Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers
The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rat...
Uloženo v:
| Vydáno v: | Chemical science (Cambridge) Ročník 12; číslo 43; s. 14376 - 14382 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Royal Society of Chemistry
10.11.2021
The Royal Society of Chemistry |
| Témata: | |
| ISSN: | 2041-6520, 2041-6539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The dispersity (
) of a polymer is a key parameter in material design, and variations in
can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control
operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor
of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 <
< 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize
in situ
diblock copolymers with absolute control over the dispersity of either block (
e.g.
low
→ high
, high
→ high
, high
→ low
). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control
without affecting the
M
n
, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator. |
|---|---|
| AbstractList | The dispersity (
Đ
) of a polymer is a key parameter in material design, and variations in
Đ
can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control
Đ
operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor
Đ
of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 <
Đ
< 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize
in situ
diblock copolymers with absolute control over the dispersity of either block (
e.g.
low
Đ
→ high
Đ
, high
Đ
→ high
Đ
, high
Đ
→ low
Đ
). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control
Đ
without affecting the
M
n
, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the Mn, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator. The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the Mn, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block ( e.g. low → high , high → high , high → low ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control without affecting the M n , the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator. The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize diblock copolymers with absolute control over the dispersity of either block ( low → high , high → high , high → low ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control without affecting the , the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. |
| Author | Harrisson, Simon Parkatzidis, Kostas Truong, Nghia P Wang, Hyun Suk Anastasaki, Athina |
| AuthorAffiliation | Laboratory of Polymeric Materials ETH Zurich UMR5629 LCPO ENSCBP/CNRS/Université de Bordeaux Department of Materials |
| AuthorAffiliation_xml | – name: LCPO – name: Department of Materials – name: Laboratory of Polymeric Materials – name: ETH Zurich – name: ENSCBP/CNRS/Université de Bordeaux – name: UMR5629 |
| Author_xml | – sequence: 1 givenname: Hyun Suk surname: Wang fullname: Wang, Hyun Suk – sequence: 2 givenname: Kostas surname: Parkatzidis fullname: Parkatzidis, Kostas – sequence: 3 givenname: Simon surname: Harrisson fullname: Harrisson, Simon – sequence: 4 givenname: Nghia P surname: Truong fullname: Truong, Nghia P – sequence: 5 givenname: Athina surname: Anastasaki fullname: Anastasaki, Athina |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34880988$$D View this record in MEDLINE/PubMed https://hal.science/hal-03832548$$DView record in HAL |
| BookMark | eNptks9vFCEUx4mpsbX24l1D4kVNRvkxMIwHk2a11mQTD-qZsAzTpTIwBWaT9ewfLvujq27kAnl83vfB-77H4MQHbwB4itEbjGj7tsNJo5rUuH8AzgiqccUZbU8OZ4JOwUVKt6gsSjEjzSNwSmshUCvEGfg1Cz7H4Jz1N7CzaTQx2byG1kN1N5kwJahyGGCOyqfeRBhVZ7VycAxuPZhof6psg39X4qPtoPIdvJuUzzaX-MrAtPZ5aZJNMPSwvLwaQ4YLF_QPqMNeIz0BD3vlkrnY7-fg-9XHb7Prav7l0-fZ5bzSNSe54o1R3NQUc6MR6XsjCOeGCI0EFbilXdMypAzlvG5Ia3jX41YxjptFI5q6AOfg_U53nBaD6bQpX1dOjtEOKq5lUFb-e-PtUt6ElRRMIIxYEXi1E1gepV1fzuUmhqighNVihQv7cl8shtLJlOVgkzbOKb9pqyScUFRcaFFBXxyht2GKvrRCEtYy1jC-Lf7879cf6t-bWQC0A3QMKUXTS721YeOwsk5iJDcjIz_gr7PtyFyVlNdHKfeq_4Wf7eCY9IH7M3_0N8LBzFw |
| CitedBy_id | crossref_primary_10_1002_anie_202314729 crossref_primary_10_1002_admi_202201439 crossref_primary_10_1021_jacs_2c05364 crossref_primary_10_1002_anie_202410154 crossref_primary_10_1016_j_eurpolymj_2023_112721 crossref_primary_10_1002_anie_202219312 crossref_primary_10_1002_mame_202300274 crossref_primary_10_1039_D4SC00399C crossref_primary_10_1002_ange_202314729 crossref_primary_10_1016_j_eurpolymj_2022_111326 crossref_primary_10_1002_advs_202106076 crossref_primary_10_1039_D2PY01563C crossref_primary_10_1002_pol_20220277 crossref_primary_10_1039_D3SC05203F crossref_primary_10_1002_ange_202219312 crossref_primary_10_1002_ange_202410154 crossref_primary_10_1002_pol_20230479 crossref_primary_10_1021_acsmacrolett_5c00023 crossref_primary_10_1016_j_progpolymsci_2022_101555 crossref_primary_10_1039_D2SC04210J |
| Cites_doi | 10.1039/C7SM02483E 10.1039/D0PY01071E 10.1002/anie.201908775 10.1002/pola.22556 10.1021/acs.macromol.8b00673 10.1039/D0PY00823K 10.1021/ja4026402 10.1039/D1CC01312B 10.1002/pola.29462 10.1021/jacs.9b11462 10.1038/s41467-020-16874-6 10.1122/1.5052320 10.1016/j.chempr.2020.04.020 10.1021/ma00008a012 10.1021/acs.macromol.6b00975 10.1021/acs.macromol.0c01954 10.1002/anie.202106729 10.1039/C9PY00074G 10.1016/j.jnnfm.2005.02.010 10.1021/jacs.8b00694 10.1039/d1py01044a 10.1002/pol.20210319 10.1021/mz4004198 10.1002/macp.202000234 10.1021/ma048438x 10.1016/j.polymer.2014.07.047 10.1016/j.chempr.2020.06.014 10.1016/j.progpolymsci.2017.02.005 10.1021/jacs.5b11599 10.1021/ma301303b 10.1021/jacs.5b13565 10.1021/acs.macromol.5b01454 10.1002/anie.201906471 10.1016/j.eurpolymj.2020.109834 10.1039/C9PY01012B 10.1039/C9PY01013K 10.1039/C4SC01374C 10.1021/acsmacrolett.1c00179 10.1016/j.progpolymsci.2004.01.002 10.1021/acsmacrolett.9b00405 10.1021/acsmacrolett.6b00392 10.1021/ja205080u 10.1021/ma990175x 10.1002/macp.201200461 10.1021/acs.macromol.9b00454 10.1021/acsmacrolett.8b00295 10.1080/15583724.2019.1579227 10.1039/C8PY00033F 10.1021/acsmacrolett.0c00121 10.1021/acs.macromol.7b01890 10.1002/anie.201814573 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 licence_http://creativecommons.org/publicdomain/zero This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: licence_http://creativecommons.org/publicdomain/zero – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 1XC VOOES 5PM |
| DOI | 10.1039/d1sc04241f |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 14382 |
| ExternalDocumentID | PMC8580105 oai:HAL:hal-03832548v1 34880988 10_1039_D1SC04241F d1sc04241f |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: DE180100076 – fundername: ; grantid: 949219 – fundername: ; grantid: Unassigned |
| GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAJAE AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAFWJ AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGMRB AHGCF AKBGW APEMP CITATION HZ~ PGMZT RAOCF RNS -JG AAEMU AGEGJ NPM 7SR 8BQ 8FD JG9 7X8 1XC AAFBY AAWGC ABASK ACRPL ADNMO AETIL AFRZK AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF CAG COF ECGLT FEDTE HVGLF J3G J3H J3I L-8 ROL RPMJG VOOES 5PM |
| ID | FETCH-LOGICAL-c462t-67ea6e4316ec02ffe8266e28c0838193d7950ae3664729e6df19a5617b7874193 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709443300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 01:45:53 EST 2025 Mon Nov 24 06:20:33 EST 2025 Fri Sep 05 10:06:29 EDT 2025 Mon Jul 14 07:20:40 EDT 2025 Thu Jan 02 22:45:22 EST 2025 Sat Nov 29 05:54:26 EST 2025 Tue Nov 18 21:06:43 EST 2025 Sat May 14 04:35:37 EDT 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-67ea6e4316ec02ffe8266e28c0838193d7950ae3664729e6df19a5617b7874193 |
| Notes | Electronic supplementary information (ESI) available: Experimental procedures, detailed polymerization results, and SEC and NMR data. See DOI 10.1039/d1sc04241f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7444-7815 0000-0001-9900-2644 0000-0002-2515-3906 0000-0001-6267-2599 0000-0002-6615-1026 |
| OpenAccessLink | http://dx.doi.org/10.1039/d1sc04241f |
| PMID | 34880988 |
| PQID | 2595575605 |
| PQPubID | 2047492 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1039_D1SC04241F proquest_miscellaneous_2623080990 hal_primary_oai_HAL_hal_03832548v1 proquest_journals_2595575605 crossref_primary_10_1039_D1SC04241F rsc_primary_d1sc04241f pubmed_primary_34880988 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580105 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-10 |
| PublicationDateYYYYMMDD | 2021-11-10 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2021 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Plichta (D1SC04241F/cit21) 2012; 213 Anastasaki (D1SC04241F/cit52) 2013; 2 Michieletto (D1SC04241F/cit48) 2020; 58 Junkers (D1SC04241F/cit11) 2020; 134 Whitfield (D1SC04241F/cit27) 2020; 6 McDaniel (D1SC04241F/cit10) 2000 Wang (D1SC04241F/cit23) 2019; 8 Gentekos (D1SC04241F/cit8) 2018; 140 Chmielarz (D1SC04241F/cit49) 2017; 69 Kottisch (D1SC04241F/cit17) 2016; 5 Whitfield (D1SC04241F/cit15) 2021; 60 Parkatzidis (D1SC04241F/cit28) 2021 Park (D1SC04241F/cit6) 2018; 14 Liu (D1SC04241F/cit35) 2020; 53 Zhao (D1SC04241F/cit47) 2021; 57 Parkatzidis (D1SC04241F/cit26) 2020; 11 Gentekos (D1SC04241F/cit16) 2016; 138 Palangetic (D1SC04241F/cit5) 2014; 55 Liu (D1SC04241F/cit20) 2019; 131 Domanskyi (D1SC04241F/cit18) 2020; 11 Junkers (D1SC04241F/cit14) 2020; 221 Soeriyadi (D1SC04241F/cit51) 2011; 133 Kim (D1SC04241F/cit9) 2019; 59 Rubens (D1SC04241F/cit29) 2019; 10 Collis (D1SC04241F/cit4) 2005; 128 Pan (D1SC04241F/cit45) 2015; 137 Corrigan (D1SC04241F/cit31) 2017; 50 Gentekos (D1SC04241F/cit7) 2018; 7 Whitfield (D1SC04241F/cit22) 2019; 58 Teodorescu (D1SC04241F/cit39) 1999; 32 Boudara (D1SC04241F/cit1) 2019; 63 Anastasaki (D1SC04241F/cit50) 2014; 5 Vrijsen (D1SC04241F/cit12) 2020; 11 Morsbach (D1SC04241F/cit33) 2016; 49 Parkatzidis (D1SC04241F/cit3) 2020; 6 Simakova (D1SC04241F/cit46) 2012; 45 Sifri (D1SC04241F/cit19) 2020; 142 Goto (D1SC04241F/cit40) 2004; 29 Zhang (D1SC04241F/cit44) 2013; 135 Yadav (D1SC04241F/cit37) 2018; 9 Tsarevsky (D1SC04241F/cit42) 2004; 37 Liu (D1SC04241F/cit25) 2019; 58 Reis (D1SC04241F/cit34) 2019; 52 Wang (D1SC04241F/cit36) 2021; 10 Rolland (D1SC04241F/cit24) 2021 Corrigan (D1SC04241F/cit32) 2018; 51 Rubens (D1SC04241F/cit13) 2019; 10 Tsenoglou (D1SC04241F/cit2) 1991; 24 Fantin (D1SC04241F/cit43) 2015; 48 Seno (D1SC04241F/cit38) 2008; 46 Rolland (D1SC04241F/cit41) 2020; 9 Walsh (D1SC04241F/cit30) 2020; 11 |
| References_xml | – issn: 2000 end-page: 1 publication-title: Kirk-Othmer Encyclopedia of Chemical Technology doi: McDaniel DesLauriers – volume: 14 start-page: 1026 year: 2018 ident: D1SC04241F/cit6 publication-title: Soft Matter doi: 10.1039/C7SM02483E – volume: 11 start-page: 6463 year: 2020 ident: D1SC04241F/cit12 publication-title: Polym. Chem. doi: 10.1039/D0PY01071E – volume: 58 start-page: 16210 year: 2019 ident: D1SC04241F/cit25 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908775 – volume: 46 start-page: 2212 year: 2008 ident: D1SC04241F/cit38 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.22556 – volume: 51 start-page: 4553 year: 2018 ident: D1SC04241F/cit32 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00673 – volume: 11 start-page: 4968 year: 2020 ident: D1SC04241F/cit26 publication-title: Polym. Chem. doi: 10.1039/D0PY00823K – volume: 135 start-page: 7355 year: 2013 ident: D1SC04241F/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4026402 – volume: 57 start-page: 3897 year: 2021 ident: D1SC04241F/cit47 publication-title: Chem. Commun. doi: 10.1039/D1CC01312B – volume: 58 start-page: 114 year: 2020 ident: D1SC04241F/cit48 publication-title: J. Polym. Sci. doi: 10.1002/pola.29462 – volume: 142 start-page: 1443 year: 2020 ident: D1SC04241F/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11462 – volume: 11 start-page: 3094 year: 2020 ident: D1SC04241F/cit30 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16874-6 – volume: 63 start-page: 71 year: 2019 ident: D1SC04241F/cit1 publication-title: J. Rheol. doi: 10.1122/1.5052320 – volume: 6 start-page: 1340 year: 2020 ident: D1SC04241F/cit27 publication-title: Chem doi: 10.1016/j.chempr.2020.04.020 – volume: 24 start-page: 1762 year: 1991 ident: D1SC04241F/cit2 publication-title: Macromolecules doi: 10.1021/ma00008a012 – volume: 49 start-page: 5043 year: 2016 ident: D1SC04241F/cit33 publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00975 – volume: 53 start-page: 8867 year: 2020 ident: D1SC04241F/cit35 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c01954 – volume: 60 start-page: 19383 year: 2021 ident: D1SC04241F/cit15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106729 – volume: 11 start-page: 326 year: 2020 ident: D1SC04241F/cit18 publication-title: Polym. Chem. doi: 10.1039/C9PY00074G – volume: 128 start-page: 29 year: 2005 ident: D1SC04241F/cit4 publication-title: J. Non-Newtonian Fluid Mech. doi: 10.1016/j.jnnfm.2005.02.010 – volume: 140 start-page: 4639 year: 2018 ident: D1SC04241F/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00694 – year: 2021 ident: D1SC04241F/cit28 publication-title: Polym. Chem. doi: 10.1039/d1py01044a – year: 2021 ident: D1SC04241F/cit24 publication-title: J. Polym. Sci. doi: 10.1002/pol.20210319 – volume: 2 start-page: 896 year: 2013 ident: D1SC04241F/cit52 publication-title: ACS Macro Lett. doi: 10.1021/mz4004198 – volume: 221 start-page: 2000234 year: 2020 ident: D1SC04241F/cit14 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.202000234 – volume: 37 start-page: 9768 year: 2004 ident: D1SC04241F/cit42 publication-title: Macromolecules doi: 10.1021/ma048438x – volume: 55 start-page: 4920 year: 2014 ident: D1SC04241F/cit5 publication-title: Polymer doi: 10.1016/j.polymer.2014.07.047 – volume: 6 start-page: 1575 year: 2020 ident: D1SC04241F/cit3 publication-title: Chem doi: 10.1016/j.chempr.2020.06.014 – volume-title: Kirk-Othmer Encyclopedia of Chemical Technology year: 2000 ident: D1SC04241F/cit10 – volume: 69 start-page: 47 year: 2017 ident: D1SC04241F/cit49 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2017.02.005 – volume: 137 start-page: 15430 year: 2015 ident: D1SC04241F/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11599 – volume: 45 start-page: 6371 year: 2012 ident: D1SC04241F/cit46 publication-title: Macromolecules doi: 10.1021/ma301303b – volume: 138 start-page: 1848 year: 2016 ident: D1SC04241F/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13565 – volume: 48 start-page: 6862 year: 2015 ident: D1SC04241F/cit43 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01454 – volume: 58 start-page: 13323 year: 2019 ident: D1SC04241F/cit22 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906471 – volume: 134 start-page: 109834 year: 2020 ident: D1SC04241F/cit11 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109834 – volume: 10 start-page: 5721 year: 2019 ident: D1SC04241F/cit13 publication-title: Polym. Chem. doi: 10.1039/C9PY01012B – volume: 10 start-page: 6315 year: 2019 ident: D1SC04241F/cit29 publication-title: Polym. Chem. doi: 10.1039/C9PY01013K – volume: 5 start-page: 3536 year: 2014 ident: D1SC04241F/cit50 publication-title: Chem. Sci. doi: 10.1039/C4SC01374C – volume: 10 start-page: 584 year: 2021 ident: D1SC04241F/cit36 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.1c00179 – volume: 29 start-page: 329 year: 2004 ident: D1SC04241F/cit40 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2004.01.002 – volume: 8 start-page: 859 year: 2019 ident: D1SC04241F/cit23 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00405 – volume: 5 start-page: 796 year: 2016 ident: D1SC04241F/cit17 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.6b00392 – volume: 133 start-page: 11128 year: 2011 ident: D1SC04241F/cit51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205080u – volume: 32 start-page: 4826 year: 1999 ident: D1SC04241F/cit39 publication-title: Macromolecules doi: 10.1021/ma990175x – volume: 213 start-page: 2659 year: 2012 ident: D1SC04241F/cit21 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201200461 – volume: 52 start-page: 3551 year: 2019 ident: D1SC04241F/cit34 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00454 – volume: 7 start-page: 677 year: 2018 ident: D1SC04241F/cit7 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00295 – volume: 59 start-page: 561 year: 2019 ident: D1SC04241F/cit9 publication-title: Polym. Rev. doi: 10.1080/15583724.2019.1579227 – volume: 9 start-page: 4332 year: 2018 ident: D1SC04241F/cit37 publication-title: Polym. Chem. doi: 10.1039/C8PY00033F – volume: 9 start-page: 459 year: 2020 ident: D1SC04241F/cit41 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.0c00121 – volume: 50 start-page: 8438 year: 2017 ident: D1SC04241F/cit31 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01890 – volume: 131 start-page: 5598 year: 2019 ident: D1SC04241F/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814573 |
| SSID | ssj0000331527 |
| Score | 2.4571695 |
| Snippet | The dispersity (
) of a polymer is a key parameter in material design, and variations in
can have a strong influence on fundamental polymer properties. Despite... The dispersity ( Đ ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties.... The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties.... |
| SourceID | pubmedcentral hal proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14376 |
| SubjectTerms | Block copolymers Chemical Sciences Chemical synthesis Chemistry Coordination compounds Design parameters Dispersion Molecular weight Molecular weight distribution Polymerization Polymers Quantitative analysis Radicals |
| Title | Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34880988 https://www.proquest.com/docview/2595575605 https://www.proquest.com/docview/2623080990 https://hal.science/hal-03832548 https://pubmed.ncbi.nlm.nih.gov/PMC8580105 |
| Volume | 12 |
| WOSCitedRecordID | wos000709443300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society of Chemistry customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB71VUhwYS8EypOBXjhEZHVsblXgqQdUoQLSu0XeokaU5JGklXrnhzN2FhQVpJ4i2ZPYznj5xrMBHGlOpWA69o1iqZ8kXPpMlsYvqU6FlKmSYemSTWSnp2y75V_24Og_GvyYv_8Yfs2tfi7c2I02ozY_w9lZPl-kBHE8pmaNgiT0aRoFUxjSxduLg2d1bs0eb2LKm6aRq3bKBOJOnM2D2_X1IdwfESU5HqbAI9gz9WO4m0-J3J7A73wwR7eO50RXNjS4NcQgVU0E9gtFf4KS90_SOwxrWtIKp7whu-bi2ip0Bk_ND1i-qzQRtSa_LkXtvNNwryTddY0osqs60pSkqY2_a3oi8ZD8QVQzfqN7Ct83n77lJ_6YfMFXCY16n2ZGUGMd5Y0KorI0KIdQEzGFmA1RRKwzngbCxNTGn-eG6jLkAsFYJnELSJDgAPZrbPM5ECZVIjKms7A0iUhSG7UqjRP74Ipp6cG7iTOFGiOT2wQZF4XTkMe8-PtfPXg70-6GeBz_pHqDDJ4JbAjtk-PPhS0LUCRHoZhdhR4cTvwvxoXbFSgNpohgUcjz4PVcjQyzehRRW54UEUJGBNp4jnvwbJguc1Ox3RA5Yx5ki4m06Muypq7OXVhvljKbrtSDA5xyM70OO-UGVb641dBfwr3Imt04S8VD2O_bS_MK7qirvuraNayyLVu7i4e1W0Z_AKbXFTE |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+dispersity+in+aqueous+atom+transfer+radical+polymerization%3A+rapid+and+quantitative+synthesis+of+one-pot+block+copolymers&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Hyun+Suk&rft.au=Parkatzidis%2C+Kostas&rft.au=Harrisson%2C+Simon&rft.au=Truong%2C+Nghia+P.&rft.date=2021-11-10&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=43&rft.spage=14376&rft.epage=14382&rft_id=info:doi/10.1039%2FD1SC04241F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1SC04241F |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |