0432.CCR-08-0652
10.4049/jimmunol.0900397
10.1038/cddiscovery.2016.25
10.1111/j.1476-5381.2012.02099.x
10.4049/jimmunol.160.3.1224
10.1038/sj.bjc.6604965
10.1371/journal.pone.0150688
10.1007/s00262-018-2136-x
10.1038/nn.4185
10.1038/s41467-017-00327-8
10.1038/nrm.2016.87
10.1016/j.ijrobp.2016.10.043
10.1172/JCI31202
10.1038/nm1096-1096
10.1016/j.jtho.2016.04.026
10.18632/oncotarget.4583
10.1200/jco.2015.33.15_suppl.tps2080
10.1158/1078-0432.CCR-07-5212
10.18632/oncotarget.17957
10.1016/j.critrevonc.2017.04.009
10.1038/onc.2014.257
10.1182/blood-2007-02-075945
10.1016/j.neo.2016.11.010
10.1016/bs.ircmb.2016.09.007
10.1158/0008-5472.CAN-08-4323
10.1158/0008-5472.CAN-04-0074
10.1182/blood-2007-01-065714
10.1158/0008-5472.CAN-07-6621
10.1038/nrc2353
10.1161/01.RES.0000089257.94002.96
10.1016/j.bone.2010.07.016
10.1084/jem.183.4.1323
10.1038/nm.3541
10.4049/jimmunol.174.1.215
10.1158/0008-5472.CAN-08-4709
10.1158/1078-0432.CCR-08-0656
10.1007/s10456-017-9552-y
10.1038/nri3298
10.18632/oncotarget.1893
10.2147/tcrm.2007.3.2.341
10.1177/1753425916659702
10.1182/blood.V92.11.4150
10.1007/s00262-007-0441-x
10.4049/jimmunol.178.3.1505
10.1186/1479-5876-9-177
10.1158/0008-5472.CAN-12-2325
10.1016/S0140-6736(00)04046-0
10.1080/2162402X.2014.998519
10.1159/000485455
10.3389/fonc.2014.00070
10.1002/eji.200939887
10.1158/0008-5472.CAN-11-0431
10.18632/oncotarget.17340
10.1126/scitranslmed.aak9679
10.1038/nature04753
10.1126/scitranslmed.aak9670
10.1016/j.ccell.2014.10.006
10.1158/0008-5472.CAN-05-1299
10.1158/1078-0432.CCR-06-1558
10.1159/000320609
10.1002/ijc.2910180520
10.1080/2162402X.2014.998107
10.4161/2162402X.2014.989764
10.1182/blood-2002-07-1956
ContentType Journal Article
Copyright Copyright © 2018 Yang, Yan and Liu. 2018 Yang, Yan and Liu
Copyright_xml – notice: Copyright © 2018 Yang, Yan and Liu. 2018 Yang, Yan and Liu
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2018.00978
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_8510dc3e32f240e1b14f4b0c393174c6
PMC5943566
29774034
10_3389_fimmu_2018_00978
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-849ec4c8420fed0bbfa6a73f0fe292aaeab4ecff2098f2fca15c8f529415ff003
IEDL.DBID DOA
ISICitedReferencesCount 474
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431337600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:45:10 EDT 2025
Thu Aug 21 18:09:52 EDT 2025
Fri Sep 05 12:10:09 EDT 2025
Thu Apr 03 07:04:24 EDT 2025
Sat Nov 29 02:50:28 EST 2025
Tue Nov 18 22:33:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords immune
T cells
angiogenesis
tumor
vascular endothelial growth factor
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-849ec4c8420fed0bbfa6a73f0fe292aaeab4ecff2098f2fca15c8f529415ff003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Giovanna Schiavoni, Istituto Superiore di Sanità, Italy
Specialty section: This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology
Reviewed by: Anca Maria Cimpean, Victor Babes University of Medicine and Pharmacy Timisoara, Romania; Barbara Ghinassi, Università degli Studi G. d’Annunzio Chieti e Pescara, Italy
OpenAccessLink https://doaj.org/article/8510dc3e32f240e1b14f4b0c393174c6
PMID 29774034
PQID 2041625627
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8510dc3e32f240e1b14f4b0c393174c6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5943566
proquest_miscellaneous_2041625627
pubmed_primary_29774034
crossref_citationtrail_10_3389_fimmu_2018_00978
crossref_primary_10_3389_fimmu_2018_00978
PublicationCentury 2000
PublicationDate 2018-05-03
PublicationDateYYYYMMDD 2018-05-03
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-03
  day: 03
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gabrilovich (B64) 2012; 12
Della Porta (B81) 2005; 68
Hambardzumyan (B101) 2016; 19
Allen (B36) 2017; 9
Suzuki (B55) 2010; 40
Schmittnaegel (B30) 2017; 9
Hodi (B91) 2014; 2
Koinis (B75) 2016; 11
Pham (B100) 2015; 360
Zhao (B35) 2017; 77
Kessler (B105) 1976; 18
Oyama (B83) 1998; 160
Zeng (B18) 2001; 276
Huang (B68) 2007; 110
Benedito (B9) 2012; 484
Dikov (B84) 2005; 174
Hipp (B85) 2008; 111
Alfaro (B86) 2009; 100
Sun (B54) 2017; 8
Chung (B1) 2011; 27
Motz (B22) 2014; 20
Bouzin (B40) 2007; 178
Secondini (B62) 2017; 6
Sick (B24) 2012; 167
Ko (B74) 2009; 15
Wilson (B77) 2004; 103
Deng (B102) 2017; 19
Rodriguez-Ruiz (B38) 2017; 97
Bhattacharya (B12) 2016; 76
Manzoni (B25) 2010; 79
Balkwill (B94) 2001; 357
Lu-Emerson (B99) 2013; 15
Jain (B10) 2007; 67
Simons (B5) 2016; 17
Adotevi (B59) 2010; 33
Girard (B46) 2012; 12
Gabrilovich (B66) 1998; 92
Martinet (B48) 2012; 1
Tan (B76) 2005; 78
Lee (B103) 2014
Jain (B37) 2014; 26
Du Four (B73) 2015; 4
Martino (B26) 2016; 2
Finke (B60) 2008; 14
Serafini (B70) 2008; 68
Linde (B92) 2012; 227
Hu-Lowe (B108) 2008; 14
Zhao (B87) 2016; 22
Avraamides (B3) 2008; 8
Gavalas (B21) 2012; 107
Karakhanova (B45) 2015; 4
Osada (B90) 2008; 57
Alitalo (B8) 2011; 17
Ramjiawan (B32) 2017; 20
Gabrusiewicz (B98) 2014; 5
Tzima (B7) 2005; 437
Ozao-Choy (B29) 2009; 69
Kandalaft (B57) 2011; 344
Bettelli (B50) 2006; 441
Arnott (B43) 2016; 11
Gabrilovich (B82) 1996; 2
Sia (B2) 2014; 20
Kaur (B23) 2014; 193
Detmar (B44) 1998; 111
Zhang (B13) 2017; 44
Basu (B17) 2010; 184
Almand (B80) 2000; 6
Ziogas (B20) 2012; 130
Lanitis (B31) 2015; 33
Ager (B47) 2015; 4
Dalton (B95) 2017; 23
Zhao (B14) 2015; 34
Laubli (B109) 2018
Lapeyre-Prost (B53) 2017; 330
Wang (B4) 2017; 8
Fabian (B11) 2017; 1036
van Cruijsen (B89) 2008; 14
Huang (B69) 2006; 66
Dinapoli (B93) 1996; 183
Draghiciu (B72) 2015; 4
Wroblewski (B106) 2017; 8
Wada (B52) 2009; 29
Castro (B104) 2017; 36
Le Tourneau (B27) 2007; 3
Dirkx (B34) 2006; 20
Tromp (B41) 2000; 12
Rogers (B97) 2011; 9
Dirkx (B39) 2003; 63
Curiel (B51) 2007; 117
Clezardin (B96) 2011; 48
Terme (B61) 2013; 73
Jin (B6) 2003; 93
Ohm (B16) 2003; 101
Tong (B33) 2004; 64
Seri (B42) 2016; 9
Xin (B58) 2009; 69
Li (B63) 2006; 12
Ho (B88) 2015; 6
Nefedova (B67) 2004; 172
Gardner (B78) 2016; 37
Zhang (B15) 2003; 348
Voron (B28) 2015; 212
Akbari (B79) 2001; 2
Soker (B56) 1998; 92
Cimpean (B107) 2017; 115
Li (B19) 2016; 13
Voron (B71) 2014; 4
Martinet (B49) 2011; 71
Mandruzzato (B65) 2009; 182
References_xml – volume: 348
  start-page: 203
  year: 2003
  ident: B15
  article-title: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa020177
– volume: 212
  start-page: 139
  year: 2015
  ident: B28
  article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors
  publication-title: J Exp Med
  doi: 10.1084/jem.20140559
– volume: 15
  start-page: 2148
  year: 2009
  ident: B74
  article-title: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-1332
– volume: 4
  start-page: e1008791
  year: 2015
  ident: B47
  article-title: Understanding high endothelial venules: lessons for cancer immunology
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1008791
– volume: 33
  start-page: 55
  year: 2015
  ident: B31
  article-title: Targeting the tumor vasculature to enhance T cell activity
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2015.01.011
– volume: 77
  start-page: 4434
  year: 2017
  ident: B35
  article-title: Targeting vascular endothelial-cadherin in tumor-associated blood vessels promotes T-cell-mediated immunotherapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-3129
– volume: 227
  start-page: 17
  year: 2012
  ident: B92
  article-title: Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages
  publication-title: J Pathol
  doi: 10.1002/path.3989
– volume: 1036
  start-page: 191
  year: 2017
  ident: B11
  article-title: Immunotherapeutic targeting of tumor-associated blood vessels
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-319-67577-0_13
– volume: 76
  start-page: 3014
  year: 2016
  ident: B12
  article-title: Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-1605
– volume: 2
  start-page: 632
  year: 2014
  ident: B91
  article-title: Bevacizumab plus ipilimumab in patients with metastatic melanoma
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-14-0053
– volume: 17
  start-page: 1371
  year: 2011
  ident: B8
  article-title: The lymphatic vasculature in disease
  publication-title: Nat Med
  doi: 10.1038/nm.2545
– volume: 29
  start-page: 881
  year: 2009
  ident: B52
  article-title: The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions
  publication-title: Anticancer Res
– volume: 484
  start-page: 110
  year: 2012
  ident: B9
  article-title: Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling
  publication-title: Nature
  doi: 10.1038/nature10908
– volume: 130
  start-page: 857
  year: 2012
  ident: B20
  article-title: VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2
  publication-title: Int J Cancer
  doi: 10.1002/ijc.26094
– volume: 103
  start-page: 2187
  year: 2004
  ident: B77
  article-title: Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis
  publication-title: Blood
  doi: 10.1182/blood-2003-08-2729
– volume: 13
  start-page: 206
  year: 2016
  ident: B19
  article-title: Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward?
  publication-title: Cancer Biol Med
  doi: 10.20892/j.issn.2095-3941.2015.0070
– volume: 360
  start-page: 60
  year: 2015
  ident: B100
  article-title: VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFbetaR signaling-dependent manner
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.02.005
– volume: 12
  start-page: 671
  year: 2000
  ident: B41
  article-title: Tumor angiogenesis factors reduce leukocyte adhesion in vivo
  publication-title: Int Immunol
  doi: 10.1093/intimm/12.5.671
– volume: 1
  start-page: 829
  year: 2012
  ident: B48
  article-title: High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes
  publication-title: Oncoimmunology
  doi: 10.4161/onci.19787
– volume: 107
  start-page: 1869
  year: 2012
  ident: B21
  article-title: VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2012.468
– volume: 344
  start-page: 129
  year: 2011
  ident: B57
  article-title: Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin
  publication-title: Curr Top Microbiol Immunol
  doi: 10.1007/82_2010_95
– volume: 172
  start-page: 464
  year: 2004
  ident: B67
  article-title: Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.1.464
– volume: 111
  start-page: 1
  year: 1998
  ident: B44
  article-title: Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice
  publication-title: J Invest Dermatol
  doi: 10.1046/j.1523-1747.1998.00262.x
– volume: 23
  start-page: 7034
  year: 2017
  ident: B95
  article-title: Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-0647
– volume: 92
  start-page: 735
  year: 1998
  ident: B56
  article-title: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81402-6
– volume: 78
  start-page: 319
  year: 2005
  ident: B76
  article-title: Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.1104664
– volume: 15
  start-page: 1079
  year: 2013
  ident: B99
  article-title: Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/not082
– volume: 20
  start-page: 2834
  year: 2014
  ident: B2
  article-title: VEGF signaling in cancer treatment
  publication-title: Curr Pharm Des
  doi: 10.2174/13816128113199990590
– volume: 193
  start-page: 3914
  year: 2014
  ident: B23
  article-title: CD47 signaling regulates the immunosuppressive activity of VEGF in T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1303116
– volume: 20
  start-page: 621
  year: 2006
  ident: B34
  article-title: Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors
  publication-title: FASEB J
  doi: 10.1096/fj.05-4493com
– volume: 437
  start-page: 426
  year: 2005
  ident: B7
  article-title: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress
  publication-title: Nature
  doi: 10.1038/nature03952
– volume: 2
  start-page: 725
  year: 2001
  ident: B79
  article-title: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen
  publication-title: Nat Immunol
  doi: 10.1038/90667
– volume: 12
  start-page: 253
  year: 2012
  ident: B64
  article-title: Coordinated regulation of myeloid cells by tumours
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3175
– volume: 33
  start-page: 991
  year: 2010
  ident: B59
  article-title: A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients
  publication-title: J Immunother
  doi: 10.1097/CJI.0b013e3181f4c208
– volume: 182
  start-page: 6562
  year: 2009
  ident: B65
  article-title: IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803831
– volume: 68
  start-page: 276
  year: 2005
  ident: B81
  article-title: Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings
  publication-title: Oncology
  doi: 10.1159/000086784
– volume: 27
  start-page: 563
  year: 2011
  ident: B1
  article-title: Developmental and pathological angiogenesis
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-092910-154002
– volume: 36
  start-page: 3749
  year: 2017
  ident: B104
  article-title: Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy
  publication-title: Oncogene
  doi: 10.1038/onc.2017.1
– volume: 6
  start-page: e1316437
  year: 2017
  ident: B62
  article-title: Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1316437
– volume: 37
  start-page: 855
  year: 2016
  ident: B78
  article-title: Dendritic cells and cancer immunity
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2016.09.006
– volume: 67
  start-page: 2729
  year: 2007
  ident: B10
  article-title: Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-4102
– volume: 276
  start-page: 26969
  year: 2001
  ident: B18
  article-title: Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M103213200
– volume: 14
  start-page: 7272
  year: 2008
  ident: B108
  article-title: Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0652
– volume: 184
  start-page: 545
  year: 2010
  ident: B17
  article-title: Cutting edge: vascular endothelial growth factor-mediated signaling in human CD45RO+ CD4+ T cells promotes Akt and ERK activation and costimulates IFN-gamma production
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0900397
– volume: 2
  start-page: 16025
  year: 2016
  ident: B26
  article-title: Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients
  publication-title: Cell Death Discov
  doi: 10.1038/cddiscovery.2016.25
– volume: 167
  start-page: 1415
  year: 2012
  ident: B24
  article-title: CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2012.02099.x
– volume: 160
  start-page: 1224
  year: 1998
  ident: B83
  article-title: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.160.3.1224
– volume: 100
  start-page: 1111
  year: 2009
  ident: B86
  article-title: Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604965
– volume: 11
  start-page: e0150688
  year: 2016
  ident: B43
  article-title: The vascular endothelial growth factor inhibitors ranibizumab and aflibercept markedly increase expression of atherosclerosis-associated inflammatory mediators on vascular endothelial cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150688
– year: 2018
  ident: B109
  article-title: The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-018-2136-x
– volume: 19
  start-page: 20
  year: 2016
  ident: B101
  article-title: The role of microglia and macrophages in glioma maintenance and progression
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4185
– volume: 8
  start-page: 269
  year: 2017
  ident: B106
  article-title: Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00327-8
– volume: 17
  start-page: 611
  year: 2016
  ident: B5
  article-title: Mechanisms and regulation of endothelial VEGF receptor signalling
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2016.87
– volume: 97
  start-page: 389
  year: 2017
  ident: B38
  article-title: Intercellular adhesion molecule-1 and vascular cell adhesion molecule are induced by ionizing radiation on lymphatic endothelium
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.10.043
– volume: 117
  start-page: 1167
  year: 2007
  ident: B51
  article-title: Tregs and rethinking cancer immunotherapy
  publication-title: J Clin Invest
  doi: 10.1172/JCI31202
– volume: 2
  start-page: 1096
  year: 1996
  ident: B82
  article-title: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells
  publication-title: Nat Med
  doi: 10.1038/nm1096-1096
– volume: 11
  start-page: 1263
  year: 2016
  ident: B75
  article-title: Effect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2016.04.026
– volume: 6
  start-page: 27252
  year: 2015
  ident: B88
  article-title: TLR3 agonist and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular carcinoma progression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4583
– year: 2014
  ident: B103
  article-title: Phase I study of plerixafor and bevacizumab in recurrent high-grade glioma
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2015.33.15_suppl.tps2080
– volume: 14
  start-page: 6674
  year: 2008
  ident: B60
  article-title: Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-5212
– volume: 8
  start-page: 53854
  year: 2017
  ident: B4
  article-title: Strategies targeting angiogenesis in advanced non-small cell lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17957
– volume: 115
  start-page: 23
  year: 2017
  ident: B107
  article-title: Mast cells in breast cancer angiogenesis
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2017.04.009
– volume: 34
  start-page: 3107
  year: 2015
  ident: B14
  article-title: VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2
  publication-title: Oncogene
  doi: 10.1038/onc.2014.257
– volume: 111
  start-page: 5610
  year: 2008
  ident: B85
  article-title: Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses
  publication-title: Blood
  doi: 10.1182/blood-2007-02-075945
– volume: 19
  start-page: 1
  year: 2017
  ident: B102
  article-title: SDF-1 blockade enhances anti-VEGF therapy of glioblastoma and can be monitored by MRI
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2016.11.010
– volume: 330
  start-page: 295
  year: 2017
  ident: B53
  article-title: Immunomodulatory activity of VEGF in cancer
  publication-title: Int Rev Cell Mol Biol
  doi: 10.1016/bs.ircmb.2016.09.007
– volume: 69
  start-page: 2506
  year: 2009
  ident: B58
  article-title: Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4323
– volume: 64
  start-page: 3731
  year: 2004
  ident: B33
  article-title: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-0074
– volume: 6
  start-page: 1755
  year: 2000
  ident: B80
  article-title: Clinical significance of defective dendritic cell differentiation in cancer
  publication-title: Clin Cancer Res
– volume: 110
  start-page: 624
  year: 2007
  ident: B68
  article-title: Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF
  publication-title: Blood
  doi: 10.1182/blood-2007-01-065714
– volume: 68
  start-page: 5439
  year: 2008
  ident: B70
  article-title: Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-6621
– volume: 8
  start-page: 604
  year: 2008
  ident: B3
  article-title: Integrins in angiogenesis and lymphangiogenesis
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2353
– volume: 93
  start-page: 354
  year: 2003
  ident: B6
  article-title: Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000089257.94002.96
– volume: 48
  start-page: 71
  year: 2011
  ident: B96
  article-title: Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class
  publication-title: Bone
  doi: 10.1016/j.bone.2010.07.016
– volume: 183
  start-page: 1323
  year: 1996
  ident: B93
  article-title: The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene
  publication-title: J Exp Med
  doi: 10.1084/jem.183.4.1323
– volume: 20
  start-page: 607
  year: 2014
  ident: B22
  article-title: Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors
  publication-title: Nat Med
  doi: 10.1038/nm.3541
– volume: 174
  start-page: 215
  year: 2005
  ident: B84
  article-title: Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.1.215
– volume: 9
  start-page: 429
  year: 2016
  ident: B42
  article-title: Lipoprotein-associated phospholipase A2, myeloperoxidase and vascular endothelial growth factor – predictors of high vascular risk in respiratory bacterial infections
  publication-title: J Med Life
– volume: 69
  start-page: 2514
  year: 2009
  ident: B29
  article-title: The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4709
– volume: 14
  start-page: 5884
  year: 2008
  ident: B89
  article-title: Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0656
– volume: 20
  start-page: 185
  year: 2017
  ident: B32
  article-title: Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy?
  publication-title: Angiogenesis
  doi: 10.1007/s10456-017-9552-y
– volume: 12
  start-page: 762
  year: 2012
  ident: B46
  article-title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3298
– volume: 5
  start-page: 2208
  year: 2014
  ident: B98
  article-title: Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1893
– volume: 3
  start-page: 341
  year: 2007
  ident: B27
  article-title: Sunitinib: a novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST)
  publication-title: Ther Clin Risk Manag
  doi: 10.2147/tcrm.2007.3.2.341
– volume: 22
  start-page: 493
  year: 2016
  ident: B87
  article-title: Small-molecule inhibitor sorafenib regulates immunoreactions by inducing survival and differentiation of bone marrow cells
  publication-title: Innate Immun
  doi: 10.1177/1753425916659702
– volume: 92
  start-page: 4150
  year: 1998
  ident: B66
  article-title: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo
  publication-title: Blood
  doi: 10.1182/blood.V92.11.4150
– volume: 57
  start-page: 1115
  year: 2008
  ident: B90
  article-title: The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-007-0441-x
– volume: 178
  start-page: 1505
  year: 2007
  ident: B40
  article-title: Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.3.1505
– volume: 9
  start-page: 177
  year: 2011
  ident: B97
  article-title: Tumour macrophages as potential targets of bisphosphonates
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-9-177
– volume: 73
  start-page: 539
  year: 2013
  ident: B61
  article-title: VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2325
– volume: 357
  start-page: 539
  year: 2001
  ident: B94
  article-title: Inflammation and cancer: back to Virchow?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)04046-0
– volume: 4
  start-page: e998519
  year: 2015
  ident: B45
  article-title: Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2014.998519
– volume: 63
  start-page: 2322
  year: 2003
  ident: B39
  article-title: Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression
  publication-title: Cancer Res
– volume: 44
  start-page: 1251
  year: 2017
  ident: B13
  article-title: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating wnt/beta-catenin axis in breast cancer cells
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000485455
– volume: 4
  start-page: 70
  year: 2014
  ident: B71
  article-title: Control of the immune response by pro-angiogenic factors
  publication-title: Front Oncol
  doi: 10.3389/fonc.2014.00070
– volume: 40
  start-page: 197
  year: 2010
  ident: B55
  article-title: VEGFR2 is selectively expressed by FOXP3high CD4+ Treg
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200939887
– volume: 71
  start-page: 5678
  year: 2011
  ident: B49
  article-title: Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0431
– volume: 8
  start-page: 39658
  year: 2017
  ident: B54
  article-title: Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17340
– volume: 9
  start-page: eaak9679
  year: 2017
  ident: B36
  article-title: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aak9679
– volume: 441
  start-page: 235
  year: 2006
  ident: B50
  article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
  publication-title: Nature
  doi: 10.1038/nature04753
– volume: 9
  start-page: eaak9670
  year: 2017
  ident: B30
  article-title: Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aak9670
– volume: 26
  start-page: 605
  year: 2014
  ident: B37
  article-title: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.10.006
– volume: 66
  start-page: 1123
  year: 2006
  ident: B69
  article-title: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1299
– volume: 12
  start-page: 6808
  year: 2006
  ident: B63
  article-title: Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1558
– volume: 79
  start-page: 187
  year: 2010
  ident: B25
  article-title: Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer
  publication-title: Oncology
  doi: 10.1159/000320609
– volume: 18
  start-page: 703
  year: 1976
  ident: B105
  article-title: Mast cells and tumor angiogenesis
  publication-title: Int J Cancer
  doi: 10.1002/ijc.2910180520
– volume: 4
  start-page: e998107
  year: 2015
  ident: B73
  article-title: Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2014.998107
– volume: 4
  start-page: e989764
  year: 2015
  ident: B72
  article-title: Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication
  publication-title: Oncoimmunology
  doi: 10.4161/2162402X.2014.989764
– volume: 101
  start-page: 4878
  year: 2003
  ident: B16
  article-title: VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression
  publication-title: Blood
  doi: 10.1182/blood-2002-07-1956
SSID ssj0000493335
Score 2.6376984
SecondaryResourceType review_article
Snippet In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 978
SubjectTerms angiogenesis
Angiogenesis Inhibitors - pharmacology
Animals
Cell Differentiation - immunology
Dendritic Cells - immunology
Humans
immune
Immunologic Factors - pharmacology
Immunology
Mice
Myeloid-Derived Suppressor Cells - immunology
Neoplasms - immunology
Neovascularization, Pathologic
Receptors, Vascular Endothelial Growth Factor - immunology
T cells
T-Lymphocytes, Regulatory - immunology
tumor
vascular endothelial growth factor
Vascular Endothelial Growth Factors - immunology
Title Targeting VEGF/VEGFR to Modulate Antitumor Immunity
URI https://www.ncbi.nlm.nih.gov/pubmed/29774034
https://www.proquest.com/docview/2041625627
https://pubmed.ncbi.nlm.nih.gov/PMC5943566
https://doaj.org/article/8510dc3e32f240e1b14f4b0c393174c6
Volume 9
WOSCitedRecordID wos000431337600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH7a0JB2QWzAFthQJnHhENXxj8Q-wtRuO4AmBKi3yHZs0WlNppIiceFv59kpVTshdtnFUhxHtr4X6322n78HcBTkTolWLMt1WWdcEpFJYUVWMiVN2BcwpI7JJsrzczkeq58rqb5CTFgvD9wDN0BGQGrLHKMenY_LTc49N8QyhZ6P2yi2jaxnZTH1q-e9jDHRn0viKkwN_GQ6nYdQrhA7GbOqrfihKNf_HMf8O1RyxfeMtmFrQRrTk36w7-CVa97DZp9G8n4H2GUM50YnlF4Pv40GobhIuzY9a-uQnculJ-Ey7nzaztIf8T5Id78LV6Ph5dfv2SIZQmZ5QbtMcuUst5JT4l1NjPG60CXz-EQV1dppw531nhIlPfVW58JKL6hCD-09zt092Gjaxn2ENFfWqloWThQ1F6YwpUWKXUiNtRrpQwKDJ2gqu1AKDwkrfle4YghgVhHMKoBZRTATOF5-8adXyXih7WlAe9ku6FvHCrR6tbB69S-rJ_DlyVYVzodwyKEb185vsSOkmMjjaJnAh952y65oILuE8QTKNauujWX9TTO5iZrbQiGvLIr9_zH4A3gb4Ihhk-wTbHSzufsMb-xdN7mdHcLrciwP4--M5dnD8BHDPPjd
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+VEGF%2FVEGFR+to+Modulate+Antitumor+Immunity&rft.jtitle=Frontiers+in+immunology&rft.au=Yang%2C+Ju&rft.au=Yan%2C+Jing&rft.au=Liu%2C+Baorui&rft.date=2018-05-03&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=9&rft_id=info:doi/10.3389%2Ffimmu.2018.00978&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2018_00978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon