Two-Direction Prediction Method of Drilling Fluid Based on OS-ELM for Water Well Drilling

In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid perfo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of advanced computational intelligence and intelligent informatics Ročník 27; číslo 4; s. 594 - 602
Hlavní autori: Xu, Yuan, Zhang, Di, Xian, Tianlang, Ma, Zhizhang, Gao, Hui, Ma, Yuanyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tokyo Fuji Technology Press Co. Ltd 01.07.2023
Predmet:
ISSN:1343-0130, 1883-8014
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid performance, allowing us to employ an OS-ELM algorithm derived from the extreme learning machine. Particularly, the proposed prediction method is bidirectional to identify an appropriate slurry formulation. The forward prediction model is established to predict the fluid performance, where the mud additive contents are inputs, and the drilling fluid properties parameters are outputs. Correspondingly, the backward prediction model is established to modify the slurry formula, where differences in the drilling fluid properties are inputs and percentages of slurry additives amount are output. The simulation results show that the two-direction OS-ELM prediction model can better predict the drilling fluid properties in water well drilling.
AbstractList In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well drilling on the muddy clay formation of Tarim Basin, Qinghai Province. First, we investigated the mechanism linking mix ratio to fluid performance, allowing us to employ an OS-ELM algorithm derived from the extreme learning machine. Particularly, the proposed prediction method is bidirectional to identify an appropriate slurry formulation. The forward prediction model is established to predict the fluid performance, where the mud additive contents are inputs, and the drilling fluid properties parameters are outputs. Correspondingly, the backward prediction model is established to modify the slurry formula, where differences in the drilling fluid properties are inputs and percentages of slurry additives amount are output. The simulation results show that the two-direction OS-ELM prediction model can better predict the drilling fluid properties in water well drilling.
Author Xu, Yuan
Ma, Yuanyuan
Ma, Zhizhang
Xian, Tianlang
Gao, Hui
Zhang, Di
Author_xml – sequence: 1
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
  organization: Qinghai 906 Engineering Survey and Design Institute LLC, 77 Haiyan Road, Xining, Qinghai 810007, China
– sequence: 2
  givenname: Di
  surname: Zhang
  fullname: Zhang, Di
  organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
– sequence: 3
  givenname: Tianlang
  surname: Xian
  fullname: Xian, Tianlang
  organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
– sequence: 4
  givenname: Zhizhang
  surname: Ma
  fullname: Ma, Zhizhang
  organization: Quality Supervision Station, Water Conservancy Construction Engineering in Hainan Tibetan Autonomous Prefecture, Xinghai East Road, Chengbei District, Chabucia, Gonghe, Hainan Tibetan Autonomous Prefecture, Qinghai 813000, China
– sequence: 5
  givenname: Hui
  surname: Gao
  fullname: Gao, Hui
  organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
– sequence: 6
  givenname: Yuanyuan
  surname: Ma
  fullname: Ma, Yuanyuan
  organization: China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
BookMark eNo9kFtLAzEQhYMoWGv_gE8Bn1Nz627yqL2o0FLBgvgU0lw0Zd3UZIv4741dcR5mzgyHM_BdgNM2tg6AK4LHFMtqcrPTJoRQFsrGezyR_AQMiBAMCUz4adGMM4QJw-dglPMO46JphTkZgNfNV0SzkJzpQmzhU3I29HLluvdoYfRwlkLThPYNLppDsPBOZ1fuLVw_o_lyBX1M8EV3rnTXNP_uS3DmdZPd6G8OwWYx30wf0HJ9_zi9XSLDK9qhWthae15bXmvq6YQwy6ncMiNJZTyTjGkuzFbqUk5LQb2V3lfeVZWVBrMhuO5j9yl-Hlzu1C4eUls-KiqYpIIzQoqL9i6TYs7JebVP4UOnb0WwOkJUPUT1C1EdIbIfH7hnwQ
Cites_doi 10.1007/s11432-014-5269-3
10.1002/rnc.4639
10.1097/01.BACK.0000605144.87361.a1
10.1016/j.measurement.2021.109673
10.1016/j.neucom.2007.02.009
10.1016/j.optlastec.2018.10.057
10.1016/j.ast.2018.09.044
10.1016/S1876-3804(22)60055-7
10.1002/app.47292
10.1016/j.automatica.2020.108973
10.1016/j.jfranklin.2020.01.013
10.3233/IDA-184377
ContentType Journal Article
Copyright Copyright © 2023 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2023 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.20965/jaciii.2023.p0594
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1883-8014
EndPage 602
ExternalDocumentID 10_20965_jaciii_2023_p0594
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c462t-78d7af47d47a2f2513d429b3c916cf3933a48cb9aaaaea982fd9ff6fe66d9c03
IEDL.DBID K7-
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037834500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1343-0130
IngestDate Fri Jul 25 04:47:50 EDT 2025
Sat Nov 29 06:43:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-78d7af47d47a2f2513d429b3c916cf3933a48cb9aaaaea982fd9ff6fe66d9c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.20965/jaciii.2023.p0594
PQID 2839284311
PQPubID 4911628
PageCount 9
ParticipantIDs proquest_journals_2839284311
crossref_primary_10_20965_jaciii_2023_p0594
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2023
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2023.p0594-9
key-10.20965/jaciii.2023.p0594-6
key-10.20965/jaciii.2023.p0594-5
key-10.20965/jaciii.2023.p0594-8
key-10.20965/jaciii.2023.p0594-7
key-10.20965/jaciii.2023.p0594-2
key-10.20965/jaciii.2023.p0594-1
key-10.20965/jaciii.2023.p0594-4
key-10.20965/jaciii.2023.p0594-3
key-10.20965/jaciii.2023.p0594-16
key-10.20965/jaciii.2023.p0594-14
key-10.20965/jaciii.2023.p0594-15
key-10.20965/jaciii.2023.p0594-12
key-10.20965/jaciii.2023.p0594-13
key-10.20965/jaciii.2023.p0594-10
key-10.20965/jaciii.2023.p0594-11
References_xml – ident: key-10.20965/jaciii.2023.p0594-13
  doi: 10.1007/s11432-014-5269-3
– ident: key-10.20965/jaciii.2023.p0594-8
  doi: 10.1002/rnc.4639
– ident: key-10.20965/jaciii.2023.p0594-5
  doi: 10.1097/01.BACK.0000605144.87361.a1
– ident: key-10.20965/jaciii.2023.p0594-14
  doi: 10.1016/j.measurement.2021.109673
– ident: key-10.20965/jaciii.2023.p0594-12
  doi: 10.1016/j.neucom.2007.02.009
– ident: key-10.20965/jaciii.2023.p0594-10
– ident: key-10.20965/jaciii.2023.p0594-6
  doi: 10.1016/j.optlastec.2018.10.057
– ident: key-10.20965/jaciii.2023.p0594-11
– ident: key-10.20965/jaciii.2023.p0594-15
  doi: 10.1016/j.ast.2018.09.044
– ident: key-10.20965/jaciii.2023.p0594-2
  doi: 10.1016/S1876-3804(22)60055-7
– ident: key-10.20965/jaciii.2023.p0594-3
– ident: key-10.20965/jaciii.2023.p0594-4
  doi: 10.1002/app.47292
– ident: key-10.20965/jaciii.2023.p0594-7
  doi: 10.1016/j.automatica.2020.108973
– ident: key-10.20965/jaciii.2023.p0594-1
  doi: 10.1016/j.jfranklin.2020.01.013
– ident: key-10.20965/jaciii.2023.p0594-16
  doi: 10.3233/IDA-184377
– ident: key-10.20965/jaciii.2023.p0594-9
SSID ssj0001326041
ssib051641541
Score 2.2574344
Snippet In this study, a drilling fluid prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed, which is prepared for water well...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 594
SubjectTerms Additives
Algorithms
Artificial neural networks
Construction accidents & safety
Drilling
Drilling fluids
Drilling machines (tools)
Drilling muds
Efficiency
Engineering
Hydrology
Machine learning
Parameter modification
Prediction models
Rheology
Slurries
Viscosity
Water wells
Well drilling
Title Two-Direction Prediction Method of Drilling Fluid Based on OS-ELM for Water Well Drilling
URI https://www.proquest.com/docview/2839284311
Volume 27
WOSCitedRecordID wos001037834500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-swEB6xHeDAjlgrH94NGRrbie0TYmmFxKNUUInlErmOLRVVSWkL_H1sJ2G5cCGHKEqiOPKMZ77x2PMB_COWhr3K2Ajm04yc474QFkeEc20SKbXRgWyCdzri4UF2qwm3SbWssraJwVBnhfZz5MfEe3Lh3F10MnrBnjXKZ1crCo1ZmI8IibyeX3Fc61PsQgGHEKKvOReHVZqsjMGYX0ZEm-U-GuJroBw_K-0LOnhC8aORr2Py01f9NNXB_7RX_vrnq7BcIU90WqrKGsyYfB1WalYHVA3ydVj6VqJwAx577wWu7GKRo-7YJ3bC5XXgnkaFRRfjQajsjdrD10GGzpxjdPdzdHOHW_-vkYPF6F75Nu7NcPj59ib02q3e-SWu6BiwZgmZYi4yrizjGeOKWIeLaOacWZ9qhzC1pZJSxYTuS-UOo6QgNpPWJtYkSSZ1k27BXF7kZhsQj3STqdinPPvMOJSnNdVKWRHHic1iuQOHdb-no7LoRuqClSCltJRS6qWUBintwH7d72k1ACfpV6fv_v54Dxb9p8oVuPswNx2_mgNY0G_TwWTcgPmzVqd72wiheiNolzt346cPZ47UDw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ5UCigFgr4ACdkuus4sXNACGhXrfaDSqzUcrK8ji1ttUq2u1sqflT_Y2echNILtx7IKUqiRMm8zJvx2G8A3omQxLXK3GtJZUal-ETrwLtCKeezPHfexWYTajTSp6f58RpctWthaFpl6xOjoy4qR2Pke4KYXCPddT_Pzzl1jaLqattCo4ZF3_--xJRt-eloH-37XojewfjbIW-6CnAnM7HiShfKBqkKqawISO9JgT55kjgMlFxIMMG3UrtJbnHzNtciFHkIWfBZVuSuk-Bt78F9mWhFUv19xVv4pph5YEDSvRniwdCoI-uUT9KspaRTL9sRJLmyd2Yd6UdQ__KPc5JNuU2Nt5kh0l1v8z_7UE_gcRNXsy_1j_AU1ny5BZttzwrWuLAtePSXAOMz-Dm-rHjj9auSHS-obBV3h7GzNqsC219Mo245680upgX7irSPx0v2_Qc_GAwZBv3sxNIzTvxs9ufq5zC-i7d9AetlVfptYKrrOtKmVNCdSI8xrHOJszboNM1CkeY78KE1s5nXkiIGU7EIClODwhAoTATFDuy2ZjaNe1maGxu__Pfpt_DwcDwcmMHRqP8KNui29VzjXVhfLS78a3jgfq2my8WbCGUG5o4RcQ0zhS8i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Direction+Prediction+Method+of+Drilling+Fluid+Based+on+OS-ELM+for+Water+Well+Drilling&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Xu%2C+Yuan&rft.au=Zhang%2C+Di&rft.au=Tianlang%2C+Xian&rft.au=Ma+Zhizhang&rft.date=2023-07-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=27&rft.issue=4&rft.spage=594&rft.epage=602&rft_id=info:doi/10.20965%2Fjaciii.2023.p0594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon