Targeting VEGF/VEGFR to Modulate Antitumor Immunity
In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the...
Saved in:
| Published in: | Frontiers in immunology Vol. 9; p. 978 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media S.A
03.05.2018
|
| Subjects: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators. |
|---|---|
| AbstractList | In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators. In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators.In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators. |
| Author | Yang, Ju Liu, Baorui Yan, Jing |
| AuthorAffiliation | The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China |
| AuthorAffiliation_xml | – name: The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China |
| Author_xml | – sequence: 1 givenname: Ju surname: Yang fullname: Yang, Ju – sequence: 2 givenname: Jing surname: Yan fullname: Yan, Jing – sequence: 3 givenname: Baorui surname: Liu fullname: Liu, Baorui |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29774034$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1r3DAUxEVJadI0956Kj73s5kl6lq1LIYQkXUgJlLRXIctPWwXbSmW5kP--9m5SkkJ00OfMb0Dznh0McSDGPnJYS1nrUx_6floL4PUaQFf1G3bElcKVFAIPnu0P2ck43sE8UEspy3fsUOiqQpB4xOStTVvKYdgWPy-uLk-X6XuRY_EttlNnMxVnQw556mMqNnPeEPLDB_bW226kk8f1mP24vLg9_7q6vrnanJ9drxwqkVc1anLoahTgqYWm8VbZSvr5JLSwlmyD5LwXoGsvvLO8dLUvhUZeeg8gj9lmz22jvTP3KfQ2PZhog9ldxLQ1NuXgOjJ1yaF1kqTwAoF4w9FjA05qySt0amZ92bPup6an1tGQk-1eQF--DOGX2cY_ptQoS7UAPj8CUvw90ZhNH0ZHXWcHitNoBCBXolSimqWfnmf9C3n69Vmg9gKX4jgm8saFbHOIS3ToDAezNGx2DZulYbNreDbCf8Yn9quWv6mLqUs |
| CitedBy_id | crossref_primary_10_1002_ctm2_70313 crossref_primary_10_1007_s00262_022_03341_y crossref_primary_10_3389_fonc_2021_683502 crossref_primary_10_3390_life12020258 crossref_primary_10_1186_s12943_024_02221_6 crossref_primary_10_1016_j_trecan_2024_11_002 crossref_primary_10_1016_j_mvr_2024_104691 crossref_primary_10_3390_cancers14205154 crossref_primary_10_1124_jpet_122_001255 crossref_primary_10_3389_fimmu_2021_657326 crossref_primary_10_1158_1078_0432_CCR_21_1698 crossref_primary_10_1093_jjco_hyaa200 crossref_primary_10_1038_s41419_023_05699_y crossref_primary_10_1186_s43094_024_00688_0 crossref_primary_10_1158_0008_5472_CAN_23_1660 crossref_primary_10_3390_cancers14205013 crossref_primary_10_3390_cancers15133312 crossref_primary_10_4254_wjh_v16_i4_537 crossref_primary_10_1158_1078_0432_CCR_22_1184 crossref_primary_10_1186_s12885_023_11408_x crossref_primary_10_3390_ijms231810479 crossref_primary_10_3389_fphar_2022_838133 crossref_primary_10_4251_wjgo_v14_i8_1510 crossref_primary_10_3389_fonc_2021_670313 crossref_primary_10_1371_journal_pcbi_1013354 crossref_primary_10_3389_fimmu_2020_01956 crossref_primary_10_1128_jvi_01491_24 crossref_primary_10_2217_fon_2021_0424 crossref_primary_10_3389_fimmu_2020_594609 crossref_primary_10_3390_vaccines10111963 crossref_primary_10_3389_fimmu_2019_00771 crossref_primary_10_1016_j_biopha_2022_113114 crossref_primary_10_3389_fimmu_2025_1617968 crossref_primary_10_3390_cells13191666 crossref_primary_10_1038_s41467_020_20171_7 crossref_primary_10_3390_cancers14205010 crossref_primary_10_3390_cancers15235661 crossref_primary_10_1016_j_addr_2022_114482 crossref_primary_10_3390_ijms23169016 crossref_primary_10_3390_cancers13061199 crossref_primary_10_1083_jcb_201908224 crossref_primary_10_1161_HYPERTENSIONAHA_120_15112 crossref_primary_10_2147_TCRM_S251673 crossref_primary_10_1186_s13045_022_01310_7 crossref_primary_10_3389_fonc_2021_694409 crossref_primary_10_1002_cam4_6135 crossref_primary_10_4251_wjgo_v15_i1_55 crossref_primary_10_3390_cancers17183090 crossref_primary_10_3390_cancers15030579 crossref_primary_10_1016_j_cyto_2023_156389 crossref_primary_10_1007_s00253_022_12209_1 crossref_primary_10_1007_s10147_025_02721_5 crossref_primary_10_1177_17588359211034708 crossref_primary_10_3390_ijms22126290 crossref_primary_10_3389_fonc_2021_783158 crossref_primary_10_3389_fimmu_2021_775761 crossref_primary_10_1016_j_ccell_2020_11_009 crossref_primary_10_1186_s12957_018_1506_3 crossref_primary_10_34133_research_0836 crossref_primary_10_3389_fimmu_2020_584903 crossref_primary_10_3389_fphar_2020_00439 crossref_primary_10_3390_cancers13246231 crossref_primary_10_1016_j_pharmthera_2022_108255 crossref_primary_10_3390_molecules25143219 crossref_primary_10_1038_s41573_022_00415_5 crossref_primary_10_1155_2023_6886135 crossref_primary_10_2174_1381612828666220921151750 crossref_primary_10_3390_biom14121496 crossref_primary_10_3389_fimmu_2020_00438 crossref_primary_10_1080_01635581_2021_1985533 crossref_primary_10_1016_j_apsb_2020_09_014 crossref_primary_10_3389_fcell_2022_803280 crossref_primary_10_3390_cells8121647 crossref_primary_10_1016_j_bbcan_2024_189079 crossref_primary_10_3390_ijms231810677 crossref_primary_10_3892_mmr_2019_10074 crossref_primary_10_1182_blood_2022016029 crossref_primary_10_4103_aja2022102 crossref_primary_10_1111_imr_12773 crossref_primary_10_1186_s13287_023_03561_8 crossref_primary_10_1007_s12072_020_10104_3 crossref_primary_10_1016_j_ijbiomac_2024_129950 crossref_primary_10_3389_fimmu_2021_715727 crossref_primary_10_3390_cancers14174246 crossref_primary_10_1111_cpr_13009 crossref_primary_10_2174_0109298673266044231002071238 crossref_primary_10_1146_annurev_cancerbio_061421_040659 crossref_primary_10_3390_ijms20061280 crossref_primary_10_1158_1078_0432_CCR_22_3653 crossref_primary_10_3389_fimmu_2020_599253 crossref_primary_10_3389_fimmu_2023_1084887 crossref_primary_10_1016_j_ijbiomac_2023_128096 crossref_primary_10_3389_fimmu_2025_1506278 crossref_primary_10_1016_j_yexcr_2021_112685 crossref_primary_10_1136_jitc_2023_006680 crossref_primary_10_3389_fimmu_2025_1544532 crossref_primary_10_1007_s11154_020_09551_y crossref_primary_10_1038_s41585_022_00666_2 crossref_primary_10_1016_j_ccell_2019_09_006 crossref_primary_10_3389_fimmu_2025_1550752 crossref_primary_10_3389_fonc_2022_873722 crossref_primary_10_1007_s00262_023_03520_5 crossref_primary_10_3390_cancers12123850 crossref_primary_10_3389_fendo_2019_00521 crossref_primary_10_1158_1078_0432_CCR_24_2519 crossref_primary_10_3390_cancers12113145 crossref_primary_10_1245_s10434_024_16806_4 crossref_primary_10_1002_cam4_5360 crossref_primary_10_1097_CAD_0000000000000791 crossref_primary_10_3389_fcvm_2023_1002438 crossref_primary_10_1007_s12328_024_02062_2 crossref_primary_10_3390_cells11132114 crossref_primary_10_1016_j_addr_2020_06_030 crossref_primary_10_1210_jcemcr_luae139 crossref_primary_10_1016_j_semcancer_2020_08_013 crossref_primary_10_1186_s13045_023_01473_x crossref_primary_10_1080_16078454_2024_2340144 crossref_primary_10_1002_onco_13971 crossref_primary_10_4251_wjgo_v15_i1_1 crossref_primary_10_3390_ijms21176302 crossref_primary_10_1080_14737159_2022_2019015 crossref_primary_10_1111_1759_7714_14102 crossref_primary_10_2147_DDDT_S308578 crossref_primary_10_3389_fimmu_2020_01689 crossref_primary_10_3390_biomedicines13010006 crossref_primary_10_1016_j_biopha_2025_117921 crossref_primary_10_1016_j_omtn_2019_05_027 crossref_primary_10_3390_cancers15041164 crossref_primary_10_3390_cancers15092624 crossref_primary_10_1038_s41577_023_00973_8 crossref_primary_10_3390_ijms25105489 crossref_primary_10_1016_j_semcancer_2022_03_011 crossref_primary_10_1136_jitc_2022_004863 crossref_primary_10_15252_emmm_201809266 crossref_primary_10_3389_fimmu_2022_1024755 crossref_primary_10_1038_s41467_022_28933_1 crossref_primary_10_3390_cancers15245790 crossref_primary_10_3390_cancers13071724 crossref_primary_10_1097_PPO_0000000000000368 crossref_primary_10_1136_jitc_2021_004427 crossref_primary_10_3389_fimmu_2021_616837 crossref_primary_10_1016_S0140_6736_25_00369_1 crossref_primary_10_1111_cts_12856 crossref_primary_10_1080_14737140_2021_1882855 crossref_primary_10_3389_fimmu_2020_591741 crossref_primary_10_3390_ijms20122970 crossref_primary_10_1016_j_ctrv_2020_102017 crossref_primary_10_1186_s12877_023_04625_3 crossref_primary_10_3390_cancers13163984 crossref_primary_10_3390_life12020303 crossref_primary_10_3390_cancers16173103 crossref_primary_10_3389_fimmu_2024_1324045 crossref_primary_10_3389_fimmu_2019_00128 crossref_primary_10_1186_s12885_020_6589_x crossref_primary_10_3390_biomedicines13051144 crossref_primary_10_1172_JCI190470 crossref_primary_10_1016_j_intimp_2021_108017 crossref_primary_10_1177_17588359241311058 crossref_primary_10_1007_s12032_024_02491_6 crossref_primary_10_3389_fimmu_2020_01376 crossref_primary_10_1186_s13058_020_01362_y crossref_primary_10_1007_s13402_022_00718_0 crossref_primary_10_1007_s11684_021_0904_z crossref_primary_10_2147_JHC_S478604 crossref_primary_10_1002_cnr2_1712 crossref_primary_10_4251_wjgo_v15_i2_215 crossref_primary_10_1016_j_addr_2021_05_001 crossref_primary_10_1155_2019_2084195 crossref_primary_10_3390_cancers14153779 crossref_primary_10_3390_ijms20092296 crossref_primary_10_1016_j_modpat_2022_100034 crossref_primary_10_3389_fimmu_2020_604967 crossref_primary_10_1002_ctm2_1648 crossref_primary_10_1039_D3NR06131K crossref_primary_10_2147_IJN_S411761 crossref_primary_10_1002_ijc_33898 crossref_primary_10_1002_slct_202301098 crossref_primary_10_3389_fimmu_2020_01005 crossref_primary_10_1016_j_esmorc_2025_100002 crossref_primary_10_3389_fimmu_2021_633205 crossref_primary_10_3350_cmh_2023_0125 crossref_primary_10_1038_s41419_023_06119_x crossref_primary_10_1038_s41575_020_00395_0 crossref_primary_10_1007_s10555_024_10213_7 crossref_primary_10_3389_fmed_2022_873836 crossref_primary_10_3389_fonc_2022_869078 crossref_primary_10_2217_fon_2020_0937 crossref_primary_10_3390_cancers13122924 crossref_primary_10_3389_fphar_2022_774440 crossref_primary_10_1371_journal_pone_0210211 crossref_primary_10_1016_j_bmc_2022_117048 crossref_primary_10_1016_j_gene_2024_148796 crossref_primary_10_1080_13543784_2022_2152324 crossref_primary_10_3389_fonc_2021_652394 crossref_primary_10_1002_cac2_12295 crossref_primary_10_1007_s40265_023_01835_2 crossref_primary_10_2147_CMAR_S241069 crossref_primary_10_3389_fphar_2021_798320 crossref_primary_10_1016_j_critrevonc_2025_104630 crossref_primary_10_1038_s43018_022_00401_1 crossref_primary_10_1002_slct_202203726 crossref_primary_10_1080_2162402X_2022_2120676 crossref_primary_10_1177_17588359221107112 crossref_primary_10_1016_j_colsurfb_2022_113017 crossref_primary_10_3390_ph15050504 crossref_primary_10_3389_fimmu_2022_733800 crossref_primary_10_3892_ol_2025_15180 crossref_primary_10_1007_s40259_020_00420_3 crossref_primary_10_1038_s41416_021_01425_7 crossref_primary_10_1016_j_lfs_2022_120500 crossref_primary_10_1055_s_0040_1721799 crossref_primary_10_1007_s00384_024_04654_3 crossref_primary_10_1155_2023_6353047 crossref_primary_10_3390_cancers13092040 crossref_primary_10_3389_fonc_2021_755433 crossref_primary_10_1016_j_canlet_2019_04_025 crossref_primary_10_3390_cancers13092164 crossref_primary_10_1002_ardp_202100246 crossref_primary_10_1016_j_cyto_2020_155089 crossref_primary_10_3390_cancers11081078 crossref_primary_10_3389_fonc_2020_01041 crossref_primary_10_1080_14728214_2019_1619696 crossref_primary_10_1146_annurev_bioeng_110220_115419 crossref_primary_10_1007_s13402_021_00634_9 crossref_primary_10_3390_biomedicines9080949 crossref_primary_10_1080_13543784_2022_2053108 crossref_primary_10_2217_fon_2020_0586 crossref_primary_10_3389_fimmu_2023_1073133 crossref_primary_10_1038_s41568_019_0224_7 crossref_primary_10_3389_fnut_2025_1611829 crossref_primary_10_1016_S1470_2045_19_30319_5 crossref_primary_10_1016_j_jtho_2020_10_002 crossref_primary_10_3390_jpm10030112 crossref_primary_10_3390_ijms23116155 crossref_primary_10_1016_j_tifs_2021_03_008 crossref_primary_10_1002_JLB_3MR0120_232R crossref_primary_10_1016_j_jics_2022_100803 crossref_primary_10_1128_jvi_01129_24 crossref_primary_10_3390_pharmaceutics15010024 crossref_primary_10_1080_14737140_2022_2039123 crossref_primary_10_1186_s12967_024_05907_z crossref_primary_10_1002_mco2_323 crossref_primary_10_1158_1078_0432_CCR_23_1137 crossref_primary_10_3390_ijms20010024 crossref_primary_10_2147_JHC_S532120 crossref_primary_10_1158_1078_0432_CCR_22_0630 crossref_primary_10_3390_biomedicines11030882 crossref_primary_10_3390_ijms23020931 crossref_primary_10_1016_j_bmc_2023_117490 crossref_primary_10_1038_s41388_024_03208_9 crossref_primary_10_1038_s41423_021_00735_3 crossref_primary_10_1016_S1470_2045_22_00326_6 crossref_primary_10_1038_s41467_021_25894_9 crossref_primary_10_1038_s41598_020_79907_6 crossref_primary_10_1016_j_euo_2019_06_022 crossref_primary_10_1038_s41577_022_00694_4 crossref_primary_10_4049_jimmunol_2000574 crossref_primary_10_1186_s12885_023_11139_z crossref_primary_10_1186_s40364_021_00312_w crossref_primary_10_3892_ol_2022_13489 crossref_primary_10_1038_s41598_023_30412_6 crossref_primary_10_3390_ijms252011235 crossref_primary_10_1002_jcb_30344 crossref_primary_10_1515_tjb_2020_0058 crossref_primary_10_3389_fimmu_2022_1033000 crossref_primary_10_2217_fon_2021_1006 crossref_primary_10_3390_cancers13143531 crossref_primary_10_1186_s13046_022_02327_z crossref_primary_10_1080_14737140_2022_2065986 crossref_primary_10_1007_s12072_022_10450_4 crossref_primary_10_1016_j_prp_2022_154110 crossref_primary_10_1002_pbc_29084 crossref_primary_10_1016_j_ctarc_2020_100183 crossref_primary_10_2147_JHC_S327258 crossref_primary_10_1200_OA_24_00039 crossref_primary_10_1016_j_bbcan_2022_188701 crossref_primary_10_3390_medicina55100698 crossref_primary_10_3389_fimmu_2024_1333850 crossref_primary_10_3390_ijms25052985 crossref_primary_10_3390_ijms23020844 crossref_primary_10_1007_s00432_023_05231_x crossref_primary_10_1210_clinem_dgac467 crossref_primary_10_1245_s10434_020_09371_z crossref_primary_10_3389_fonc_2023_1135456 crossref_primary_10_1016_j_ijgc_2025_101681 crossref_primary_10_1038_s41392_020_00324_2 crossref_primary_10_3390_cancers14194899 crossref_primary_10_1007_s12072_023_10626_6 crossref_primary_10_3390_cancers13040870 crossref_primary_10_1007_s12668_024_01389_x crossref_primary_10_1016_j_ejca_2023_01_025 crossref_primary_10_3389_fonc_2021_628124 crossref_primary_10_1007_s00262_024_03733_2 crossref_primary_10_1038_s41598_022_13484_8 crossref_primary_10_1007_s12328_020_01295_1 crossref_primary_10_1016_j_intimp_2025_114693 crossref_primary_10_1002_ctm2_434 crossref_primary_10_1159_000520501 crossref_primary_10_3390_ijms23095235 crossref_primary_10_3748_wjg_v29_i26_4174 crossref_primary_10_3389_fcimb_2025_1598193 crossref_primary_10_3389_fimmu_2020_00922 crossref_primary_10_1080_14737140_2021_1919090 crossref_primary_10_7180_kmj_25_114 crossref_primary_10_1007_s11864_022_00944_6 crossref_primary_10_1016_j_biopha_2023_115992 crossref_primary_10_1002_path_5447 crossref_primary_10_1080_14656566_2020_1775813 crossref_primary_10_1111_hepr_13773 crossref_primary_10_1080_14740338_2022_1995353 crossref_primary_10_1097_CJI_0000000000000427 crossref_primary_10_1158_2326_6066_CIR_19_0360 crossref_primary_10_3390_cells10092257 crossref_primary_10_3390_jpm9010005 crossref_primary_10_1038_s41598_021_87979_1 crossref_primary_10_1007_s11010_025_05329_5 crossref_primary_10_1080_14728222_2021_1937123 crossref_primary_10_1016_j_lungcan_2023_107287 crossref_primary_10_1016_j_semcancer_2020_07_001 crossref_primary_10_3389_fonc_2019_01554 crossref_primary_10_1016_j_canlet_2020_05_012 crossref_primary_10_1007_s11356_021_15190_w crossref_primary_10_1016_j_yexcr_2020_112311 crossref_primary_10_1038_s41467_024_44875_2 crossref_primary_10_1016_j_dci_2021_104295 crossref_primary_10_1016_j_ctrv_2024_102700 crossref_primary_10_1186_s40364_021_00350_4 crossref_primary_10_3389_fimmu_2022_859785 crossref_primary_10_1017_S1431927620001828 crossref_primary_10_3389_fimmu_2024_1440830 crossref_primary_10_1007_s10637_022_01274_y crossref_primary_10_3390_ijms23042313 crossref_primary_10_1097_XCS_0000000000000964 crossref_primary_10_3389_fimmu_2022_1016647 crossref_primary_10_1016_j_apsb_2022_07_023 crossref_primary_10_1016_j_ctrv_2022_102460 crossref_primary_10_3390_cancers12051107 crossref_primary_10_1080_14737140_2021_1997599 crossref_primary_10_1007_s00270_022_03327_4 crossref_primary_10_1002_adfm_202105349 crossref_primary_10_3390_cancers13061475 crossref_primary_10_1016_j_canlet_2021_01_031 crossref_primary_10_1016_j_tranon_2025_102353 crossref_primary_10_1007_s11096_025_01962_8 crossref_primary_10_1007_s00018_019_03351_7 crossref_primary_10_3389_fphar_2024_1353720 crossref_primary_10_1155_2020_8840319 crossref_primary_10_3390_cancers12113230 crossref_primary_10_1038_s41581_020_0316_3 crossref_primary_10_1177_17562848211002018 crossref_primary_10_1186_s12967_023_04238_9 crossref_primary_10_3389_fcell_2021_646981 crossref_primary_10_3389_fendo_2021_650791 crossref_primary_10_1002_advs_202205915 crossref_primary_10_1007_s11864_025_01306_8 crossref_primary_10_1016_j_bbamcr_2024_119698 crossref_primary_10_1186_s40164_024_00543_1 crossref_primary_10_3390_cancers14174192 crossref_primary_10_1158_2159_8290_CD_20_1543 crossref_primary_10_3390_cells10112940 crossref_primary_10_3390_cancers12020308 crossref_primary_10_36401_JIPO_25_10 crossref_primary_10_3892_ol_2021_13164 crossref_primary_10_1016_j_apsb_2022_12_016 crossref_primary_10_1007_s11684_025_1134_6 crossref_primary_10_1111_exd_14151 crossref_primary_10_1080_08927022_2023_2281980 crossref_primary_10_3390_cancers14030644 crossref_primary_10_1016_j_heliyon_2025_e42098 crossref_primary_10_1002_JLB_2A0420_723RR crossref_primary_10_1016_j_ctrv_2024_102718 crossref_primary_10_1007_s00520_023_07830_3 crossref_primary_10_1002_wrna_1773 crossref_primary_10_1186_s40364_023_00537_x crossref_primary_10_1016_j_pharmr_2025_100075 crossref_primary_10_1080_14712598_2023_2294001 crossref_primary_10_3390_ijms22179133 crossref_primary_10_3389_fimmu_2023_1188277 crossref_primary_10_3748_wjg_v27_i48_8262 crossref_primary_10_3389_fimmu_2023_1190210 crossref_primary_10_1016_j_semcancer_2023_01_001 crossref_primary_10_1186_s13569_020_00133_9 crossref_primary_10_1002_jcp_30845 crossref_primary_10_1007_s12325_024_02838_5 crossref_primary_10_1155_2021_6203759 crossref_primary_10_1016_S1470_2045_19_30153_6 crossref_primary_10_2217_imt_2022_0058 crossref_primary_10_3390_cancers16061113 crossref_primary_10_1002_ijc_70018 crossref_primary_10_1186_s12967_023_04292_3 crossref_primary_10_1089_hum_2021_132 crossref_primary_10_1016_j_pharmthera_2021_107986 crossref_primary_10_3390_cancers15082287 crossref_primary_10_2174_0115680266299112240514103048 crossref_primary_10_1136_jitc_2019_000339 crossref_primary_10_3389_fimmu_2023_1226360 crossref_primary_10_1158_0008_5472_CAN_19_1577 crossref_primary_10_1002_hep_31416 crossref_primary_10_3389_fmolb_2021_747650 crossref_primary_10_3390_ijms22147583 crossref_primary_10_3390_ijms24021538 |
| Cites_doi | 10.1056/NEJMoa020177 10.1084/jem.20140559 10.1158/1078-0432.CCR-08-1332 10.1080/2162402X.2015.1008791 10.1016/j.coi.2015.01.011 10.1158/0008-5472.CAN-16-3129 10.1002/path.3989 10.1007/978-3-319-67577-0_13 10.1158/0008-5472.CAN-15-1605 10.1158/2326-6066.CIR-14-0053 10.1038/nm.2545 10.1038/nature10908 10.1002/ijc.26094 10.1182/blood-2003-08-2729 10.20892/j.issn.2095-3941.2015.0070 10.1016/j.canlet.2015.02.005 10.1093/intimm/12.5.671 10.4161/onci.19787 10.1038/bjc.2012.468 10.1007/82_2010_95 10.4049/jimmunol.172.1.464 10.1046/j.1523-1747.1998.00262.x 10.1158/1078-0432.CCR-17-0647 10.1016/S0092-8674(00)81402-6 10.1189/jlb.1104664 10.1093/neuonc/not082 10.2174/13816128113199990590 10.4049/jimmunol.1303116 10.1096/fj.05-4493com 10.1038/nature03952 10.1038/90667 10.1038/nri3175 10.1097/CJI.0b013e3181f4c208 10.4049/jimmunol.0803831 10.1159/000086784 10.1146/annurev-cellbio-092910-154002 10.1038/onc.2017.1 10.1080/2162402X.2017.1316437 10.1016/j.it.2016.09.006 10.1158/0008-5472.CAN-06-4102 10.1074/jbc.M103213200 10.1158/1078-0432.CCR-08-0652 10.4049/jimmunol.0900397 10.1038/cddiscovery.2016.25 10.1111/j.1476-5381.2012.02099.x 10.4049/jimmunol.160.3.1224 10.1038/sj.bjc.6604965 10.1371/journal.pone.0150688 10.1007/s00262-018-2136-x 10.1038/nn.4185 10.1038/s41467-017-00327-8 10.1038/nrm.2016.87 10.1016/j.ijrobp.2016.10.043 10.1172/JCI31202 10.1038/nm1096-1096 10.1016/j.jtho.2016.04.026 10.18632/oncotarget.4583 10.1200/jco.2015.33.15_suppl.tps2080 10.1158/1078-0432.CCR-07-5212 10.18632/oncotarget.17957 10.1016/j.critrevonc.2017.04.009 10.1038/onc.2014.257 10.1182/blood-2007-02-075945 10.1016/j.neo.2016.11.010 10.1016/bs.ircmb.2016.09.007 10.1158/0008-5472.CAN-08-4323 10.1158/0008-5472.CAN-04-0074 10.1182/blood-2007-01-065714 10.1158/0008-5472.CAN-07-6621 10.1038/nrc2353 10.1161/01.RES.0000089257.94002.96 10.1016/j.bone.2010.07.016 10.1084/jem.183.4.1323 10.1038/nm.3541 10.4049/jimmunol.174.1.215 10.1158/0008-5472.CAN-08-4709 10.1158/1078-0432.CCR-08-0656 10.1007/s10456-017-9552-y 10.1038/nri3298 10.18632/oncotarget.1893 10.2147/tcrm.2007.3.2.341 10.1177/1753425916659702 10.1182/blood.V92.11.4150 10.1007/s00262-007-0441-x 10.4049/jimmunol.178.3.1505 10.1186/1479-5876-9-177 10.1158/0008-5472.CAN-12-2325 10.1016/S0140-6736(00)04046-0 10.1080/2162402X.2014.998519 10.1159/000485455 10.3389/fonc.2014.00070 10.1002/eji.200939887 10.1158/0008-5472.CAN-11-0431 10.18632/oncotarget.17340 10.1126/scitranslmed.aak9679 10.1038/nature04753 10.1126/scitranslmed.aak9670 10.1016/j.ccell.2014.10.006 10.1158/0008-5472.CAN-05-1299 10.1158/1078-0432.CCR-06-1558 10.1159/000320609 10.1002/ijc.2910180520 10.1080/2162402X.2014.998107 10.4161/2162402X.2014.989764 10.1182/blood-2002-07-1956 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 Yang, Yan and Liu. 2018 Yang, Yan and Liu |
| Copyright_xml | – notice: Copyright © 2018 Yang, Yan and Liu. 2018 Yang, Yan and Liu |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2018.00978 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_8510dc3e32f240e1b14f4b0c393174c6 PMC5943566 29774034 10_3389_fimmu_2018_00978 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c462t-849ec4c8420fed0bbfa6a73f0fe292aaeab4ecff2098f2fca15c8f529415ff003 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 474 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431337600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:45:10 EDT 2025 Thu Aug 21 18:09:52 EDT 2025 Fri Sep 05 12:10:09 EDT 2025 Thu Apr 03 07:04:24 EDT 2025 Sat Nov 29 02:50:28 EST 2025 Tue Nov 18 22:33:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | immune T cells angiogenesis tumor vascular endothelial growth factor |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-849ec4c8420fed0bbfa6a73f0fe292aaeab4ecff2098f2fca15c8f529415ff003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Giovanna Schiavoni, Istituto Superiore di Sanità, Italy Specialty section: This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology Reviewed by: Anca Maria Cimpean, Victor Babes University of Medicine and Pharmacy Timisoara, Romania; Barbara Ghinassi, Università degli Studi G. d’Annunzio Chieti e Pescara, Italy |
| OpenAccessLink | https://doaj.org/article/8510dc3e32f240e1b14f4b0c393174c6 |
| PMID | 29774034 |
| PQID | 2041625627 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8510dc3e32f240e1b14f4b0c393174c6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5943566 proquest_miscellaneous_2041625627 pubmed_primary_29774034 crossref_citationtrail_10_3389_fimmu_2018_00978 crossref_primary_10_3389_fimmu_2018_00978 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-03 |
| PublicationDateYYYYMMDD | 2018-05-03 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2018 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Gabrilovich (B64) 2012; 12 Della Porta (B81) 2005; 68 Hambardzumyan (B101) 2016; 19 Allen (B36) 2017; 9 Suzuki (B55) 2010; 40 Schmittnaegel (B30) 2017; 9 Hodi (B91) 2014; 2 Koinis (B75) 2016; 11 Pham (B100) 2015; 360 Zhao (B35) 2017; 77 Kessler (B105) 1976; 18 Oyama (B83) 1998; 160 Zeng (B18) 2001; 276 Huang (B68) 2007; 110 Benedito (B9) 2012; 484 Dikov (B84) 2005; 174 Hipp (B85) 2008; 111 Alfaro (B86) 2009; 100 Sun (B54) 2017; 8 Chung (B1) 2011; 27 Motz (B22) 2014; 20 Bouzin (B40) 2007; 178 Secondini (B62) 2017; 6 Sick (B24) 2012; 167 Ko (B74) 2009; 15 Wilson (B77) 2004; 103 Deng (B102) 2017; 19 Rodriguez-Ruiz (B38) 2017; 97 Bhattacharya (B12) 2016; 76 Manzoni (B25) 2010; 79 Balkwill (B94) 2001; 357 Lu-Emerson (B99) 2013; 15 Jain (B10) 2007; 67 Simons (B5) 2016; 17 Adotevi (B59) 2010; 33 Girard (B46) 2012; 12 Gabrilovich (B66) 1998; 92 Martinet (B48) 2012; 1 Tan (B76) 2005; 78 Lee (B103) 2014 Jain (B37) 2014; 26 Du Four (B73) 2015; 4 Martino (B26) 2016; 2 Finke (B60) 2008; 14 Serafini (B70) 2008; 68 Linde (B92) 2012; 227 Hu-Lowe (B108) 2008; 14 Zhao (B87) 2016; 22 Avraamides (B3) 2008; 8 Gavalas (B21) 2012; 107 Karakhanova (B45) 2015; 4 Osada (B90) 2008; 57 Alitalo (B8) 2011; 17 Ramjiawan (B32) 2017; 20 Gabrusiewicz (B98) 2014; 5 Tzima (B7) 2005; 437 Ozao-Choy (B29) 2009; 69 Kandalaft (B57) 2011; 344 Bettelli (B50) 2006; 441 Arnott (B43) 2016; 11 Gabrilovich (B82) 1996; 2 Sia (B2) 2014; 20 Kaur (B23) 2014; 193 Detmar (B44) 1998; 111 Zhang (B13) 2017; 44 Basu (B17) 2010; 184 Almand (B80) 2000; 6 Ziogas (B20) 2012; 130 Lanitis (B31) 2015; 33 Ager (B47) 2015; 4 Dalton (B95) 2017; 23 Zhao (B14) 2015; 34 Laubli (B109) 2018 Lapeyre-Prost (B53) 2017; 330 Wang (B4) 2017; 8 Fabian (B11) 2017; 1036 van Cruijsen (B89) 2008; 14 Huang (B69) 2006; 66 Dinapoli (B93) 1996; 183 Draghiciu (B72) 2015; 4 Wroblewski (B106) 2017; 8 Wada (B52) 2009; 29 Castro (B104) 2017; 36 Le Tourneau (B27) 2007; 3 Dirkx (B34) 2006; 20 Tromp (B41) 2000; 12 Rogers (B97) 2011; 9 Dirkx (B39) 2003; 63 Curiel (B51) 2007; 117 Clezardin (B96) 2011; 48 Terme (B61) 2013; 73 Jin (B6) 2003; 93 Ohm (B16) 2003; 101 Tong (B33) 2004; 64 Seri (B42) 2016; 9 Xin (B58) 2009; 69 Li (B63) 2006; 12 Ho (B88) 2015; 6 Nefedova (B67) 2004; 172 Gardner (B78) 2016; 37 Zhang (B15) 2003; 348 Voron (B28) 2015; 212 Akbari (B79) 2001; 2 Soker (B56) 1998; 92 Cimpean (B107) 2017; 115 Li (B19) 2016; 13 Voron (B71) 2014; 4 Martinet (B49) 2011; 71 Mandruzzato (B65) 2009; 182 |
| References_xml | – volume: 348 start-page: 203 year: 2003 ident: B15 article-title: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa020177 – volume: 212 start-page: 139 year: 2015 ident: B28 article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors publication-title: J Exp Med doi: 10.1084/jem.20140559 – volume: 15 start-page: 2148 year: 2009 ident: B74 article-title: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-1332 – volume: 4 start-page: e1008791 year: 2015 ident: B47 article-title: Understanding high endothelial venules: lessons for cancer immunology publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1008791 – volume: 33 start-page: 55 year: 2015 ident: B31 article-title: Targeting the tumor vasculature to enhance T cell activity publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2015.01.011 – volume: 77 start-page: 4434 year: 2017 ident: B35 article-title: Targeting vascular endothelial-cadherin in tumor-associated blood vessels promotes T-cell-mediated immunotherapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-3129 – volume: 227 start-page: 17 year: 2012 ident: B92 article-title: Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages publication-title: J Pathol doi: 10.1002/path.3989 – volume: 1036 start-page: 191 year: 2017 ident: B11 article-title: Immunotherapeutic targeting of tumor-associated blood vessels publication-title: Adv Exp Med Biol doi: 10.1007/978-3-319-67577-0_13 – volume: 76 start-page: 3014 year: 2016 ident: B12 article-title: Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-1605 – volume: 2 start-page: 632 year: 2014 ident: B91 article-title: Bevacizumab plus ipilimumab in patients with metastatic melanoma publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-14-0053 – volume: 17 start-page: 1371 year: 2011 ident: B8 article-title: The lymphatic vasculature in disease publication-title: Nat Med doi: 10.1038/nm.2545 – volume: 29 start-page: 881 year: 2009 ident: B52 article-title: The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions publication-title: Anticancer Res – volume: 484 start-page: 110 year: 2012 ident: B9 article-title: Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling publication-title: Nature doi: 10.1038/nature10908 – volume: 130 start-page: 857 year: 2012 ident: B20 article-title: VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2 publication-title: Int J Cancer doi: 10.1002/ijc.26094 – volume: 103 start-page: 2187 year: 2004 ident: B77 article-title: Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis publication-title: Blood doi: 10.1182/blood-2003-08-2729 – volume: 13 start-page: 206 year: 2016 ident: B19 article-title: Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? publication-title: Cancer Biol Med doi: 10.20892/j.issn.2095-3941.2015.0070 – volume: 360 start-page: 60 year: 2015 ident: B100 article-title: VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFbetaR signaling-dependent manner publication-title: Cancer Lett doi: 10.1016/j.canlet.2015.02.005 – volume: 12 start-page: 671 year: 2000 ident: B41 article-title: Tumor angiogenesis factors reduce leukocyte adhesion in vivo publication-title: Int Immunol doi: 10.1093/intimm/12.5.671 – volume: 1 start-page: 829 year: 2012 ident: B48 article-title: High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes publication-title: Oncoimmunology doi: 10.4161/onci.19787 – volume: 107 start-page: 1869 year: 2012 ident: B21 article-title: VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2 publication-title: Br J Cancer doi: 10.1038/bjc.2012.468 – volume: 344 start-page: 129 year: 2011 ident: B57 article-title: Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin publication-title: Curr Top Microbiol Immunol doi: 10.1007/82_2010_95 – volume: 172 start-page: 464 year: 2004 ident: B67 article-title: Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer publication-title: J Immunol doi: 10.4049/jimmunol.172.1.464 – volume: 111 start-page: 1 year: 1998 ident: B44 article-title: Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.1998.00262.x – volume: 23 start-page: 7034 year: 2017 ident: B95 article-title: Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-0647 – volume: 92 start-page: 735 year: 1998 ident: B56 article-title: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor publication-title: Cell doi: 10.1016/S0092-8674(00)81402-6 – volume: 78 start-page: 319 year: 2005 ident: B76 article-title: Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity publication-title: J Leukoc Biol doi: 10.1189/jlb.1104664 – volume: 15 start-page: 1079 year: 2013 ident: B99 article-title: Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma publication-title: Neuro Oncol doi: 10.1093/neuonc/not082 – volume: 20 start-page: 2834 year: 2014 ident: B2 article-title: VEGF signaling in cancer treatment publication-title: Curr Pharm Des doi: 10.2174/13816128113199990590 – volume: 193 start-page: 3914 year: 2014 ident: B23 article-title: CD47 signaling regulates the immunosuppressive activity of VEGF in T cells publication-title: J Immunol doi: 10.4049/jimmunol.1303116 – volume: 20 start-page: 621 year: 2006 ident: B34 article-title: Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors publication-title: FASEB J doi: 10.1096/fj.05-4493com – volume: 437 start-page: 426 year: 2005 ident: B7 article-title: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress publication-title: Nature doi: 10.1038/nature03952 – volume: 2 start-page: 725 year: 2001 ident: B79 article-title: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen publication-title: Nat Immunol doi: 10.1038/90667 – volume: 12 start-page: 253 year: 2012 ident: B64 article-title: Coordinated regulation of myeloid cells by tumours publication-title: Nat Rev Immunol doi: 10.1038/nri3175 – volume: 33 start-page: 991 year: 2010 ident: B59 article-title: A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients publication-title: J Immunother doi: 10.1097/CJI.0b013e3181f4c208 – volume: 182 start-page: 6562 year: 2009 ident: B65 article-title: IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients publication-title: J Immunol doi: 10.4049/jimmunol.0803831 – volume: 68 start-page: 276 year: 2005 ident: B81 article-title: Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings publication-title: Oncology doi: 10.1159/000086784 – volume: 27 start-page: 563 year: 2011 ident: B1 article-title: Developmental and pathological angiogenesis publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154002 – volume: 36 start-page: 3749 year: 2017 ident: B104 article-title: Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy publication-title: Oncogene doi: 10.1038/onc.2017.1 – volume: 6 start-page: e1316437 year: 2017 ident: B62 article-title: Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1316437 – volume: 37 start-page: 855 year: 2016 ident: B78 article-title: Dendritic cells and cancer immunity publication-title: Trends Immunol doi: 10.1016/j.it.2016.09.006 – volume: 67 start-page: 2729 year: 2007 ident: B10 article-title: Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-4102 – volume: 276 start-page: 26969 year: 2001 ident: B18 article-title: Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways publication-title: J Biol Chem doi: 10.1074/jbc.M103213200 – volume: 14 start-page: 7272 year: 2008 ident: B108 article-title: Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0652 – volume: 184 start-page: 545 year: 2010 ident: B17 article-title: Cutting edge: vascular endothelial growth factor-mediated signaling in human CD45RO+ CD4+ T cells promotes Akt and ERK activation and costimulates IFN-gamma production publication-title: J Immunol doi: 10.4049/jimmunol.0900397 – volume: 2 start-page: 16025 year: 2016 ident: B26 article-title: Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients publication-title: Cell Death Discov doi: 10.1038/cddiscovery.2016.25 – volume: 167 start-page: 1415 year: 2012 ident: B24 article-title: CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2012.02099.x – volume: 160 start-page: 1224 year: 1998 ident: B83 article-title: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells publication-title: J Immunol doi: 10.4049/jimmunol.160.3.1224 – volume: 100 start-page: 1111 year: 2009 ident: B86 article-title: Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604965 – volume: 11 start-page: e0150688 year: 2016 ident: B43 article-title: The vascular endothelial growth factor inhibitors ranibizumab and aflibercept markedly increase expression of atherosclerosis-associated inflammatory mediators on vascular endothelial cells publication-title: PLoS One doi: 10.1371/journal.pone.0150688 – year: 2018 ident: B109 article-title: The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-018-2136-x – volume: 19 start-page: 20 year: 2016 ident: B101 article-title: The role of microglia and macrophages in glioma maintenance and progression publication-title: Nat Neurosci doi: 10.1038/nn.4185 – volume: 8 start-page: 269 year: 2017 ident: B106 article-title: Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B publication-title: Nat Commun doi: 10.1038/s41467-017-00327-8 – volume: 17 start-page: 611 year: 2016 ident: B5 article-title: Mechanisms and regulation of endothelial VEGF receptor signalling publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2016.87 – volume: 97 start-page: 389 year: 2017 ident: B38 article-title: Intercellular adhesion molecule-1 and vascular cell adhesion molecule are induced by ionizing radiation on lymphatic endothelium publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.10.043 – volume: 117 start-page: 1167 year: 2007 ident: B51 article-title: Tregs and rethinking cancer immunotherapy publication-title: J Clin Invest doi: 10.1172/JCI31202 – volume: 2 start-page: 1096 year: 1996 ident: B82 article-title: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells publication-title: Nat Med doi: 10.1038/nm1096-1096 – volume: 11 start-page: 1263 year: 2016 ident: B75 article-title: Effect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2016.04.026 – volume: 6 start-page: 27252 year: 2015 ident: B88 article-title: TLR3 agonist and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular carcinoma progression publication-title: Oncotarget doi: 10.18632/oncotarget.4583 – year: 2014 ident: B103 article-title: Phase I study of plerixafor and bevacizumab in recurrent high-grade glioma publication-title: J Clin Oncol doi: 10.1200/jco.2015.33.15_suppl.tps2080 – volume: 14 start-page: 6674 year: 2008 ident: B60 article-title: Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-5212 – volume: 8 start-page: 53854 year: 2017 ident: B4 article-title: Strategies targeting angiogenesis in advanced non-small cell lung cancer publication-title: Oncotarget doi: 10.18632/oncotarget.17957 – volume: 115 start-page: 23 year: 2017 ident: B107 article-title: Mast cells in breast cancer angiogenesis publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2017.04.009 – volume: 34 start-page: 3107 year: 2015 ident: B14 article-title: VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2 publication-title: Oncogene doi: 10.1038/onc.2014.257 – volume: 111 start-page: 5610 year: 2008 ident: B85 article-title: Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses publication-title: Blood doi: 10.1182/blood-2007-02-075945 – volume: 19 start-page: 1 year: 2017 ident: B102 article-title: SDF-1 blockade enhances anti-VEGF therapy of glioblastoma and can be monitored by MRI publication-title: Neoplasia doi: 10.1016/j.neo.2016.11.010 – volume: 330 start-page: 295 year: 2017 ident: B53 article-title: Immunomodulatory activity of VEGF in cancer publication-title: Int Rev Cell Mol Biol doi: 10.1016/bs.ircmb.2016.09.007 – volume: 69 start-page: 2506 year: 2009 ident: B58 article-title: Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4323 – volume: 64 start-page: 3731 year: 2004 ident: B33 article-title: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-0074 – volume: 6 start-page: 1755 year: 2000 ident: B80 article-title: Clinical significance of defective dendritic cell differentiation in cancer publication-title: Clin Cancer Res – volume: 110 start-page: 624 year: 2007 ident: B68 article-title: Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF publication-title: Blood doi: 10.1182/blood-2007-01-065714 – volume: 68 start-page: 5439 year: 2008 ident: B70 article-title: Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-6621 – volume: 8 start-page: 604 year: 2008 ident: B3 article-title: Integrins in angiogenesis and lymphangiogenesis publication-title: Nat Rev Cancer doi: 10.1038/nrc2353 – volume: 93 start-page: 354 year: 2003 ident: B6 article-title: Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase publication-title: Circ Res doi: 10.1161/01.RES.0000089257.94002.96 – volume: 48 start-page: 71 year: 2011 ident: B96 article-title: Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class publication-title: Bone doi: 10.1016/j.bone.2010.07.016 – volume: 183 start-page: 1323 year: 1996 ident: B93 article-title: The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene publication-title: J Exp Med doi: 10.1084/jem.183.4.1323 – volume: 20 start-page: 607 year: 2014 ident: B22 article-title: Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors publication-title: Nat Med doi: 10.1038/nm.3541 – volume: 174 start-page: 215 year: 2005 ident: B84 article-title: Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation publication-title: J Immunol doi: 10.4049/jimmunol.174.1.215 – volume: 9 start-page: 429 year: 2016 ident: B42 article-title: Lipoprotein-associated phospholipase A2, myeloperoxidase and vascular endothelial growth factor – predictors of high vascular risk in respiratory bacterial infections publication-title: J Med Life – volume: 69 start-page: 2514 year: 2009 ident: B29 article-title: The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4709 – volume: 14 start-page: 5884 year: 2008 ident: B89 article-title: Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0656 – volume: 20 start-page: 185 year: 2017 ident: B32 article-title: Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? publication-title: Angiogenesis doi: 10.1007/s10456-017-9552-y – volume: 12 start-page: 762 year: 2012 ident: B46 article-title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes publication-title: Nat Rev Immunol doi: 10.1038/nri3298 – volume: 5 start-page: 2208 year: 2014 ident: B98 article-title: Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes publication-title: Oncotarget doi: 10.18632/oncotarget.1893 – volume: 3 start-page: 341 year: 2007 ident: B27 article-title: Sunitinib: a novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST) publication-title: Ther Clin Risk Manag doi: 10.2147/tcrm.2007.3.2.341 – volume: 22 start-page: 493 year: 2016 ident: B87 article-title: Small-molecule inhibitor sorafenib regulates immunoreactions by inducing survival and differentiation of bone marrow cells publication-title: Innate Immun doi: 10.1177/1753425916659702 – volume: 92 start-page: 4150 year: 1998 ident: B66 article-title: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo publication-title: Blood doi: 10.1182/blood.V92.11.4150 – volume: 57 start-page: 1115 year: 2008 ident: B90 article-title: The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-007-0441-x – volume: 178 start-page: 1505 year: 2007 ident: B40 article-title: Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy publication-title: J Immunol doi: 10.4049/jimmunol.178.3.1505 – volume: 9 start-page: 177 year: 2011 ident: B97 article-title: Tumour macrophages as potential targets of bisphosphonates publication-title: J Transl Med doi: 10.1186/1479-5876-9-177 – volume: 73 start-page: 539 year: 2013 ident: B61 article-title: VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2325 – volume: 357 start-page: 539 year: 2001 ident: B94 article-title: Inflammation and cancer: back to Virchow? publication-title: Lancet doi: 10.1016/S0140-6736(00)04046-0 – volume: 4 start-page: e998519 year: 2015 ident: B45 article-title: Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells publication-title: Oncoimmunology doi: 10.1080/2162402X.2014.998519 – volume: 63 start-page: 2322 year: 2003 ident: B39 article-title: Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression publication-title: Cancer Res – volume: 44 start-page: 1251 year: 2017 ident: B13 article-title: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating wnt/beta-catenin axis in breast cancer cells publication-title: Cell Physiol Biochem doi: 10.1159/000485455 – volume: 4 start-page: 70 year: 2014 ident: B71 article-title: Control of the immune response by pro-angiogenic factors publication-title: Front Oncol doi: 10.3389/fonc.2014.00070 – volume: 40 start-page: 197 year: 2010 ident: B55 article-title: VEGFR2 is selectively expressed by FOXP3high CD4+ Treg publication-title: Eur J Immunol doi: 10.1002/eji.200939887 – volume: 71 start-page: 5678 year: 2011 ident: B49 article-title: Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0431 – volume: 8 start-page: 39658 year: 2017 ident: B54 article-title: Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis publication-title: Oncotarget doi: 10.18632/oncotarget.17340 – volume: 9 start-page: eaak9679 year: 2017 ident: B36 article-title: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aak9679 – volume: 441 start-page: 235 year: 2006 ident: B50 article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells publication-title: Nature doi: 10.1038/nature04753 – volume: 9 start-page: eaak9670 year: 2017 ident: B30 article-title: Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aak9670 – volume: 26 start-page: 605 year: 2014 ident: B37 article-title: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.006 – volume: 66 start-page: 1123 year: 2006 ident: B69 article-title: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1299 – volume: 12 start-page: 6808 year: 2006 ident: B63 article-title: Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-1558 – volume: 79 start-page: 187 year: 2010 ident: B25 article-title: Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer publication-title: Oncology doi: 10.1159/000320609 – volume: 18 start-page: 703 year: 1976 ident: B105 article-title: Mast cells and tumor angiogenesis publication-title: Int J Cancer doi: 10.1002/ijc.2910180520 – volume: 4 start-page: e998107 year: 2015 ident: B73 article-title: Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model publication-title: Oncoimmunology doi: 10.1080/2162402X.2014.998107 – volume: 4 start-page: e989764 year: 2015 ident: B72 article-title: Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication publication-title: Oncoimmunology doi: 10.4161/2162402X.2014.989764 – volume: 101 start-page: 4878 year: 2003 ident: B16 article-title: VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression publication-title: Blood doi: 10.1182/blood-2002-07-1956 |
| SSID | ssj0000493335 |
| Score | 2.6376984 |
| SecondaryResourceType | review_article |
| Snippet | In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 978 |
| SubjectTerms | angiogenesis Angiogenesis Inhibitors - pharmacology Animals Cell Differentiation - immunology Dendritic Cells - immunology Humans immune Immunologic Factors - pharmacology Immunology Mice Myeloid-Derived Suppressor Cells - immunology Neoplasms - immunology Neovascularization, Pathologic Receptors, Vascular Endothelial Growth Factor - immunology T cells T-Lymphocytes, Regulatory - immunology tumor vascular endothelial growth factor Vascular Endothelial Growth Factors - immunology |
| Title | Targeting VEGF/VEGFR to Modulate Antitumor Immunity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29774034 https://www.proquest.com/docview/2041625627 https://pubmed.ncbi.nlm.nih.gov/PMC5943566 https://doaj.org/article/8510dc3e32f240e1b14f4b0c393174c6 |
| Volume | 9 |
| WOSCitedRecordID | wos000431337600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH7a0JB2QWzAFthQJnHhENXxj8Q-wtRuO4AmBKi3yHZs0WlNppIiceFv59kpVTshdtnFUhxHtr4X6322n78HcBTkTolWLMt1WWdcEpFJYUVWMiVN2BcwpI7JJsrzczkeq58rqb5CTFgvD9wDN0BGQGrLHKMenY_LTc49N8QyhZ6P2yi2jaxnZTH1q-e9jDHRn0viKkwN_GQ6nYdQrhA7GbOqrfihKNf_HMf8O1RyxfeMtmFrQRrTk36w7-CVa97DZp9G8n4H2GUM50YnlF4Pv40GobhIuzY9a-uQnculJ-Ey7nzaztIf8T5Id78LV6Ph5dfv2SIZQmZ5QbtMcuUst5JT4l1NjPG60CXz-EQV1dppw531nhIlPfVW58JKL6hCD-09zt092Gjaxn2ENFfWqloWThQ1F6YwpUWKXUiNtRrpQwKDJ2gqu1AKDwkrfle4YghgVhHMKoBZRTATOF5-8adXyXih7WlAe9ku6FvHCrR6tbB69S-rJ_DlyVYVzodwyKEb185vsSOkmMjjaJnAh952y65oILuE8QTKNauujWX9TTO5iZrbQiGvLIr9_zH4A3gb4Ihhk-wTbHSzufsMb-xdN7mdHcLrciwP4--M5dnD8BHDPPjd |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+VEGF%2FVEGFR+to+Modulate+Antitumor+Immunity&rft.jtitle=Frontiers+in+immunology&rft.au=Yang%2C+Ju&rft.au=Yan%2C+Jing&rft.au=Liu%2C+Baorui&rft.date=2018-05-03&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=9&rft_id=info:doi/10.3389%2Ffimmu.2018.00978&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2018_00978 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |