Ketamine and Active Ketamine Metabolites Regulate STAT3 and the Type I Interferon Pathway in Human Microglia: Molecular Mechanisms Linked to the Antidepressant Effects of Ketamine
Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant e...
Uloženo v:
| Vydáno v: | Frontiers in pharmacology Ročník 10; s. 1302 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media S.A
05.11.2019
|
| Témata: | |
| ISSN: | 1663-9812, 1663-9812 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2
)-hydroxynorketamine (HNK), which also appear to play a major role in ketamine's rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the "response to type I interferon" pathway. Our data also suggest that STAT3 might play a role in ketamine's antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1). |
|---|---|
| AbstractList | Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2R,6R;2S,6S)-hydroxynorketamine (HNK), which also appear to play a major role in ketamine’s rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the “response to type I interferon” pathway. Our data also suggest that STAT3 might play a role in ketamine’s antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1). Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2 )-hydroxynorketamine (HNK), which also appear to play a major role in ketamine's rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the "response to type I interferon" pathway. Our data also suggest that STAT3 might play a role in ketamine's antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1). Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2R,6R;2S,6S)-hydroxynorketamine (HNK), which also appear to play a major role in ketamine's rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the "response to type I interferon" pathway. Our data also suggest that STAT3 might play a role in ketamine's antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1).Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2R,6R;2S,6S)-hydroxynorketamine (HNK), which also appear to play a major role in ketamine's rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the "response to type I interferon" pathway. Our data also suggest that STAT3 might play a role in ketamine's antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1). |
| Author | Li, Hu Weinshilboum, Richard M. Zhang, Lingxin Zhang, Cheng Ho, Ming-Fen |
| AuthorAffiliation | Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, MN , United States |
| AuthorAffiliation_xml | – name: Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, MN , United States |
| Author_xml | – sequence: 1 givenname: Ming-Fen surname: Ho fullname: Ho, Ming-Fen – sequence: 2 givenname: Cheng surname: Zhang fullname: Zhang, Cheng – sequence: 3 givenname: Lingxin surname: Zhang fullname: Zhang, Lingxin – sequence: 4 givenname: Hu surname: Li fullname: Li, Hu – sequence: 5 givenname: Richard M. surname: Weinshilboum fullname: Weinshilboum, Richard M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31827434$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ksFuEzEQhleoiJbSOyfkI5cEr-31ejkgRVWhEYlAEM6W1x4nLhs7tZ2iPhcviJOUqEXCF4_G_3wz1vwvqxMfPFTV6xqPKRXdO7tZqTgmuO7GuKaYPKvOas7pqBM1OXkUn1YXKd3gcmjXUc5eVKe0FqRllJ1Vvz9DVmvnASlv0ERndwfomJuXoA-Dy5DQN1huB5UBfV9MFnQvzytAi_sNoCma-gzRQgwefVV59UvdI-fR9XatPJo7HcNycOo9mocBdMHEgtYr5V1aJzRz_icUWtgDJz47A5sIKSmf0ZW1oHNCwR7HelU9t2pIcPFwn1c_Pl4tLq9Hsy-fppeT2UgzTvKI4073XLdElM_2fauFptYaZqBuW6EtNQ2Bum-N6rUxoqGMFg3rLVe8ZtjQ82p64JqgbuQmurWK9zIoJ_eJEJdSxez0AFLgzpi2jIotY0yRngighKiGES6o5oX14cDabPs1GA0-RzU8gT598W4ll-FOcsGE6OoCePsAiOF2CynLtUsahkF5CNskCSUNxbjhTZG-edzr2OTv1osAHwRlLylFsEdJjeXOW3LvLbnzltx7q5Twf0q0yyq7sJvWDf8v_AMJxdet |
| CitedBy_id | crossref_primary_10_1016_j_bbi_2025_03_009 crossref_primary_10_1007_s11255_025_04613_z crossref_primary_10_1016_j_neuropharm_2020_108336 crossref_primary_10_1016_j_cbi_2020_109006 crossref_primary_10_1038_s41380_020_00904_2 crossref_primary_10_3390_ijms24119482 crossref_primary_10_1007_s11916_021_00977_w crossref_primary_10_1007_s11064_022_03772_0 crossref_primary_10_1038_s41398_024_03005_8 crossref_primary_10_3390_cells14110831 crossref_primary_10_3389_fnsys_2025_1502589 crossref_primary_10_1515_tnsci_2020_0167 crossref_primary_10_1016_j_drudis_2023_103518 crossref_primary_10_1007_s11427_020_1815_6 crossref_primary_10_1007_s10565_024_09981_3 crossref_primary_10_1016_j_phrs_2025_107894 crossref_primary_10_1016_j_bbih_2021_100383 crossref_primary_10_1124_pharmrev_120_000149 crossref_primary_10_1111_ejn_14756 crossref_primary_10_1016_j_neulet_2021_136251 crossref_primary_10_1016_j_taap_2020_115261 crossref_primary_10_1111_cpr_12804 crossref_primary_10_3389_fphar_2021_649144 crossref_primary_10_3389_fphar_2022_986238 crossref_primary_10_1124_jpet_123_001823 crossref_primary_10_1038_s41380_022_01673_w crossref_primary_10_1016_j_neuron_2022_05_001 crossref_primary_10_1073_pnas_2305772120 crossref_primary_10_3389_fnins_2021_657714 crossref_primary_10_1016_j_heliyon_2023_e14368 crossref_primary_10_1016_j_neubiorev_2021_09_018 crossref_primary_10_1097_JS9_0000000000000619 |
| Cites_doi | 10.1016/j.neuroscience.2015.01.008 10.1016/j.neuropharm.2012.12.009 10.1038/mp.2013.87 10.1016/j.jpsychires.2019.01.010 10.4161/jkst.23931 10.1093/nar/gkx1081 10.1073/pnas.1206458109 10.1038/tp.2016.145 10.1038/ng1180 10.1016/j.bcp.2018.03.032 10.1126/science.1190287 10.1038/nprot.2008.211 10.1038/mp.2016.249 10.1097/WNR.0000000000001131 10.1038/nrn2297 10.1124/pr.109.002071 10.1016/j.biopsych.2015.12.025 10.1038/npp.2017.93 10.3389/fnins.2015.00249 10.1016/j.biopsych.2014.06.021 10.1038/nri3581 10.1016/j.nlm.2013.04.015 10.1016/j.immuni.2006.08.014 10.1016/j.jaci.2004.06.042 10.1038/sj.mp.4001643 10.1016/j.biopsych.2012.09.006 10.1038/mp.2015.211 10.1016/j.celrep.2017.05.013 10.1038/npp.2013.128 10.2147/NDT.S19617 10.1111/cns.12099 10.1097/WNR.0000000000001185 10.1073/pnas.0506580102 10.1016/j.biopsych.2012.03.004 10.1038/nature17998 10.1186/gb-2013-14-4-r36 10.1186/s13059-014-0550-8 10.1093/nar/gkt214 10.1038/npp.2016.236 10.1038/tp.2017.31 10.1096/fj.201601293RR 10.1016/j.tacc.2014.03.002 10.1038/nmeth.1923 10.1016/j.biopsych.2017.05.016 10.1111/j.1365-2125.2012.04198.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 Ho, Zhang, Zhang, Li and Weinshilboum. Copyright © 2019 Ho, Zhang, Zhang, Li and Weinshilboum 2019 Ho, Zhang, Zhang, Li and Weinshilboum |
| Copyright_xml | – notice: Copyright © 2019 Ho, Zhang, Zhang, Li and Weinshilboum. – notice: Copyright © 2019 Ho, Zhang, Zhang, Li and Weinshilboum 2019 Ho, Zhang, Zhang, Li and Weinshilboum |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fphar.2019.01302 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1663-9812 |
| ExternalDocumentID | oai_doaj_org_article_809dd7ffe0f444a2b28e322a542683c6 PMC6848891 31827434 10_3389_fphar_2019_01302 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM ACXDI IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c462t-609cb6c728827bb7c8c3ffd4de1778cf3d52e1b7dabcdd853437c84bf6a6140d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498184100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1663-9812 |
| IngestDate | Fri Oct 03 12:45:43 EDT 2025 Tue Sep 30 16:32:04 EDT 2025 Thu Oct 02 09:51:19 EDT 2025 Thu Jan 02 22:59:30 EST 2025 Sat Nov 29 05:30:35 EST 2025 Tue Nov 18 22:29:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RNA-seq ketamine microglia gene expression antidepressant |
| Language | English |
| License | Copyright © 2019 Ho, Zhang, Zhang, Li and Weinshilboum. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-609cb6c728827bb7c8c3ffd4de1778cf3d52e1b7dabcdd853437c84bf6a6140d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Hector J. Caruncho, University of Victoria, Canada This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology Reviewed by: Bashkim Kadriu, National Institute of Mental Health (NIMH), United States; Yanbo Zhang, University of Saskatchewan, Canada |
| OpenAccessLink | https://doaj.org/article/809dd7ffe0f444a2b28e322a542683c6 |
| PMID | 31827434 |
| PQID | 2325300565 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_809dd7ffe0f444a2b28e322a542683c6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6848891 proquest_miscellaneous_2325300565 pubmed_primary_31827434 crossref_primary_10_3389_fphar_2019_01302 crossref_citationtrail_10_3389_fphar_2019_01302 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-05 |
| PublicationDateYYYYMMDD | 2019-11-05 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in pharmacology |
| PublicationTitleAlternate | Front Pharmacol |
| PublicationYear | 2019 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Lépine (B20) 2011; 7 Collo (B4) 2018; 29 Icardi (B14) 2012; 109 Langmead (B19) 2012; 9 Chen (B3) 2004; 114 Huang (B13) 2008; 4 Yang (B39) 2015; 77 Zhao (B44) 2012; 74 Sarkar (B32) 2016; 15 Zanos (B41) 2016; 533 Li (B21) 2010; 329 Taha (B36) 2013; 105 Tripathi (B37) 2017; 19 Harraz (B11) 2016; 21 Rotroff (B31) 2016; 6 van Boxel-Dezaire (B38) 2006; 25 Ivashkiv (B15) 2014; 14 Carrier (B2) 2013; 70 Franceschelli (B8) 2015; 290 Kiraly (B17) 2017; 7 Collo (B5) 2019; 30 Ho (B12) 2018; 152 Scheuing (B33) 2015; 9 Zunszain (B45) 2013; 18 Liu (B23) 2013; 38 Marques-Deak (B25) 2005; 10 Zarate (B42) 2017; 22 Dantzer (B6) 2008; 9 Mootha (B29) 2003; 34 Subramanian (B35) 2005; 102 Au-Yeung (B1) 2013; 2 Mion (B27) 2013; 19 Kim (B16) 2013; 14 Love (B24) 2014; 15 Gillies (B10) 2010; 62 Liao (B22) 2013; 41 Yang (B40) 2018; 83 Freeman (B9) 2019; 110 Davis (B7) 2018; 46 Sleigh (B34) 2014; 4 Zarate (B43) 2012; 72 Kwon (B18) 2017; 42 Monteggia (B28) 2013; 73 McGregor (B26) 2017; 31 Patton (B30) 2017; 42 |
| References_xml | – volume: 290 start-page: 49 year: 2015 ident: B8 article-title: Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and “depressed” mice exposed to chronic mild stress publication-title: Neuroscience. doi: 10.1016/j.neuroscience.2015.01.008 – volume: 70 start-page: 27 year: 2013 ident: B2 article-title: Sex differences in the antidepressant-like effects of ketamine publication-title: Neuropharmacology. doi: 10.1016/j.neuropharm.2012.12.009 – volume: 18 start-page: 1236 year: 2013 ident: B45 article-title: Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.87 – volume: 110 start-page: 166 year: 2019 ident: B9 article-title: Sex differences in response to ketamine as a rapidly acting intervention for treatment resistant depression publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2019.01.010 – volume: 2 year: 2013 ident: B1 article-title: Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway publication-title: JAK-STAT. doi: 10.4161/jkst.23931 – volume: 46 start-page: D794 year: 2018 ident: B7 article-title: The Encyclopedia of DNA elements (ENCODE): data portal update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1081 – volume: 109 start-page: 12058 year: 2012 ident: B14 article-title: The Sin3a repressor complex is a master regulator of STAT transcriptional activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1206458109 – volume: 6 year: 2016 ident: B31 article-title: Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.145 – volume: 34 start-page: 267 year: 2003 ident: B29 article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. genetics. doi: 10.1038/ng1180 – volume: 152 start-page: 279 year: 2018 ident: B12 article-title: Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.03.032 – volume: 329 start-page: 959 year: 2010 ident: B21 article-title: mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists publication-title: Sci. (New York NY). doi: 10.1126/science.1190287 – volume: 4 start-page: 44 year: 2008 ident: B13 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protocols. doi: 10.1038/nprot.2008.211 – volume: 22 start-page: 324 year: 2017 ident: B42 article-title: Ketamine: translating mechanistic discoveries into the next generation of glutamate modulators for mood disorders publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.249 – volume: 29 start-page: 1425 year: 2018 ident: B4 article-title: (2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans publication-title: NeuroReport. doi: 10.1097/WNR.0000000000001131 – volume: 9 start-page: 46 year: 2008 ident: B6 article-title: From inflammation to sickness and depression: when the immune system subjugates the brain publication-title: Nat. Rev. Neuroscience. doi: 10.1038/nrn2297 – volume: 62 start-page: 155 year: 2010 ident: B10 article-title: Estrogen Actions in the Brain and the Basis for Differential Action in Men and Women: A Case for Sex-Specific Medicines publication-title: Pharmacological Reviews. doi: 10.1124/pr.109.002071 – volume: 15 start-page: 448 year: 2016 ident: B32 article-title: Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.12.025 – volume: 42 start-page: 2072 year: 2017 ident: B18 article-title: Dysfunction of microglial STAT3 alleviates depressive behavior via neuron-microglia interactions publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.93 – volume: 9 start-page: 1 year: 2015 ident: B33 article-title: Antidepressant mechanism of ketamine: perspective from preclinical studies publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00249 – volume: 77 start-page: 20 year: 2015 ident: B39 article-title: Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2014.06.021 – volume: 14 start-page: 36 year: 2014 ident: B15 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 105 start-page: 100 year: 2013 ident: B36 article-title: The role of eEF2 pathway in learning and synaptic plasticity publication-title: Neurobiol. Learn. Memory. doi: 10.1016/j.nlm.2013.04.015 – volume: 25 start-page: 361 year: 2006 ident: B38 article-title: Complex modulation of cell type-specific signaling in response to type I interferons publication-title: Immunity. doi: 10.1016/j.immuni.2006.08.014 – volume: 114 start-page: 476 year: 2004 ident: B3 article-title: Turning off signal transducer and activator of transcription (STAT): the negative regulation of STAT signaling publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2004.06.042 – volume: 10 start-page: 239 year: 2005 ident: B25 article-title: Brain-immune interactions and disease susceptibility publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4001643 – volume: 73 start-page: 1199 year: 2013 ident: B28 article-title: The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.09.006 – volume: 21 start-page: 313 year: 2016 ident: B11 article-title: Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation publication-title: Mol. Psychiatry doi: 10.1038/mp.2015.211 – volume: 19 start-page: 1888 year: 2017 ident: B37 article-title: Genome-wide analysis of STAT3-mediated transcription during early human Th17 cell differentiation publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.013 – volume: 38 start-page: 2268 year: 2013 ident: B23 article-title: GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine publication-title: Neuropsychopharmacol.: official Publ. Am. Coll. Neuropsychopharmacology. doi: 10.1038/npp.2013.128 – volume: 7 start-page: 3 year: 2011 ident: B20 article-title: The increasing burden of depression publication-title: Neuropsychiatr. Dis. Treatment. doi: 10.2147/NDT.S19617 – volume: 19 start-page: 370 year: 2013 ident: B27 article-title: Ketamine pharmacology: an update (Pharmacodynamics and Molecular Aspects, Recent Findings) publication-title: CNS Neurosci. Therapeutics. doi: 10.1111/cns.12099 – volume: 30 start-page: 207 year: 2019 ident: B5 article-title: Ketamine increases the expression of GluR1 and GluR2 α-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor subunits in human dopaminergic neurons differentiated from induced pluripotent stem cells publication-title: NeuroReport doi: 10.1097/WNR.0000000000001185 – volume: 102 start-page: 15545 year: 2005 ident: B35 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0506580102 – volume: 72 start-page: 331 year: 2012 ident: B43 article-title: Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.03.004 – volume: 533 start-page: 481 year: 2016 ident: B41 article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites publication-title: Nature. doi: 10.1038/nature17998 – volume: 14 start-page: 36 year: 2013 ident: B16 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. doi: 10.1186/gb-2013-14-4-r36 – volume: 15 start-page: 550 year: 2014 ident: B24 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biology. doi: 10.1186/s13059-014-0550-8 – volume: 41 start-page: e108 year: 2013 ident: B22 article-title: The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote publication-title: Nucleic Acids Research. doi: 10.1093/nar/gkt214 – volume: 42 start-page: 1220 year: 2017 ident: B30 article-title: Ketamine corrects stress-induced cognitive dysfunction through JAK2/STAT3 signaling in the orbitofrontal cortex publication-title: Neuropsychopharmacol.: official Publ. Am. Coll. Neuropsychopharmacology. doi: 10.1038/npp.2016.236 – volume: 7 start-page: e1065 year: 2017 ident: B17 article-title: Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome publication-title: Trans. Psychiatry doi: 10.1038/tp.2017.31 – volume: 31 start-page: 3449 year: 2017 ident: B26 article-title: Canonical JAK-STAT signaling is pivotal for long-term depression at adult hippocampal temporoammonic-CA1 synapses publication-title: FASEB Journal. doi: 10.1096/fj.201601293RR – volume: 4 start-page: 76 year: 2014 ident: B34 article-title: Ketamine – More mechanisms of action than just NMDA blockade publication-title: Trends Anaesthesia Crit. Care. doi: 10.1016/j.tacc.2014.03.002 – volume: 9 start-page: 357 year: 2012 ident: B19 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Meth. doi: 10.1038/nmeth.1923 – volume: 83 start-page: 18 year: 2018 ident: B40 article-title: Mechanistic target of rapamycin–independent antidepressant effects of (R)-Ketamine in a social defeat stress model publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.05.016 – volume: 74 start-page: 304 year: 2012 ident: B44 article-title: Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2012.04198.x |
| SSID | ssj0000399364 |
| Score | 2.3930428 |
| Snippet | Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1302 |
| SubjectTerms | antidepressant gene expression ketamine microglia Pharmacology RNA-seq |
| Title | Ketamine and Active Ketamine Metabolites Regulate STAT3 and the Type I Interferon Pathway in Human Microglia: Molecular Mechanisms Linked to the Antidepressant Effects of Ketamine |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31827434 https://www.proquest.com/docview/2325300565 https://pubmed.ncbi.nlm.nih.gov/PMC6848891 https://doaj.org/article/809dd7ffe0f444a2b28e322a542683c6 |
| Volume | 10 |
| WOSCitedRecordID | wos000498184100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1663-9812 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399364 issn: 1663-9812 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1663-9812 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399364 issn: 1663-9812 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFUZ6BUg0SqoTUsM7TNrcFtQLBVitY0N4ix482UputNiloL_wp_iBjJ5vuIgQXLlGUOI6VmXi-8Yy_IeSFptSg2YlCLoUKU57LsGSUhsygdXP4oFtw-_qRnZzw-VxMN0p9uZywjh64-3AjToXWzFpDbZqmMi5jblAJZYamhSfKk21TJjacKT8HO7ubp11cEr0wMbKXZ9Lxf0bilQ_WbdkhT9f_J4z5e6rkhu05vkvu9KARxt1gd8kNU98jB9OOdXp1CLPrTVTNIRzA9JqPenWf_PxgWnmBaBJkrWHsJzgYrk3wpHRJcKaBT11hegOfZ-NZ4psjPgTnq8J78IuH1iwXNUwRN36XK6hq8FEAmLi8vtPzSr6GybrgLnbtthVXzUUDzuU12NvCdziu26pPwUXBQseg3MDCDsN6QL4cH83evgv7Wg2hSvO4DXMqVJkrFiNiZ2XJFFeJtTrVJmKMK5voLDZRybQsldaIEdIE26SlzSUCBKqTh2SnXtTmMQFBBXqlBiVNtYvqSoQQSnEZW3w84iwgo7XkCtUTmbt6GucFOjRO1oWXdeFkXXhZB-Tl8MRlR-Lxl7ZvnDIM7Rz9tr-ASln0Sln8SykD8nytSgX-ri4GI2uzuGoKBLCZqxCQZwF51KnW8CqcXmMEdGlA2JbSbY1l-05dnXlK8JzjRCyiJ_9j8E_Jbfc5_IbLbI_stMsr84zcUt_aqlnuk5tszvf934bHyY-jX-6uMpA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketamine+and+Active+Ketamine+Metabolites+Regulate+STAT3+and+the+Type+I+Interferon+Pathway+in+Human+Microglia%3A+Molecular+Mechanisms+Linked+to+the+Antidepressant+Effects+of+Ketamine&rft.jtitle=Frontiers+in+pharmacology&rft.au=Ho%2C+Ming-Fen&rft.au=Zhang%2C+Cheng&rft.au=Zhang%2C+Lingxin&rft.au=Li%2C+Hu&rft.date=2019-11-05&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=10&rft_id=info:doi/10.3389%2Ffphar.2019.01302&rft_id=info%3Apmid%2F31827434&rft.externalDocID=PMC6848891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |