Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers

The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) Jg. 12; H. 43; S. 14376 - 14382
Hauptverfasser: Wang, Hyun Suk, Parkatzidis, Kostas, Harrisson, Simon, Truong, Nghia P, Anastasaki, Athina
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Royal Society of Chemistry 10.11.2021
The Royal Society of Chemistry
Schlagworte:
ISSN:2041-6520, 2041-6539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block ( e.g. low → high , high → high , high → low ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control without affecting the M n , the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator.
AbstractList The dispersity ( Đ ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block ( e.g. low Đ → high Đ , high Đ → high Đ , high Đ → low Đ ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n , the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the Mn, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator.
The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the Mn, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block ( e.g. low → high , high → high , high → low ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control without affecting the M n , the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air. The dispersity of polymers is efficiently controlled in aqueous atom transfer radical polymerization by modulating the reversible dissociation of the bromide ion from the copper deactivator.
The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize diblock copolymers with absolute control over the dispersity of either block ( low → high , high → high , high → low ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control without affecting the , the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
Author Harrisson, Simon
Parkatzidis, Kostas
Truong, Nghia P
Wang, Hyun Suk
Anastasaki, Athina
AuthorAffiliation Laboratory of Polymeric Materials
ETH Zurich
UMR5629
LCPO
ENSCBP/CNRS/Université de Bordeaux
Department of Materials
AuthorAffiliation_xml – name: LCPO
– name: Department of Materials
– name: Laboratory of Polymeric Materials
– name: ETH Zurich
– name: ENSCBP/CNRS/Université de Bordeaux
– name: UMR5629
Author_xml – sequence: 1
  givenname: Hyun Suk
  surname: Wang
  fullname: Wang, Hyun Suk
– sequence: 2
  givenname: Kostas
  surname: Parkatzidis
  fullname: Parkatzidis, Kostas
– sequence: 3
  givenname: Simon
  surname: Harrisson
  fullname: Harrisson, Simon
– sequence: 4
  givenname: Nghia P
  surname: Truong
  fullname: Truong, Nghia P
– sequence: 5
  givenname: Athina
  surname: Anastasaki
  fullname: Anastasaki, Athina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34880988$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03832548$$DView record in HAL
BookMark eNptks9vFCEUx4mpsbX24l1D4kVNRvkxMIwHk2a11mQTD-qZsAzTpTIwBWaT9ewfLvujq27kAnl83vfB-77H4MQHbwB4itEbjGj7tsNJo5rUuH8AzgiqccUZbU8OZ4JOwUVKt6gsSjEjzSNwSmshUCvEGfg1Cz7H4Jz1N7CzaTQx2byG1kN1N5kwJahyGGCOyqfeRBhVZ7VycAxuPZhof6psg39X4qPtoPIdvJuUzzaX-MrAtPZ5aZJNMPSwvLwaQ4YLF_QPqMNeIz0BD3vlkrnY7-fg-9XHb7Prav7l0-fZ5bzSNSe54o1R3NQUc6MR6XsjCOeGCI0EFbilXdMypAzlvG5Ia3jX41YxjptFI5q6AOfg_U53nBaD6bQpX1dOjtEOKq5lUFb-e-PtUt6ElRRMIIxYEXi1E1gepV1fzuUmhqighNVihQv7cl8shtLJlOVgkzbOKb9pqyScUFRcaFFBXxyht2GKvrRCEtYy1jC-Lf7879cf6t-bWQC0A3QMKUXTS721YeOwsk5iJDcjIz_gr7PtyFyVlNdHKfeq_4Wf7eCY9IH7M3_0N8LBzFw
CitedBy_id crossref_primary_10_1002_anie_202314729
crossref_primary_10_1002_admi_202201439
crossref_primary_10_1021_jacs_2c05364
crossref_primary_10_1002_anie_202410154
crossref_primary_10_1016_j_eurpolymj_2023_112721
crossref_primary_10_1002_anie_202219312
crossref_primary_10_1002_mame_202300274
crossref_primary_10_1039_D4SC00399C
crossref_primary_10_1002_ange_202314729
crossref_primary_10_1016_j_eurpolymj_2022_111326
crossref_primary_10_1002_advs_202106076
crossref_primary_10_1039_D2PY01563C
crossref_primary_10_1002_pol_20220277
crossref_primary_10_1039_D3SC05203F
crossref_primary_10_1002_ange_202219312
crossref_primary_10_1002_ange_202410154
crossref_primary_10_1002_pol_20230479
crossref_primary_10_1021_acsmacrolett_5c00023
crossref_primary_10_1016_j_progpolymsci_2022_101555
crossref_primary_10_1039_D2SC04210J
Cites_doi 10.1039/C7SM02483E
10.1039/D0PY01071E
10.1002/anie.201908775
10.1002/pola.22556
10.1021/acs.macromol.8b00673
10.1039/D0PY00823K
10.1021/ja4026402
10.1039/D1CC01312B
10.1002/pola.29462
10.1021/jacs.9b11462
10.1038/s41467-020-16874-6
10.1122/1.5052320
10.1016/j.chempr.2020.04.020
10.1021/ma00008a012
10.1021/acs.macromol.6b00975
10.1021/acs.macromol.0c01954
10.1002/anie.202106729
10.1039/C9PY00074G
10.1016/j.jnnfm.2005.02.010
10.1021/jacs.8b00694
10.1039/d1py01044a
10.1002/pol.20210319
10.1021/mz4004198
10.1002/macp.202000234
10.1021/ma048438x
10.1016/j.polymer.2014.07.047
10.1016/j.chempr.2020.06.014
10.1016/j.progpolymsci.2017.02.005
10.1021/jacs.5b11599
10.1021/ma301303b
10.1021/jacs.5b13565
10.1021/acs.macromol.5b01454
10.1002/anie.201906471
10.1016/j.eurpolymj.2020.109834
10.1039/C9PY01012B
10.1039/C9PY01013K
10.1039/C4SC01374C
10.1021/acsmacrolett.1c00179
10.1016/j.progpolymsci.2004.01.002
10.1021/acsmacrolett.9b00405
10.1021/acsmacrolett.6b00392
10.1021/ja205080u
10.1021/ma990175x
10.1002/macp.201200461
10.1021/acs.macromol.9b00454
10.1021/acsmacrolett.8b00295
10.1080/15583724.2019.1579227
10.1039/C8PY00033F
10.1021/acsmacrolett.0c00121
10.1021/acs.macromol.7b01890
10.1002/anie.201814573
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
licence_http://creativecommons.org/publicdomain/zero
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
5PM
DOI 10.1039/d1sc04241f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 14382
ExternalDocumentID PMC8580105
oai:HAL:hal-03832548v1
34880988
10_1039_D1SC04241F
d1sc04241f
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: DE180100076
– fundername: ;
  grantid: 949219
– fundername: ;
  grantid: Unassigned
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAJAE
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAFWJ
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGMRB
AHGCF
AKBGW
APEMP
CITATION
HZ~
PGMZT
RAOCF
RNS
-JG
AAEMU
AGEGJ
NPM
7SR
8BQ
8FD
JG9
7X8
1XC
AAFBY
AAWGC
ABASK
ACRPL
ADNMO
AETIL
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
CAG
COF
ECGLT
FEDTE
HVGLF
J3G
J3H
J3I
L-8
ROL
RPMJG
VOOES
5PM
ID FETCH-LOGICAL-c462t-67ea6e4316ec02ffe8266e28c0838193d7950ae3664729e6df19a5617b7874193
IEDL.DBID RRC
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709443300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Tue Nov 04 01:45:53 EST 2025
Mon Nov 24 06:20:33 EST 2025
Fri Sep 05 10:06:29 EDT 2025
Mon Jul 14 07:20:40 EDT 2025
Thu Jan 02 22:45:22 EST 2025
Sat Nov 29 05:54:26 EST 2025
Tue Nov 18 21:06:43 EST 2025
Sat May 14 04:35:37 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License This journal is © The Royal Society of Chemistry.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-67ea6e4316ec02ffe8266e28c0838193d7950ae3664729e6df19a5617b7874193
Notes Electronic supplementary information (ESI) available: Experimental procedures, detailed polymerization results, and SEC and NMR data. See DOI
10.1039/d1sc04241f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7444-7815
0000-0001-9900-2644
0000-0002-2515-3906
0000-0001-6267-2599
0000-0002-6615-1026
OpenAccessLink http://dx.doi.org/10.1039/d1sc04241f
PMID 34880988
PQID 2595575605
PQPubID 2047492
PageCount 7
ParticipantIDs crossref_citationtrail_10_1039_D1SC04241F
proquest_miscellaneous_2623080990
hal_primary_oai_HAL_hal_03832548v1
proquest_journals_2595575605
crossref_primary_10_1039_D1SC04241F
rsc_primary_d1sc04241f
pubmed_primary_34880988
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580105
PublicationCentury 2000
PublicationDate 2021-11-10
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Plichta (D1SC04241F/cit21) 2012; 213
Anastasaki (D1SC04241F/cit52) 2013; 2
Michieletto (D1SC04241F/cit48) 2020; 58
Junkers (D1SC04241F/cit11) 2020; 134
Whitfield (D1SC04241F/cit27) 2020; 6
McDaniel (D1SC04241F/cit10) 2000
Wang (D1SC04241F/cit23) 2019; 8
Gentekos (D1SC04241F/cit8) 2018; 140
Chmielarz (D1SC04241F/cit49) 2017; 69
Kottisch (D1SC04241F/cit17) 2016; 5
Whitfield (D1SC04241F/cit15) 2021; 60
Parkatzidis (D1SC04241F/cit28) 2021
Park (D1SC04241F/cit6) 2018; 14
Liu (D1SC04241F/cit35) 2020; 53
Zhao (D1SC04241F/cit47) 2021; 57
Parkatzidis (D1SC04241F/cit26) 2020; 11
Gentekos (D1SC04241F/cit16) 2016; 138
Palangetic (D1SC04241F/cit5) 2014; 55
Liu (D1SC04241F/cit20) 2019; 131
Domanskyi (D1SC04241F/cit18) 2020; 11
Junkers (D1SC04241F/cit14) 2020; 221
Soeriyadi (D1SC04241F/cit51) 2011; 133
Kim (D1SC04241F/cit9) 2019; 59
Rubens (D1SC04241F/cit29) 2019; 10
Collis (D1SC04241F/cit4) 2005; 128
Pan (D1SC04241F/cit45) 2015; 137
Corrigan (D1SC04241F/cit31) 2017; 50
Gentekos (D1SC04241F/cit7) 2018; 7
Whitfield (D1SC04241F/cit22) 2019; 58
Teodorescu (D1SC04241F/cit39) 1999; 32
Boudara (D1SC04241F/cit1) 2019; 63
Anastasaki (D1SC04241F/cit50) 2014; 5
Vrijsen (D1SC04241F/cit12) 2020; 11
Morsbach (D1SC04241F/cit33) 2016; 49
Parkatzidis (D1SC04241F/cit3) 2020; 6
Simakova (D1SC04241F/cit46) 2012; 45
Sifri (D1SC04241F/cit19) 2020; 142
Goto (D1SC04241F/cit40) 2004; 29
Zhang (D1SC04241F/cit44) 2013; 135
Yadav (D1SC04241F/cit37) 2018; 9
Tsarevsky (D1SC04241F/cit42) 2004; 37
Liu (D1SC04241F/cit25) 2019; 58
Reis (D1SC04241F/cit34) 2019; 52
Wang (D1SC04241F/cit36) 2021; 10
Rolland (D1SC04241F/cit24) 2021
Corrigan (D1SC04241F/cit32) 2018; 51
Rubens (D1SC04241F/cit13) 2019; 10
Tsenoglou (D1SC04241F/cit2) 1991; 24
Fantin (D1SC04241F/cit43) 2015; 48
Seno (D1SC04241F/cit38) 2008; 46
Rolland (D1SC04241F/cit41) 2020; 9
Walsh (D1SC04241F/cit30) 2020; 11
References_xml – issn: 2000
  end-page: 1
  publication-title: Kirk-Othmer Encyclopedia of Chemical Technology
  doi: McDaniel DesLauriers
– volume: 14
  start-page: 1026
  year: 2018
  ident: D1SC04241F/cit6
  publication-title: Soft Matter
  doi: 10.1039/C7SM02483E
– volume: 11
  start-page: 6463
  year: 2020
  ident: D1SC04241F/cit12
  publication-title: Polym. Chem.
  doi: 10.1039/D0PY01071E
– volume: 58
  start-page: 16210
  year: 2019
  ident: D1SC04241F/cit25
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908775
– volume: 46
  start-page: 2212
  year: 2008
  ident: D1SC04241F/cit38
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.22556
– volume: 51
  start-page: 4553
  year: 2018
  ident: D1SC04241F/cit32
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00673
– volume: 11
  start-page: 4968
  year: 2020
  ident: D1SC04241F/cit26
  publication-title: Polym. Chem.
  doi: 10.1039/D0PY00823K
– volume: 135
  start-page: 7355
  year: 2013
  ident: D1SC04241F/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4026402
– volume: 57
  start-page: 3897
  year: 2021
  ident: D1SC04241F/cit47
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC01312B
– volume: 58
  start-page: 114
  year: 2020
  ident: D1SC04241F/cit48
  publication-title: J. Polym. Sci.
  doi: 10.1002/pola.29462
– volume: 142
  start-page: 1443
  year: 2020
  ident: D1SC04241F/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11462
– volume: 11
  start-page: 3094
  year: 2020
  ident: D1SC04241F/cit30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16874-6
– volume: 63
  start-page: 71
  year: 2019
  ident: D1SC04241F/cit1
  publication-title: J. Rheol.
  doi: 10.1122/1.5052320
– volume: 6
  start-page: 1340
  year: 2020
  ident: D1SC04241F/cit27
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.04.020
– volume: 24
  start-page: 1762
  year: 1991
  ident: D1SC04241F/cit2
  publication-title: Macromolecules
  doi: 10.1021/ma00008a012
– volume: 49
  start-page: 5043
  year: 2016
  ident: D1SC04241F/cit33
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00975
– volume: 53
  start-page: 8867
  year: 2020
  ident: D1SC04241F/cit35
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01954
– volume: 60
  start-page: 19383
  year: 2021
  ident: D1SC04241F/cit15
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106729
– volume: 11
  start-page: 326
  year: 2020
  ident: D1SC04241F/cit18
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00074G
– volume: 128
  start-page: 29
  year: 2005
  ident: D1SC04241F/cit4
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/j.jnnfm.2005.02.010
– volume: 140
  start-page: 4639
  year: 2018
  ident: D1SC04241F/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00694
– year: 2021
  ident: D1SC04241F/cit28
  publication-title: Polym. Chem.
  doi: 10.1039/d1py01044a
– year: 2021
  ident: D1SC04241F/cit24
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20210319
– volume: 2
  start-page: 896
  year: 2013
  ident: D1SC04241F/cit52
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz4004198
– volume: 221
  start-page: 2000234
  year: 2020
  ident: D1SC04241F/cit14
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.202000234
– volume: 37
  start-page: 9768
  year: 2004
  ident: D1SC04241F/cit42
  publication-title: Macromolecules
  doi: 10.1021/ma048438x
– volume: 55
  start-page: 4920
  year: 2014
  ident: D1SC04241F/cit5
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.07.047
– volume: 6
  start-page: 1575
  year: 2020
  ident: D1SC04241F/cit3
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.014
– volume-title: Kirk-Othmer Encyclopedia of Chemical Technology
  year: 2000
  ident: D1SC04241F/cit10
– volume: 69
  start-page: 47
  year: 2017
  ident: D1SC04241F/cit49
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.02.005
– volume: 137
  start-page: 15430
  year: 2015
  ident: D1SC04241F/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11599
– volume: 45
  start-page: 6371
  year: 2012
  ident: D1SC04241F/cit46
  publication-title: Macromolecules
  doi: 10.1021/ma301303b
– volume: 138
  start-page: 1848
  year: 2016
  ident: D1SC04241F/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13565
– volume: 48
  start-page: 6862
  year: 2015
  ident: D1SC04241F/cit43
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01454
– volume: 58
  start-page: 13323
  year: 2019
  ident: D1SC04241F/cit22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906471
– volume: 134
  start-page: 109834
  year: 2020
  ident: D1SC04241F/cit11
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.109834
– volume: 10
  start-page: 5721
  year: 2019
  ident: D1SC04241F/cit13
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY01012B
– volume: 10
  start-page: 6315
  year: 2019
  ident: D1SC04241F/cit29
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY01013K
– volume: 5
  start-page: 3536
  year: 2014
  ident: D1SC04241F/cit50
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01374C
– volume: 10
  start-page: 584
  year: 2021
  ident: D1SC04241F/cit36
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.1c00179
– volume: 29
  start-page: 329
  year: 2004
  ident: D1SC04241F/cit40
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2004.01.002
– volume: 8
  start-page: 859
  year: 2019
  ident: D1SC04241F/cit23
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b00405
– volume: 5
  start-page: 796
  year: 2016
  ident: D1SC04241F/cit17
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.6b00392
– volume: 133
  start-page: 11128
  year: 2011
  ident: D1SC04241F/cit51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205080u
– volume: 32
  start-page: 4826
  year: 1999
  ident: D1SC04241F/cit39
  publication-title: Macromolecules
  doi: 10.1021/ma990175x
– volume: 213
  start-page: 2659
  year: 2012
  ident: D1SC04241F/cit21
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201200461
– volume: 52
  start-page: 3551
  year: 2019
  ident: D1SC04241F/cit34
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00454
– volume: 7
  start-page: 677
  year: 2018
  ident: D1SC04241F/cit7
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00295
– volume: 59
  start-page: 561
  year: 2019
  ident: D1SC04241F/cit9
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2019.1579227
– volume: 9
  start-page: 4332
  year: 2018
  ident: D1SC04241F/cit37
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00033F
– volume: 9
  start-page: 459
  year: 2020
  ident: D1SC04241F/cit41
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.0c00121
– volume: 50
  start-page: 8438
  year: 2017
  ident: D1SC04241F/cit31
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01890
– volume: 131
  start-page: 5598
  year: 2019
  ident: D1SC04241F/cit20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814573
SSID ssj0000331527
Score 2.4571695
Snippet The dispersity ( ) of a polymer is a key parameter in material design, and variations in can have a strong influence on fundamental polymer properties. Despite...
The dispersity ( Đ ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties....
The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties....
SourceID pubmedcentral
hal
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14376
SubjectTerms Block copolymers
Chemical Sciences
Chemical synthesis
Chemistry
Coordination compounds
Design parameters
Dispersion
Molecular weight
Molecular weight distribution
Polymerization
Polymers
Quantitative analysis
Radicals
Title Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers
URI https://www.ncbi.nlm.nih.gov/pubmed/34880988
https://www.proquest.com/docview/2595575605
https://www.proquest.com/docview/2623080990
https://hal.science/hal-03832548
https://pubmed.ncbi.nlm.nih.gov/PMC8580105
Volume 12
WOSCitedRecordID wos000709443300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLf2JiS48D3oGE8BduFQ0aZfCbep8LTDNCG-9G5Vm6RatdG-td2k3fnDsdO-ompM4pq4bVQ79s-xYwMcqtCYQOAG1GWi3BDVsFsUPHLRtvAiRgDh20pMP0-S01OxXssvO3B4RwQ_kB-03ymKz_klKVr0uskl_5pOByleEIytWbkX-m4ccW9bhnT29MzwLM4o7fE2prydGrlot51ArMVZPfq_tT6GhyOiZEeDCDyBHVM_hfvptpHbM_idDunodPGc6YpKg1MiBqtqluO60PVn6Hn_Yr3FsKZlbW6DN2zTXNxQQGe4qfkRxzeVZnmt2eVVXtvbaagrWXdTI4rsqo41JWtq426anhVoJM-ZasZ3dM_hx-rz9_TYHZsvuCqMee_GicljQxfljfJ4WRr0Q2LDhULMhigi0ImMvNwEMdWflybWpS9zYm2BKiBEgj3YrfGbL4FpT3paGEoHkaGiAmtewTVPFLXICQrpwPstZzI1VianBhkXmY2QBzL75H9L7X9dOfBuot0M9Tj-SfUWGTwRUAnt46OTjMY8dMnRKRbXvgMHW_5n48btMvQGI0Sw6OQ58GaaRoZRHCWviScZR8iIQBvtuAMvBnGZPhWQQpRCOJDMBGm2lvlMXZ3Zst4iEtSu1IE9FLmJ_q9I7d818QoecMq0scmJB7Dbt1fmNdxT133VtUtYJGuxtGcNS7tz_gA1dxF5
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+dispersity+in+aqueous+atom+transfer+radical+polymerization%3A+rapid+and+quantitative+synthesis+of+one-pot+block+copolymers&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Hyun+Suk&rft.au=Parkatzidis%2C+Kostas&rft.au=Harrisson%2C+Simon&rft.au=Truong%2C+Nghia+P&rft.date=2021-11-10&rft.issn=2041-6520&rft.volume=12&rft.issue=43&rft.spage=14376&rft_id=info:doi/10.1039%2Fd1sc04241f&rft_id=info%3Apmid%2F34880988&rft.externalDocID=34880988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon