On the Concept of Depth for Functional Data

The statistical analysis of functional data is a growing need in many research areas. In particular, a robust methodology is important to study curves, which are the output of many experiments in applied statistics. As a starting point for this robust analysis, we propose, analyze, and apply a new d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association Jg. 104; H. 486; S. 718 - 734
Hauptverfasser: López-Pintado, Sara, Romo, Juan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria, VA Taylor & Francis 01.06.2009
American Statistical Association
Taylor & Francis Ltd
Schlagworte:
ISSN:0162-1459, 1537-274X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The statistical analysis of functional data is a growing need in many research areas. In particular, a robust methodology is important to study curves, which are the output of many experiments in applied statistics. As a starting point for this robust analysis, we propose, analyze, and apply a new definition of depth for functional observations based on the graphic representation of the curves. Given a collection of functions, it establishes the "centrality" of an observation and provides a natural center-outward ordering of the sample curves. Robust statistics, such as the median function or a trimmed mean function, can be defined from this depth definition. Its finite-dimensional version provides a new depth for multivariate data that is computationally feasible and useful for studying high-dimensional observations. Thus, this new depth is also suitable for complex observations such as microarray data, images, and those arising in some recent marketing and financial studies. Natural properties of these new concepts are established and the uniform consistency of the sample depth is proved. Simulation results show that the corresponding depth based trimmed mean presents better performance than other possible location estimators proposed in the literature for some contaminated models. Data depth can be also used to screen for outliers. The ability of the new notions of depth to detect "shape" outliers is presented. Several real datasets are considered to illustrate this new concept of depth, including applications to microarray observations, weather data, and growth curves. Finally, through this depth, we generalize to functions the Wilcoxon rank sum test. It allows testing whether two groups of curves come from the same population. This functional rank test when applied to children growth curves shows different growth patterns for boys and girls.
AbstractList The statistical analysis of functional data is a growing need in many research areas. In particular, a robust methodology is important to study curves, which are the output of many experiments in applied statistics. As a starting point for this robust analysis, we propose, analyze, and apply a new definition of depth for functional observations based on the graphic representation of the curves. Given a collection of functions. it establishes the "centrality" of an observation and provides a natural center-outward ordering of the sample curves. Robust statistics, such as the median function or a trimmed mean function, can be defined from this depth definition. Its finite-dimensional version provides a new depth for multivariate data that is computationally feasible and useful for studying high-dimensional observations. Thus, this new depth is also suitable for complex observations such as microarray data, images. and those arising in some recent marketing and financial studies. Natural properties of these new concepts are established and the uniform consistency of the sample depth is proved. Simulation results show that the corresponding depth based trimmed mean presents better performance than other possible location estimators proposed in the literature for some contaminated models. Data depth can be also used to screen for outliers. The ability of the new notions of depth to detect "shape" outliers is presented. Several real datasets are considered to illustrate this new concept of depth, including applications to microarray observations, weather data, and growth curves. Finally, through this depth. we generalize to functions the Wilcoxon rank sum test. It allows testing whether two groups of curves come from the same population. This functional rank test when applied to children growth curves shows different growth patterns for boys and girls. [PUBLICATION ABSTRACT]
The statistical analysis of functional data is a growing need in many research areas. In particular, a robust methodology is important to study curves, which are the output of many experiments in applied statistics. As a starting point for this robust analysis, we propose, analyze, and apply a new definition of depth for functional observations based on the graphic representation of the curves. Given a collection of functions, it establishes the "centrality" of an observation and provides a natural center-outward ordering of the sample curves. Robust statistics, such as the median function or a trimmed mean function, can be defined from this depth definition. Its finite-dimensional version provides a new depth for multivariate data that is computationally feasible and useful for studying high-dimensional observations. Thus, this new depth is also suitable for complex observations such as microarray data, images, and those arising in some recent marketing and financial studies. Natural properties of these new concepts are established and the uniform consistency of the sample depth is proved. Simulation results show that the corresponding depth based trimmed mean presents better performance than other possible location estimators proposed in the literature for some contaminated models. Data depth can be also used to screen for outliers. The ability of the new notions of depth to detect "shape" outliers is presented. Several real datasets are considered to illustrate this new concept of depth, including applications to microarray observations, weather data, and growth curves. Finally, through this depth, we generalize to functions the Wilcoxon rank sum test. It allows testing whether two groups of curves come from the same population. This functional rank test when applied to children growth curves shows different growth patterns for boys and girls.
Author López-Pintado, Sara
Romo, Juan
Author_xml – sequence: 1
  givenname: Sara
  surname: López-Pintado
  fullname: López-Pintado, Sara
– sequence: 2
  givenname: Juan
  surname: Romo
  fullname: Romo, Juan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21515002$$DView record in Pascal Francis
BookMark eNp1kctLAzEQxoMoWB9Xb8Ii6EW2ZrKbxx6lPkHwouAtjGmCW7ZJTVLE_94sVQ-CuQxkft88vtkj2z54S8gR0ClApy4WmHDKKO2mFKjaIhPgjayZbF-2yYSCYDW0vNsleyktaHlSqQk5f_RVfrPVLHhjV7kKrroq8a1yIVY3a29yHzwO1RVmPCA7DodkD7_jPnm-uX6a3dUPj7f3s8uH2rSC5ZoDzqFBYYXCjs4VOMFYawHBUem6rvy_MuROKSUcGuaMlY01kguqGk55s0_ONnVXMbyvbcp62SdjhwG9DeukGwlCtiAKePIHXIR1LOMmXdZWAmg7QqffECaDg4voTZ_0KvZLjJ-aAQdOKSvcdMOZGFKK1v0iQPVosB4N1qPBejS4CNo_AtNnHP3KEfvhf9nxRrZIOcTfJi3lHWMgS77b5HtfbrDEjxCHuc74OYT4M3zzT-0vjz-bpA
CODEN JSTNAL
CitedBy_id crossref_primary_10_3390_app112311475
crossref_primary_10_1080_01621459_2021_2011298
crossref_primary_10_3389_fpubh_2023_1061331
crossref_primary_10_1016_j_csda_2012_06_013
crossref_primary_10_1016_j_knosys_2021_107527
crossref_primary_10_1080_10485252_2023_2226262
crossref_primary_10_1111_cgf_15142
crossref_primary_10_1016_j_ejor_2025_06_028
crossref_primary_10_1007_s10479_019_03474_x
crossref_primary_10_1007_s11749_023_00858_x
crossref_primary_10_1080_02664763_2025_2490093
crossref_primary_10_1002_hsr2_1016
crossref_primary_10_1214_17_STS625
crossref_primary_10_1016_j_jmva_2012_01_016
crossref_primary_10_1016_j_socnet_2016_12_002
crossref_primary_10_1080_01621459_2015_1110033
crossref_primary_10_1080_10618600_2016_1209115
crossref_primary_10_1016_j_newast_2025_102459
crossref_primary_10_1080_02664763_2020_1768227
crossref_primary_10_1080_00401706_2019_1574241
crossref_primary_10_1088_1741_2552_acb79f
crossref_primary_10_1080_10618600_2024_2432978
crossref_primary_10_1080_16843703_2016_1139841
crossref_primary_10_1038_s41598_018_26038_8
crossref_primary_10_1016_j_epsr_2022_108593
crossref_primary_10_1016_j_fss_2023_108678
crossref_primary_10_1214_14_AOS1226
crossref_primary_10_1016_j_jmva_2021_104879
crossref_primary_10_1109_MCG_2015_70
crossref_primary_10_1111_anzs_12326
crossref_primary_10_1002_sta4_567
crossref_primary_10_1080_00949655_2021_1991926
crossref_primary_10_1002_2017WR021129
crossref_primary_10_1038_s41598_023_42041_0
crossref_primary_10_1002_sim_8861
crossref_primary_10_1080_03610926_2013_847101
crossref_primary_10_1111_cgf_13419
crossref_primary_10_1111_rssb_12172
crossref_primary_10_3389_fnins_2015_00282
crossref_primary_10_1007_s13253_022_00518_x
crossref_primary_10_1007_s10260_015_0297_8
crossref_primary_10_1016_j_csda_2021_107400
crossref_primary_10_3390_e20010033
crossref_primary_10_1109_TVCG_2018_2864505
crossref_primary_10_1080_02664763_2017_1319470
crossref_primary_10_1080_01621459_2025_2520467
crossref_primary_10_1007_s11036_016_0733_5
crossref_primary_10_1080_00949655_2021_1885670
crossref_primary_10_1016_j_ins_2022_04_029
crossref_primary_10_1080_03610918_2013_788703
crossref_primary_10_1016_j_jspi_2021_04_006
crossref_primary_10_3390_math8010058
crossref_primary_10_1016_j_cmpb_2022_106670
crossref_primary_10_1080_02664763_2021_1951685
crossref_primary_10_1007_s11222_023_10213_7
crossref_primary_10_1016_j_csda_2018_06_003
crossref_primary_10_1214_25_BA1549
crossref_primary_10_1016_j_jmva_2015_06_006
crossref_primary_10_1007_s41060_023_00420_w
crossref_primary_10_1080_01621459_2021_1902817
crossref_primary_10_1002_asmb_2616
crossref_primary_10_1016_j_jmva_2019_02_001
crossref_primary_10_1080_10618600_2022_2070171
crossref_primary_10_1007_s10260_015_0321_z
crossref_primary_10_1007_s11749_019_00651_9
crossref_primary_10_1016_j_media_2014_03_001
crossref_primary_10_1007_s00477_016_1291_x
crossref_primary_10_1016_j_aca_2020_11_039
crossref_primary_10_1016_j_spl_2016_12_012
crossref_primary_10_1093_jrsssb_qkaf030
crossref_primary_10_1002_sta4_109
crossref_primary_10_1214_20_STS767
crossref_primary_10_1016_j_jspi_2016_01_005
crossref_primary_10_1002_asmb_2844
crossref_primary_10_1080_10618600_2019_1575745
crossref_primary_10_1016_j_ijar_2024_109152
crossref_primary_10_1038_s41598_018_24874_2
crossref_primary_10_1016_j_jmva_2021_104738
crossref_primary_10_1214_17_AOS1658
crossref_primary_10_1002_env_2641
crossref_primary_10_3390_math11204358
crossref_primary_10_1111_j_1541_0420_2011_01573_x
crossref_primary_10_1007_s00357_020_09382_1
crossref_primary_10_1016_j_jmva_2014_09_004
crossref_primary_10_1080_02331888_2019_1700418
crossref_primary_10_1093_jrsssc_qlad074
crossref_primary_10_1080_03610918_2019_1699570
crossref_primary_10_1080_10618600_2018_1473781
crossref_primary_10_1080_01621459_2016_1256813
crossref_primary_10_3390_math10142374
crossref_primary_10_1007_s11634_019_00360_z
crossref_primary_10_1080_10618600_2023_2191667
crossref_primary_10_1007_s10260_025_00790_4
crossref_primary_10_1111_cgf_14498
crossref_primary_10_1080_01621459_2024_2360666
crossref_primary_10_1002_sta4_8
crossref_primary_10_3390_math10152734
crossref_primary_10_1002_sta4_250
crossref_primary_10_1080_10618600_2014_977447
crossref_primary_10_1002_sta4_39
crossref_primary_10_1177_1471082X16683111
crossref_primary_10_1038_s41366_025_01836_z
crossref_primary_10_1016_j_epidem_2023_100721
crossref_primary_10_1007_s10985_011_9208_y
crossref_primary_10_1007_s11634_014_0166_6
crossref_primary_10_1109_TAES_2024_3502579
crossref_primary_10_1016_j_stamet_2013_04_004
crossref_primary_10_1007_s11749_018_0598_y
crossref_primary_10_1016_j_cie_2024_109936
crossref_primary_10_6339_23_JDS1085
crossref_primary_10_1146_annurev_statistics_062614_042835
crossref_primary_10_1002_sam_11605
crossref_primary_10_1080_10485252_2024_2353615
crossref_primary_10_1093_biostatistics_kxu006
crossref_primary_10_1038_s41598_021_95866_y
crossref_primary_10_1051_e3sconf_202021803038
crossref_primary_10_1080_01621459_2020_1745815
crossref_primary_10_1016_j_csda_2016_07_007
crossref_primary_10_1080_00128775_2021_1927756
crossref_primary_10_1007_s00477_025_03015_y
crossref_primary_10_1016_j_csda_2022_107545
crossref_primary_10_1109_JBHI_2023_3283188
crossref_primary_10_1007_s11634_017_0290_1
crossref_primary_10_1007_s11634_022_00510_w
crossref_primary_10_1016_j_engappai_2023_106788
crossref_primary_10_5507_bp_2017_042
crossref_primary_10_1093_jssam_smz009
crossref_primary_10_1007_s00180_023_01362_4
crossref_primary_10_1016_j_eswa_2020_114433
crossref_primary_10_1214_25_BA1514
crossref_primary_10_1007_s11749_016_0502_6
crossref_primary_10_1016_j_knosys_2020_105960
crossref_primary_10_1007_s00362_017_0953_1
crossref_primary_10_1016_j_jmva_2015_05_012
crossref_primary_10_5604_01_3001_0014_0528
crossref_primary_10_1007_s00357_020_09372_3
crossref_primary_10_1007_s10651_022_00544_5
crossref_primary_10_1002_env_2851
crossref_primary_10_1016_j_spasta_2017_11_004
crossref_primary_10_1007_s10260_015_0323_x
crossref_primary_10_1080_00949655_2024_2394898
crossref_primary_10_1080_03610918_2014_944652
crossref_primary_10_1016_j_jmva_2017_10_004
crossref_primary_10_1016_j_ejor_2018_11_024
crossref_primary_10_1111_cgf_13397
crossref_primary_10_1016_j_jmva_2021_104890
crossref_primary_10_1080_21681163_2018_1523750
crossref_primary_10_1198_jcgs_2011_09224
crossref_primary_10_1109_TVCG_2020_3030394
crossref_primary_10_1016_j_spa_2016_04_011
crossref_primary_10_1080_00401706_2020_1769734
crossref_primary_10_3390_math9080820
crossref_primary_10_1080_10618600_2018_1537926
crossref_primary_10_1016_j_csda_2012_09_016
crossref_primary_10_1007_s00184_013_0454_8
crossref_primary_10_1007_s11205_022_03048_8
crossref_primary_10_1007_s00180_022_01282_9
crossref_primary_10_1007_s10472_013_9366_6
crossref_primary_10_1080_10618600_2022_2066680
crossref_primary_10_1016_j_seps_2024_102140
crossref_primary_10_1007_s11749_024_00952_8
crossref_primary_10_3390_e20090698
crossref_primary_10_1007_s11749_025_00968_8
crossref_primary_10_1007_s11634_019_00380_9
crossref_primary_10_1016_j_spasta_2017_06_005
crossref_primary_10_1007_s10518_015_9778_2
crossref_primary_10_1093_jrsssc_qlae006
crossref_primary_10_1016_j_scitotenv_2016_10_042
crossref_primary_10_1007_s11222_023_10216_4
crossref_primary_10_1016_j_jspi_2013_04_002
crossref_primary_10_1002_sta4_77
crossref_primary_10_1080_00401706_2017_1345700
crossref_primary_10_1002_cjs_11767
crossref_primary_10_1007_s13253_018_0319_8
crossref_primary_10_1016_j_apenergy_2021_117465
crossref_primary_10_1109_TVCG_2024_3350076
crossref_primary_10_1002_qre_2018
crossref_primary_10_1111_rssa_12228
crossref_primary_10_1214_20_AOS1996
crossref_primary_10_1109_TNSM_2021_3053835
crossref_primary_10_1002_qre_1605
crossref_primary_10_1016_j_jspi_2012_03_024
crossref_primary_10_1002_qre_1843
crossref_primary_10_1109_TVCG_2013_143
crossref_primary_10_1007_s10479_022_05099_z
crossref_primary_10_1002_env_2582
crossref_primary_10_1002_sta4_168
crossref_primary_10_1007_s00477_015_1096_3
crossref_primary_10_1016_j_ress_2025_111449
crossref_primary_10_1080_00401706_2019_1575285
crossref_primary_10_1002_env_1136
crossref_primary_10_1002_hbm_70185
crossref_primary_10_1007_s11749_014_0379_1
crossref_primary_10_1093_biomet_asu072
crossref_primary_10_1111_cgf_15084
crossref_primary_10_1007_s11222_023_10301_8
crossref_primary_10_1016_j_physa_2018_12_036
crossref_primary_10_1080_08982112_2022_2135009
crossref_primary_10_1016_j_spasta_2021_100494
crossref_primary_10_3390_math12040595
crossref_primary_10_1515_ijb_2014_0041
crossref_primary_10_1007_s11135_024_01876_z
crossref_primary_10_1016_j_jmva_2024_105375
crossref_primary_10_1093_biostatistics_kxp056
crossref_primary_10_1016_j_fss_2021_09_008
crossref_primary_10_1016_j_csda_2023_107813
crossref_primary_10_3390_app10030881
crossref_primary_10_1175_MWR_D_16_0351_1
crossref_primary_10_1016_j_eswa_2024_126065
crossref_primary_10_1016_j_jmva_2018_11_003
crossref_primary_10_1002_sta4_190
crossref_primary_10_1146_annurev_statistics_040220_105948
crossref_primary_10_1007_s13253_023_00543_4
crossref_primary_10_1016_j_spasta_2016_04_005
crossref_primary_10_1038_s41598_025_85718_4
crossref_primary_10_1057_s41273_017_0052_2
crossref_primary_10_1109_TVCG_2019_2921541
crossref_primary_10_1002_sta4_621
crossref_primary_10_1007_s11634_021_00460_9
crossref_primary_10_1016_j_egyr_2021_09_018
crossref_primary_10_1080_00401706_2021_2008504
crossref_primary_10_1080_10586458_2024_2423866
crossref_primary_10_1002_bimj_202300363
crossref_primary_10_1214_25_SS153
crossref_primary_10_1002_wics_70026
crossref_primary_10_1177_15741699251336015
crossref_primary_10_3389_fams_2022_852314
crossref_primary_10_1017_S2040174411000572
crossref_primary_10_1016_j_csda_2012_01_013
crossref_primary_10_1109_TNNLS_2017_2782711
crossref_primary_10_1109_TVCG_2014_2346455
crossref_primary_10_1080_10618600_2024_2374578
crossref_primary_10_1007_s11222_016_9683_9
crossref_primary_10_1016_j_csda_2023_107821
crossref_primary_10_3390_rs16071191
crossref_primary_10_1007_s11749_024_00954_6
crossref_primary_10_3150_17_BEJ929
crossref_primary_10_1007_s11634_022_00512_8
crossref_primary_10_1198_jcgs_2009_08158
crossref_primary_10_1007_s00362_012_0490_x
crossref_primary_10_1016_j_jmva_2015_10_016
crossref_primary_10_1007_s11634_020_00402_x
crossref_primary_10_1080_03610918_2024_2391869
crossref_primary_10_1007_s11071_022_07927_0
crossref_primary_10_1007_s11749_020_00734_y
crossref_primary_10_1016_j_csda_2013_09_030
crossref_primary_10_1007_s00180_015_0566_x
crossref_primary_10_1016_j_csda_2019_01_007
crossref_primary_10_1016_j_jmva_2018_09_012
crossref_primary_10_1007_s11009_020_09785_y
crossref_primary_10_1002_sim_8930
crossref_primary_10_1080_00949655_2022_2130922
crossref_primary_10_1002_qj_3632
crossref_primary_10_1029_2017JD028212
crossref_primary_10_1002_cjs_11724
crossref_primary_10_1002_sim_9342
crossref_primary_10_1016_j_csda_2018_03_017
crossref_primary_10_1080_01621459_2013_856795
crossref_primary_10_1007_s13253_012_0096_8
crossref_primary_10_1080_00401706_2020_1811156
crossref_primary_10_1080_01621459_2021_1917416
crossref_primary_10_1016_j_chemolab_2021_104420
crossref_primary_10_1007_s12561_025_09497_2
crossref_primary_10_1255_nirn_1260
crossref_primary_10_1111_insr_12611
crossref_primary_10_1186_s13362_016_0033_5
crossref_primary_10_1007_s13253_024_00648_4
crossref_primary_10_1016_j_fss_2021_09_015
crossref_primary_10_1016_j_apenergy_2025_125747
crossref_primary_10_1038_s41598_021_00678_9
crossref_primary_10_1016_j_jmoneco_2023_06_003
crossref_primary_10_1007_s10651_017_0384_0
crossref_primary_10_1007_s11749_025_00966_w
crossref_primary_10_1080_00401706_2022_2164063
crossref_primary_10_1007_s10463_013_0416_y
crossref_primary_10_1007_s11749_019_00669_z
crossref_primary_10_1016_j_fss_2024_109257
crossref_primary_10_1080_00949655_2015_1112391
crossref_primary_10_1016_j_spasta_2022_100607
crossref_primary_10_1016_j_csda_2020_106960
crossref_primary_10_1080_02664763_2024_2369954
crossref_primary_10_1080_00401706_2012_694781
crossref_primary_10_1002_met_70015
crossref_primary_10_1111_rssb_12102
crossref_primary_10_1080_01621459_2020_1769634
crossref_primary_10_1016_j_csda_2010_10_024
crossref_primary_10_1002_env_2458
crossref_primary_10_1080_02664763_2015_1092108
crossref_primary_10_1080_10618600_2025_2475137
crossref_primary_10_1007_s10182_013_0213_1
crossref_primary_10_1155_2018_5129735
crossref_primary_10_1007_s11749_025_00976_8
crossref_primary_10_1515_itit_2022_0033
crossref_primary_10_1002_for_2366
crossref_primary_10_1080_01621459_2020_1799810
crossref_primary_10_1016_j_media_2015_04_004
crossref_primary_10_1007_s10260_015_0303_1
crossref_primary_10_1080_03610918_2012_720744
crossref_primary_10_1093_biostatistics_kxr037
crossref_primary_10_1080_03610926_2012_746368
crossref_primary_10_3390_w15081553
crossref_primary_10_1002_2016WR019535
crossref_primary_10_1002_sta4_662
crossref_primary_10_1214_15_STS532
crossref_primary_10_1007_s11425_016_0285_1
crossref_primary_10_1007_s00357_014_9163_x
crossref_primary_10_1016_j_csda_2018_03_009
crossref_primary_10_1016_j_jcomm_2021_100189
crossref_primary_10_1002_env_2327
Cites_doi 10.1145/31846.32221
10.2307/1390903
10.1007/s00180-007-0053-0
10.1016/0167-7152(83)90054-8
10.1007/BF02595872
10.1073/pnas.97.4.1423
10.1007/BF01898350
10.2307/2291529
10.2307/2291681
10.1214/aos/1016218226
10.2307/2290001
10.1007/BF02595706
10.2307/2670155
10.1214/aos/1016218227
10.1007/s101820400167
10.1214/aos/1176347507
10.1214/aos/1069362382
10.1214/aos/1065705115
10.1214/088342304000000594
10.1214/aop/1176989128
10.1111/1467-9868.00088
10.1016/S0378-3758(03)00156-3
ContentType Journal Article
Copyright American Statistical Association and the American Society for Quality 2009
2009 American Statistical Association
2009 INIST-CNRS
Copyright American Statistical Association Jun 2009
Copyright_xml – notice: American Statistical Association and the American Society for Quality 2009
– notice: 2009 American Statistical Association
– notice: 2009 INIST-CNRS
– notice: Copyright American Statistical Association Jun 2009
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/jasa.2009.0108
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 734
ExternalDocumentID 1742651341
21515002
10_1198_jasa_2009_0108
40592217
10710644
Genre Research Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFFHD
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
IQODW
8BJ
FQK
JBE
K9.
ID FETCH-LOGICAL-c462t-51ad13a6e68a90d81f6224e1a1f07f99e68b2a5f8886fac2fce73ec7560835053
IEDL.DBID TFW
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266461400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
IngestDate Thu Oct 02 19:58:27 EDT 2025
Tue Nov 11 01:50:53 EST 2025
Mon Jul 21 09:17:00 EDT 2025
Sat Nov 29 05:11:10 EST 2025
Tue Nov 18 22:29:48 EST 2025
Thu May 29 08:44:08 EDT 2025
Mon Oct 20 23:44:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 486
Keywords Functional data
Prediction theory
Median
Multivariate analysis
Stochastic process
Microarray
Marketing
Statistical data
Outlier
Statistical test
Depth function
Ordering
Rank test
Child
Human
Wilcoxon test
Discriminant analysis
Data analysis
Statistical analysis
Finance
Functional analysis
Statistical estimation
Mean estimation
Data depth
Rank test for functions
Growth curve
Trimmed mean
Functional
Statistical method
Graphics
Simulation
Observation data
Filtering theory
Application
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-51ad13a6e68a90d81f6224e1a1f07f99e68b2a5f8886fac2fce73ec7560835053
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274861046
PQPubID 41715
PageCount 17
ParticipantIDs proquest_miscellaneous_37167416
proquest_journals_274861046
crossref_citationtrail_10_1198_jasa_2009_0108
informaworld_taylorfrancis_310_1198_jasa_2009_0108
pascalfrancis_primary_21515002
crossref_primary_10_1198_jasa_2009_0108
jstor_primary_40592217
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2009
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_29
Liu R. (p_18) 1993; 88
p_25
p_26
Brown B. (p_2) 1989; 51
p_22
Mahalanobis P. C. (p_20) 1936; 12
Hettmansperger T. (p_8) 1994; 56
p_16
p_1
p_4
p_34
p_3
p_13
p_35
p_6
p_14
p_5
p_15
p_7
p_30
Liu R. (p_17) 1999; 27
p_31
p_10
p_32
p_11
p_33
López-Pintado S. (p_19) 2005; 72
References_xml – ident: p_11
  doi: 10.1145/31846.32221
– ident: p_31
  doi: 10.2307/1390903
– volume: 88
  start-page: 257
  year: 1993
  ident: p_18
  publication-title: Journal of the American Statistical Association
– ident: p_4
  doi: 10.1007/s00180-007-0053-0
– volume: 56
  start-page: 235
  year: 1994
  ident: p_8
  publication-title: Journal of the Royal Statistical Society, Ser. B
– ident: p_22
  doi: 10.1016/0167-7152(83)90054-8
– volume: 72
  start-page: 103
  year: 2005
  ident: p_19
  publication-title: L. Souvaine
– ident: p_6
  doi: 10.1007/BF02595872
– ident: p_29
  doi: 10.1073/pnas.97.4.1423
– ident: p_10
  doi: 10.1007/BF01898350
– ident: p_16
  doi: 10.2307/2291529
– ident: p_3
  doi: 10.2307/2291681
– volume: 12
  start-page: 49
  year: 1936
  ident: p_20
  publication-title: Proceedings of National Academy of Science of India
– ident: p_34
  doi: 10.1214/aos/1016218226
– ident: p_30
  doi: 10.2307/2290001
– ident: p_7
  doi: 10.1007/BF02595706
– ident: p_25
  doi: 10.2307/2670155
– ident: p_35
  doi: 10.1214/aos/1016218227
– ident: p_5
  doi: 10.1007/s101820400167
– ident: p_15
  doi: 10.1214/aos/1176347507
– volume: 27
  start-page: 783
  year: 1999
  ident: p_17
  publication-title: Annals of Statistics
– ident: p_13
  doi: 10.1214/aos/1069362382
– ident: p_33
  doi: 10.1214/aos/1065705115
– ident: p_14
  doi: 10.1214/088342304000000594
– volume: 51
  start-page: 117
  year: 1989
  ident: p_2
  publication-title: Journal of the Royal Statistical Society, Ser. B
– ident: p_1
  doi: 10.1214/aop/1176989128
– ident: p_32
  doi: 10.1111/1467-9868.00088
– ident: p_26
  doi: 10.1016/S0378-3758(03)00156-3
SSID ssj0000788
Score 2.4946241
Snippet The statistical analysis of functional data is a growing need in many research areas. In particular, a robust methodology is important to study curves, which...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 718
SubjectTerms Applications
Boys
Child development
Children
Coordinate systems
Data
Data analysis
Data depth
Datasets
Estimation
Exact sciences and technology
Experiments
Functional analysis
Functional data
General topics
Girls
Insurance, economics, finance
Marketing
Mathematical analysis
Mathematical functions
Mathematics
Measurement
Median
Modeling
Multivariate analysis
Observation
Outliers
Probability and statistics
Property
Quantitative analysis
Rank test for functions
Rank tests
Research methodology
Sampling
Sciences and techniques of general use
Simulation
Simulations
Statistical analysis
Statistical median
Statistical methods
Statistics
Studies
Tests
Theory and Methods
Weather
Title On the Concept of Depth for Functional Data
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.0108
https://www.jstor.org/stable/40592217
https://www.proquest.com/docview/274861046
https://www.proquest.com/docview/37167416
Volume 104
WOSCitedRecordID wos000266461400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQxGEX3hNlMHJA4oAqlm7N44g2Jk6DwxC7VWmaCCHUoXXj9-M02WCauMCpUppUrh3H_hLHBrjKNdfdvhZxanmOAKVgsUptEevc5syFYVjui03w8VhMp_IpRFVWIazSYWjrE0XUa7VTbpWHCiRS3L6pSoVMk7S-54s23-nkZPTyvQjzuuQkOjRJTPupDPkat4dv2KONbKWrCEUXLqkq5Jj1pS62Vu3aFI32__MTB7AXHFBy52fMIeyY8giazuf0KZuP4eaxJOgWkoG_0Uhmlgzx-UqQaDJCO-i3D8lQLdQJPI_uJ4OHONRUiHWfJYs4paqgPcUME0p2C0EtQyNuqKK2y62U2J4nKC0ExswqnVhteM9ojo4R-mqosS1olLPSnALpUnzv8E8uFLp9fVUwkeieYAZRF7ZHEK84m-mQcNzVvXjPauAhReZ44OpgyszxIILrdf8Pn2rj157JT0Fli3pzI4gn6_02qFWLc_1tpFkmiMgi6GzId93BeUMpWowI2iuBZ0HDqwzRvGDugDyCy_VbVE133qJKM1siIdxd8aDs7C_ktqHpD67chs85NBbzpbmAXf2Js2HeqSf7F3Mv_xg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8FR1SOwFxse0bKP1AxIPKKJOGn9oT1O3qohSeCiib5bj2EJoStHa7fdzFyeFatoLPEVy7Ohy5_N9-D4A3pZOutHYqbQIskQDpRKpLUKVujKUgsIwgozNJuRioVYr_bUHF10uDIVVkg0dYqGI5qwm5iZndORwrT78tBvblprklOh7UKCQpcL5y-n3P8ewbJpOokqTpXxc6LZi48P1exJpr15pF6NIAZN2gzgLsdnFg3O7EUbT5__1G0fwrNVB2WXcNC-g5-uXcEhqZ6za_Aref6kZaoZsEpMa2TqwK3z-YAg1m6IojB5EdmW39jV8m14vJ7O0bauQurHItmnBbcVzK7xQVo8qxYNAOe655WEkg9Y4XmZIMLSNRbAuC87L3DuJuhGqa8i0x9Cv17U_ATbi-J5MoFJZ1PzGthIqc7kSHg0vHE8g7VBrXFtznFpf3JjG9tDKEA6oFaY2hIME3u3m_4rVNh6dmf1NKbNt_BstfUz-2KLjhp67byPMOkOjLIHBHoF3E0ghKlBoJHDWUdy0TL4xaNArQXfkCQx3b5E76crF1n59h4BIyvLg4vRfwB3C09ny89zMPy4-ncFhvMci_8859Le3d_4NPHH3uDNuB83O_w2JTgNR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NDCFeNhggMkbxwyQepog6bfzxONFFIKbCA2i8WY5jCyGUIlr29-8udsuqihd4iuTYkXMfvt_Z5zuA77WTrj90Ki-DrNFBaURuy9Dkrg61oDCMIGOxCTkeq9tbfZWiKqcprJJ86BATRXRrNSn3YxOigmt1cm-nNmWa5HTP9yNiZkHSfV39eVmFZVdzEhFNkfNhqVPCxtXxSwZpKV3pPESR4iXtFEkWYq2LlWW7s0XV5_f8xRZ8SgiU_Ywisw0ffPsFNgl0xpzNO_DjsmWIC9lpvNLIJoGN8HnHcNKsQkMY9w_ZyM7sLtxUv65Pz_JUVCF3Q1HM8pLbhg-s8EJZ3W8UDwKtuOeWh74MWmN7XSC70DMWwboiOC8H3klERgjWUGX3YK2dtH4fWJ_je3KAamUR9w1tI1ThBkp4dLuwPYN8TlnjUsZxKnzxYDrPQytDNKBCmNoQDTI4XvR_jLk2Xu1Z_M8oM-t2NxJ7zOC1QXsdOxffxjnrAl2yDHpL_F10IDhUosnI4GDOcJNUfGrQnVeCTsgzOFq8Rd2kAxfb-skzTkTSHQ8uvr5lukewcTWqzO_z8cUBbMZDLNr8-QZrs6dnfwjr7i8KxlOvk_t_gxICAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Concept+of+Depth+for+Functional+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=L%C3%B3pez-Pintado%2C+Sara&rft.au=Romo%2C+Juan&rft.date=2009-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=104&rft.issue=486&rft.spage=718&rft_id=info:doi/10.1198%2Fjasa.2009.0108&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1742651341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon