Two-Direction Prediction Method of Drilling Fluid Based on OS-ELM for Water Well Drilling
In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid perfo...
Uložené v:
| Vydané v: | Journal of advanced computational intelligence and intelligent informatics Ročník 27; číslo 4; s. 594 - 602 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Fuji Technology Press Co. Ltd
01.07.2023
|
| Predmet: | |
| ISSN: | 1343-0130, 1883-8014 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid performance, allowing us to employ an OS-ELM algorithm derived from the extreme learning machine. Particularly, the proposed prediction method is bidirectional to identify an appropriate slurry formulation. The forward prediction model is established to predict the fluid performance, where the mud additive contents are inputs, and the drilling fluid properties parameters are outputs. Correspondingly, the backward prediction model is established to modify the slurry formula, where differences in the drilling fluid properties are inputs and percentages of slurry additives amount are output. The simulation results show that the two-direction OS-ELM prediction model can better predict the drilling fluid properties in water well drilling. |
|---|---|
| AbstractList | In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid performance, allowing us to employ an OS-ELM algorithm derived from the extreme learning machine. Particularly, the proposed prediction method is bidirectional to identify an appropriate slurry formulation. The forward prediction model is established to predict the fluid performance, where the mud additive contents are inputs, and the drilling fluid properties parameters are outputs. Correspondingly, the backward prediction model is established to modify the slurry formula, where differences in the drilling fluid properties are inputs and percentages of slurry additives amount are output. The simulation results show that the two-direction OS-ELM prediction model can better predict the drilling fluid properties in water well drilling. |
| Author | Xu, Yuan Ma, Yuanyuan Ma, Zhizhang Xian, Tianlang Gao, Hui Zhang, Di |
| Author_xml | – sequence: 1 givenname: Yuan surname: Xu fullname: Xu, Yuan organization: Qinghai 906 Engineering Survey and Design Institute LLC, 77 Haiyan Road, Xining, Qinghai 810007, China – sequence: 2 givenname: Di surname: Zhang fullname: Zhang, Di organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China – sequence: 3 givenname: Tianlang surname: Xian fullname: Xian, Tianlang organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China – sequence: 4 givenname: Zhizhang surname: Ma fullname: Ma, Zhizhang organization: Quality Supervision Station, Water Conservancy Construction Engineering in Hainan Tibetan Autonomous Prefecture, Xinghai East Road, Chengbei District, Chabucia, Gonghe, Hainan Tibetan Autonomous Prefecture, Qinghai 813000, China – sequence: 5 givenname: Hui surname: Gao fullname: Gao, Hui organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China – sequence: 6 givenname: Yuanyuan surname: Ma fullname: Ma, Yuanyuan organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China |
| BookMark | eNo9kFtLAzEQhYMoWGv_gE8Bn1Nz627yqL2o0FLBgvgU0lw0Zd3UZIv4741dcR5mzgyHM_BdgNM2tg6AK4LHFMtqcrPTJoRQFsrGezyR_AQMiBAMCUz4adGMM4QJw-dglPMO46JphTkZgNfNV0SzkJzpQmzhU3I29HLluvdoYfRwlkLThPYNLppDsPBOZ1fuLVw_o_lyBX1M8EV3rnTXNP_uS3DmdZPd6G8OwWYx30wf0HJ9_zi9XSLDK9qhWthae15bXmvq6YQwy6ncMiNJZTyTjGkuzFbqUk5LQb2V3lfeVZWVBrMhuO5j9yl-Hlzu1C4eUls-KiqYpIIzQoqL9i6TYs7JebVP4UOnb0WwOkJUPUT1C1EdIbIfH7hnwQ |
| Cites_doi | 10.1007/s11432-014-5269-3 10.1002/rnc.4639 10.1097/01.BACK.0000605144.87361.a1 10.1016/j.measurement.2021.109673 10.1016/j.neucom.2007.02.009 10.1016/j.optlastec.2018.10.057 10.1016/j.ast.2018.09.044 10.1016/S1876-3804(22)60055-7 10.1002/app.47292 10.1016/j.automatica.2020.108973 10.1016/j.jfranklin.2020.01.013 10.3233/IDA-184377 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2023 Fuji Technology Press Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.20965/jaciii.2023.p0594 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 1883-8014 |
| EndPage | 602 |
| ExternalDocumentID | 10_20965_jaciii_2023_p0594 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c462t-78d7af47d47a2f2513d429b3c916cf3933a48cb9aaaaea982fd9ff6fe66d9c03 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037834500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Fri Jul 25 04:47:50 EDT 2025 Sat Nov 29 06:43:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-78d7af47d47a2f2513d429b3c916cf3933a48cb9aaaaea982fd9ff6fe66d9c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2023.p0594 |
| PQID | 2839284311 |
| PQPubID | 4911628 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2839284311 crossref_primary_10_20965_jaciii_2023_p0594 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2023 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2023.p0594-9 key-10.20965/jaciii.2023.p0594-6 key-10.20965/jaciii.2023.p0594-5 key-10.20965/jaciii.2023.p0594-8 key-10.20965/jaciii.2023.p0594-7 key-10.20965/jaciii.2023.p0594-2 key-10.20965/jaciii.2023.p0594-1 key-10.20965/jaciii.2023.p0594-4 key-10.20965/jaciii.2023.p0594-3 key-10.20965/jaciii.2023.p0594-16 key-10.20965/jaciii.2023.p0594-14 key-10.20965/jaciii.2023.p0594-15 key-10.20965/jaciii.2023.p0594-12 key-10.20965/jaciii.2023.p0594-13 key-10.20965/jaciii.2023.p0594-10 key-10.20965/jaciii.2023.p0594-11 |
| References_xml | – ident: key-10.20965/jaciii.2023.p0594-13 doi: 10.1007/s11432-014-5269-3 – ident: key-10.20965/jaciii.2023.p0594-8 doi: 10.1002/rnc.4639 – ident: key-10.20965/jaciii.2023.p0594-5 doi: 10.1097/01.BACK.0000605144.87361.a1 – ident: key-10.20965/jaciii.2023.p0594-14 doi: 10.1016/j.measurement.2021.109673 – ident: key-10.20965/jaciii.2023.p0594-12 doi: 10.1016/j.neucom.2007.02.009 – ident: key-10.20965/jaciii.2023.p0594-10 – ident: key-10.20965/jaciii.2023.p0594-6 doi: 10.1016/j.optlastec.2018.10.057 – ident: key-10.20965/jaciii.2023.p0594-11 – ident: key-10.20965/jaciii.2023.p0594-15 doi: 10.1016/j.ast.2018.09.044 – ident: key-10.20965/jaciii.2023.p0594-2 doi: 10.1016/S1876-3804(22)60055-7 – ident: key-10.20965/jaciii.2023.p0594-3 – ident: key-10.20965/jaciii.2023.p0594-4 doi: 10.1002/app.47292 – ident: key-10.20965/jaciii.2023.p0594-7 doi: 10.1016/j.automatica.2020.108973 – ident: key-10.20965/jaciii.2023.p0594-1 doi: 10.1016/j.jfranklin.2020.01.013 – ident: key-10.20965/jaciii.2023.p0594-16 doi: 10.3233/IDA-184377 – ident: key-10.20965/jaciii.2023.p0594-9 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.2574344 |
| Snippet | In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 594 |
| SubjectTerms | Additives Algorithms Artificial neural networks Construction accidents & safety Drilling Drilling fluids Drilling machines (tools) Drilling muds Efficiency Engineering Hydrology Machine learning Parameter modification Prediction models Rheology Slurries Viscosity Water wells Well drilling |
| Title | Two-Direction Prediction Method of Drilling Fluid Based on OS-ELM for Water Well Drilling |
| URI | https://www.proquest.com/docview/2839284311 |
| Volume | 27 |
| WOSCitedRecordID | wos001037834500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-swEB6xHeDAjlgrH94NGRrbie0TYmmFxKNUUInlErmOLRVVSWkL_H1sJ2G5cCGHKEqiOPKMZ77x2PMB_COWhr3K2Ajm04yc474QFkeEc20SKbXRgWyCdzri4UF2qwm3SbWssraJwVBnhfZz5MfEe3Lh3F10MnrBnjXKZ1crCo1ZmI8IibyeX3Fc61PsQgGHEKKvOReHVZqsjMGYX0ZEm-U-GuJroBw_K-0LOnhC8aORr2Py01f9NNXB_7RX_vrnq7BcIU90WqrKGsyYfB1WalYHVA3ydVj6VqJwAx577wWu7GKRo-7YJ3bC5XXgnkaFRRfjQajsjdrD10GGzpxjdPdzdHOHW_-vkYPF6F75Nu7NcPj59ib02q3e-SWu6BiwZgmZYi4yrizjGeOKWIeLaOacWZ9qhzC1pZJSxYTuS-UOo6QgNpPWJtYkSSZ1k27BXF7kZhsQj3STqdinPPvMOJSnNdVKWRHHic1iuQOHdb-no7LoRuqClSCltJRS6qWUBintwH7d72k1ACfpV6fv_v54Dxb9p8oVuPswNx2_mgNY0G_TwWTcgPmzVqd72wiheiNolzt346cPZ47UDw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ5UCigFgr4ACdkuus4sXNACGhXrfaDSqzUcrK8ji1ttUq2u1sqflT_Y2echNILtx7IKUqiRMm8zJvx2G8A3omQxLXK3GtJZUal-ETrwLtCKeezPHfexWYTajTSp6f58RpctWthaFpl6xOjoy4qR2Pke4KYXCPddT_Pzzl1jaLqattCo4ZF3_--xJRt-eloH-37XojewfjbIW-6CnAnM7HiShfKBqkKqawISO9JgT55kjgMlFxIMMG3UrtJbnHzNtciFHkIWfBZVuSuk-Bt78F9mWhFUv19xVv4pph5YEDSvRniwdCoI-uUT9KspaRTL9sRJLmyd2Yd6UdQ__KPc5JNuU2Nt5kh0l1v8z_7UE_gcRNXsy_1j_AU1ny5BZttzwrWuLAtePSXAOMz-Dm-rHjj9auSHS-obBV3h7GzNqsC219Mo245680upgX7irSPx0v2_Qc_GAwZBv3sxNIzTvxs9ufq5zC-i7d9AetlVfptYKrrOtKmVNCdSI8xrHOJszboNM1CkeY78KE1s5nXkiIGU7EIClODwhAoTATFDuy2ZjaNe1maGxu__Pfpt_DwcDwcmMHRqP8KNui29VzjXVhfLS78a3jgfq2my8WbCGUG5o4RcQ0zhS8i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Direction+Prediction+Method+of+Drilling+Fluid+Based+on+OS-ELM+for+Water+Well+Drilling&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Xu%2C+Yuan&rft.au=Zhang%2C+Di&rft.au=Tianlang%2C+Xian&rft.au=Ma+Zhizhang&rft.date=2023-07-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=27&rft.issue=4&rft.spage=594&rft.epage=602&rft_id=info:doi/10.20965%2Fjaciii.2023.p0594 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |