Classification and predictive models using supervised machine learning: A conceptual review

Supervised machine learning models (SMLMs) are likely to be a prevalent approach in the literature on medical machine learning. These models have considerable potential to improve clinical decision-making through enhanced prediction and classification. In this review, we present an overview of SMLMs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Southern African journal of critical care : the official journal of the Critical Care Society Ročník 41; číslo 1; s. e2937
Hlavní autoři: Pienaar, M A, Naidoo, K D
Médium: Journal Article
Jazyk:angličtina
Vydáno: South Africa 01.04.2025
Témata:
ISSN:2078-676X, 2078-676X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Supervised machine learning models (SMLMs) are likely to be a prevalent approach in the literature on medical machine learning. These models have considerable potential to improve clinical decision-making through enhanced prediction and classification. In this review, we present an overview of SMLMs. We provide a discussion of the conceptual domains relevant to machine learning, model development, validation, and model explanation. This discussion is accompanied by clinical examples to illustrate key concepts. This conceptual review provides an overview and guide to the interpretation of SMLMs in the medical literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2078-676X
2078-676X
DOI:10.7196/SAJCC.2025.v411.2937