A comparative study of efficient initialization methods for the k-means clustering algorithm

► K-means is the most widely used partitional clustering algorithm. ► k-means is highly sensitive to the selection of the initial centers. ► We present an overview of k-means initialization methods (IMs). ► We then compare eight commonly used linear time IMs. ► We demonstrate that popular IMs often...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 40; číslo 1; s. 200 - 210
Hlavní autori: Celebi, M. Emre, Kingravi, Hassan A., Vela, Patricio A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 01.01.2013
Elsevier
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► K-means is the most widely used partitional clustering algorithm. ► k-means is highly sensitive to the selection of the initial centers. ► We present an overview of k-means initialization methods (IMs). ► We then compare eight commonly used linear time IMs. ► We demonstrate that popular IMs often perform poorly. K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. In this paper, we first present an overview of these methods with an emphasis on their computational efficiency. We then compare eight commonly used linear time complexity initialization methods on a large and diverse collection of data sets using various performance criteria. Finally, we analyze the experimental results using non-parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular initialization methods often perform poorly and that there are in fact strong alternatives to these methods.
AbstractList K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. In this paper, we first present an overview of these methods with an emphasis on their computational efficiency. We then compare eight commonly used linear time complexity initialization methods on a large and diverse collection of data sets using various performance criteria. Finally, we analyze the experimental results using non-parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular initialization methods often perform poorly and that there are in fact strong alternatives to these methods.
► K-means is the most widely used partitional clustering algorithm. ► k-means is highly sensitive to the selection of the initial centers. ► We present an overview of k-means initialization methods (IMs). ► We then compare eight commonly used linear time IMs. ► We demonstrate that popular IMs often perform poorly. K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. In this paper, we first present an overview of these methods with an emphasis on their computational efficiency. We then compare eight commonly used linear time complexity initialization methods on a large and diverse collection of data sets using various performance criteria. Finally, we analyze the experimental results using non-parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular initialization methods often perform poorly and that there are in fact strong alternatives to these methods.
Author Celebi, M. Emre
Kingravi, Hassan A.
Vela, Patricio A.
Author_xml – sequence: 1
  givenname: M. Emre
  surname: Celebi
  fullname: Celebi, M. Emre
  email: ecelebi@lsus.edu
  organization: Department of Computer Science, Louisiana State University, Shreveport, LA, USA
– sequence: 2
  givenname: Hassan A.
  surname: Kingravi
  fullname: Kingravi, Hassan A.
  email: kingravi@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Patricio A.
  surname: Vela
  fullname: Vela, Patricio A.
  email: pvela@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27095898$$DView record in Pascal Francis
BookMark eNqNkT1rHDEQhkVwIGfHf8CVmkCaXY-kvZUW0hiTD4MhTdIZhJBGPl12pYukc3B-fXQ-p0lhUgmG5xlG73tKTmKKSMgFg54BGy-3PZZfpufAeA-yB85ekRVTUnSjnMQJWcG0lt3A5PCGnJayBWASQK7I3RW1admZbGp4QFrq3j3S5Cl6H2zAWGmIoQYzh9-NSJEuWDfJFepTpnWD9Ee3oImF2nlfKuYQ76mZ71MOdbO8Ja-9mQueP79n5Punj9-uv3S3Xz_fXF_ddnYYeW1njRPzkk-DVFY4a8HBBAYcU8LByN3kBa6Nt2vlYUQ1GtEmSlhmuJVKiDPy_rh3l9PPPZaql1AszrOJmPZFt78y4ELx_0DFMA3jxJls6Ltn1BRrZp9NtKHoXQ6LyY-ay5apmlTj1JGzOZWS0Wsb6lNYNZswawb60JHe6kNH-tCRBqlbR03l_6h_t78ofThK2CJ9CJh1OTRl0YWMtmqXwkv6H0-VrR0
CitedBy_id crossref_primary_10_1007_s11128_021_03240_8
crossref_primary_10_1016_j_eswa_2024_123298
crossref_primary_10_1051_matecconf_201818903002
crossref_primary_10_3934_aci_2024004
crossref_primary_10_1007_s11634_022_00514_6
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_1016_j_eswa_2016_10_005
crossref_primary_10_1186_s40537_025_01119_4
crossref_primary_10_3233_IDT_170318
crossref_primary_10_2139_ssrn_5368329
crossref_primary_10_1002_sam_11416
crossref_primary_10_1016_j_margeo_2020_106332
crossref_primary_10_1109_ACCESS_2021_3066348
crossref_primary_10_1007_s42452_020_3157_6
crossref_primary_10_1016_j_asoc_2019_02_038
crossref_primary_10_1007_s10586_024_04305_w
crossref_primary_10_7717_peerj_cs_234
crossref_primary_10_1016_j_oceaneng_2020_107329
crossref_primary_10_1016_j_petrol_2022_110599
crossref_primary_10_1016_j_neuroimage_2020_117464
crossref_primary_10_1109_TII_2020_2977980
crossref_primary_10_1016_j_conbuildmat_2022_128802
crossref_primary_10_1016_j_jksuci_2018_10_015
crossref_primary_10_1016_j_jobe_2022_105219
crossref_primary_10_1002_cpe_5969
crossref_primary_10_1016_j_rser_2019_109628
crossref_primary_10_1016_j_jobe_2022_105590
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1016_j_asoc_2022_109838
crossref_primary_10_3390_math13132138
crossref_primary_10_1007_s12553_023_00805_8
crossref_primary_10_1016_j_infrared_2020_103286
crossref_primary_10_1016_j_eswa_2020_114224
crossref_primary_10_1155_2016_4091323
crossref_primary_10_3390_e21101013
crossref_primary_10_1016_j_eswa_2023_120999
crossref_primary_10_1016_j_fuel_2020_117084
crossref_primary_10_1088_1742_6596_1235_1_012015
crossref_primary_10_1016_j_jqsrt_2020_107003
crossref_primary_10_1007_s10489_020_01677_5
crossref_primary_10_1016_j_chaos_2021_111494
crossref_primary_10_1061_JPCFEV_CFENG_4238
crossref_primary_10_1177_10812865231174219
crossref_primary_10_1061__ASCE_CO_1943_7862_0002406
crossref_primary_10_1080_03081060_2025_2457055
crossref_primary_10_3390_en16104129
crossref_primary_10_1109_ACCESS_2022_3219457
crossref_primary_10_1007_s10846_021_01481_4
crossref_primary_10_1109_TKDE_2015_2453162
crossref_primary_10_1007_s00500_020_04988_4
crossref_primary_10_1007_s10660_021_09458_z
crossref_primary_10_1186_s13640_018_0260_3
crossref_primary_10_1007_s11063_017_9755_7
crossref_primary_10_3390_rs16173230
crossref_primary_10_1007_s11042_018_7100_4
crossref_primary_10_3390_smartcities8050145
crossref_primary_10_1016_j_knosys_2016_11_020
crossref_primary_10_3389_fbuil_2023_1336280
crossref_primary_10_1016_j_engappai_2021_104532
crossref_primary_10_1007_s10559_023_00587_x
crossref_primary_10_1007_s00170_019_04849_x
crossref_primary_10_2478_bsrj_2019_019
crossref_primary_10_1109_ACCESS_2021_3136435
crossref_primary_10_1007_s00521_022_07554_1
crossref_primary_10_1016_j_trd_2024_104456
crossref_primary_10_1007_s41066_023_00406_w
crossref_primary_10_1007_s11042_019_7652_y
crossref_primary_10_1016_j_energy_2018_05_029
crossref_primary_10_3390_s24165180
crossref_primary_10_1177_1847980416673784
crossref_primary_10_34133_cbsystems_0381
crossref_primary_10_1007_s40964_025_01199_x
crossref_primary_10_1038_s41598_019_38845_8
crossref_primary_10_1109_ACCESS_2023_3272403
crossref_primary_10_1186_s12889_024_19369_x
crossref_primary_10_3390_electronics14091723
crossref_primary_10_1016_j_rser_2024_114647
crossref_primary_10_3390_land14061228
crossref_primary_10_1016_j_compag_2025_110841
crossref_primary_10_1007_s00217_018_3137_x
crossref_primary_10_3390_a16070349
crossref_primary_10_26634_jcc_4_2_14382
crossref_primary_10_1016_j_tbs_2024_100808
crossref_primary_10_3390_e22080902
crossref_primary_10_1016_j_patrec_2019_02_011
crossref_primary_10_1088_1742_6596_1546_1_012085
crossref_primary_10_1038_s41524_021_00565_x
crossref_primary_10_1109_JIOT_2022_3166455
crossref_primary_10_1016_j_patcog_2025_111654
crossref_primary_10_1007_s12530_022_09447_z
crossref_primary_10_1109_TPDS_2014_2306193
crossref_primary_10_1007_s11053_025_10504_y
crossref_primary_10_1016_j_ejor_2017_02_013
crossref_primary_10_1007_s12046_019_1166_1
crossref_primary_10_1109_ACCESS_2020_2978404
crossref_primary_10_3390_ijerph16234748
crossref_primary_10_1002_ldr_4211
crossref_primary_10_1016_j_engappai_2018_05_004
crossref_primary_10_1109_ACCESS_2022_3179803
crossref_primary_10_1109_JBHI_2016_2633403
crossref_primary_10_3390_e24010028
crossref_primary_10_3390_rs13234922
crossref_primary_10_1016_j_imu_2019_01_001
crossref_primary_10_1371_journal_pone_0267009
crossref_primary_10_3389_frvir_2022_782564
crossref_primary_10_1016_j_enganabound_2024_105919
crossref_primary_10_1016_j_compchemeng_2020_106810
crossref_primary_10_1049_stg2_70009
crossref_primary_10_1186_s12909_023_04936_4
crossref_primary_10_1016_j_ijcchd_2024_100524
crossref_primary_10_1016_j_future_2017_10_043
crossref_primary_10_1016_j_neucom_2017_04_073
crossref_primary_10_1007_s10044_020_00887_4
crossref_primary_10_1155_2014_380480
crossref_primary_10_3390_app14167379
crossref_primary_10_1080_17517575_2025_2454004
crossref_primary_10_1016_j_gexplo_2024_107385
crossref_primary_10_1177_09544070231205063
crossref_primary_10_1016_j_jpowsour_2019_227259
crossref_primary_10_3390_e25030510
crossref_primary_10_1109_ACCESS_2022_3206371
crossref_primary_10_1109_TAP_2021_3118710
crossref_primary_10_1017_S1368980014003243
crossref_primary_10_1016_j_scs_2017_08_002
crossref_primary_10_3390_foods11203270
crossref_primary_10_1016_j_diabres_2024_111803
crossref_primary_10_3938_jkps_74_298
crossref_primary_10_1007_s42102_024_00122_2
crossref_primary_10_1007_s11047_016_9542_9
crossref_primary_10_1007_s10586_020_03120_3
crossref_primary_10_1016_j_infrared_2024_105403
crossref_primary_10_1007_s10044_021_01045_0
crossref_primary_10_1016_j_rser_2021_111162
crossref_primary_10_1007_s12652_022_04428_1
crossref_primary_10_4018_ijdwm_2014070101
crossref_primary_10_1007_s00521_022_07992_x
crossref_primary_10_1007_s10260_015_0345_4
crossref_primary_10_3390_e21121145
crossref_primary_10_1007_s11634_019_00356_9
crossref_primary_10_1016_j_imu_2016_01_002
crossref_primary_10_1007_s00521_020_04747_4
crossref_primary_10_1109_TIT_2020_3008058
crossref_primary_10_1016_j_patcog_2020_107713
crossref_primary_10_1007_s00146_025_02430_7
crossref_primary_10_1108_K_06_2023_1044
crossref_primary_10_2478_amns_2023_2_00486
crossref_primary_10_1061_JTEPBS_TEENG_8277
crossref_primary_10_1109_JSYST_2019_2918234
crossref_primary_10_1109_TVCG_2019_2934256
crossref_primary_10_1016_j_lungcan_2023_107308
crossref_primary_10_1109_TEM_2020_3018912
crossref_primary_10_1186_s13007_024_01297_x
crossref_primary_10_1016_j_knosys_2019_02_035
crossref_primary_10_1080_27684830_2022_2073662
crossref_primary_10_3390_technologies13030123
crossref_primary_10_1109_TAP_2018_2876192
crossref_primary_10_1007_s00484_019_01699_w
crossref_primary_10_1007_s10044_017_0673_0
crossref_primary_10_3390_buildings13040962
crossref_primary_10_1109_TCSI_2013_2239098
crossref_primary_10_3389_fncom_2023_1243092
crossref_primary_10_1016_j_enconman_2016_04_009
crossref_primary_10_1002_cpe_7185
crossref_primary_10_1007_s10462_023_10406_6
crossref_primary_10_1134_S0965542518040140
crossref_primary_10_1016_j_envres_2020_110633
crossref_primary_10_1177_0040517520957401
crossref_primary_10_1016_j_tra_2021_10_001
crossref_primary_10_1016_j_solener_2014_10_002
crossref_primary_10_1016_S1005_8885_16_60029_8
crossref_primary_10_1371_journal_pone_0162259
crossref_primary_10_1002_apj_2599
crossref_primary_10_1016_j_jprocont_2019_08_001
crossref_primary_10_1007_s11042_023_14388_z
crossref_primary_10_1007_s11334_020_00372_5
crossref_primary_10_1016_j_eswa_2014_12_027
crossref_primary_10_1007_s11280_021_00945_9
crossref_primary_10_1007_s00521_020_05471_9
crossref_primary_10_2139_ssrn_3805831
crossref_primary_10_1155_2016_4606384
crossref_primary_10_7717_peerj_cs_1302
crossref_primary_10_1088_1757_899X_598_1_012116
crossref_primary_10_1186_s10033_018_0202_0
crossref_primary_10_1007_s11042_018_5649_6
crossref_primary_10_1111_1365_2664_14577
crossref_primary_10_1016_j_asoc_2019_03_013
crossref_primary_10_1016_j_ebiom_2019_01_028
crossref_primary_10_1016_j_ctro_2019_12_004
crossref_primary_10_1016_j_cageo_2022_105232
crossref_primary_10_1016_j_engappai_2025_110370
crossref_primary_10_1016_j_procs_2021_01_292
crossref_primary_10_1016_j_petrol_2018_10_005
crossref_primary_10_1007_s10489_021_02405_3
crossref_primary_10_1016_j_patcog_2014_01_015
crossref_primary_10_3390_molecules28196886
crossref_primary_10_1038_s41598_021_85159_9
crossref_primary_10_1016_j_ijpe_2019_05_020
crossref_primary_10_1109_TVCG_2023_3330262
crossref_primary_10_3390_agriculture12030428
crossref_primary_10_1016_j_trd_2018_07_012
crossref_primary_10_1007_s10489_024_05636_2
crossref_primary_10_1108_JAMR_07_2021_0242
crossref_primary_10_1016_j_infsof_2020_106501
crossref_primary_10_1109_TBME_2013_2297622
crossref_primary_10_3390_soc15090242
crossref_primary_10_1049_iet_ipr_2020_0709
crossref_primary_10_1109_TIP_2021_3135470
crossref_primary_10_1016_j_neucom_2016_01_105
crossref_primary_10_3390_land12122156
crossref_primary_10_1016_j_neucom_2021_02_059
crossref_primary_10_1016_j_knosys_2019_05_019
crossref_primary_10_1109_JBHI_2018_2823499
crossref_primary_10_1016_j_measen_2024_101237
crossref_primary_10_1177_21582440211027574
crossref_primary_10_1186_s12888_016_0966_7
crossref_primary_10_1016_j_childyouth_2025_108559
crossref_primary_10_1093_nar_gkab015
crossref_primary_10_1016_j_compbiomed_2017_10_014
crossref_primary_10_1109_JSEN_2025_3528956
crossref_primary_10_1016_j_segan_2023_101117
crossref_primary_10_1007_s10291_025_01937_2
crossref_primary_10_1007_s11442_023_2082_1
crossref_primary_10_1016_j_neunet_2023_09_033
crossref_primary_10_1007_s00521_016_2534_y
crossref_primary_10_1016_j_eswa_2015_05_014
crossref_primary_10_1088_1757_899X_928_3_032059
crossref_primary_10_1016_j_patcog_2016_05_005
crossref_primary_10_1016_j_cma_2025_118120
crossref_primary_10_1007_s10489_025_06367_8
crossref_primary_10_1111_exsy_12491
crossref_primary_10_1007_s12652_020_02762_w
crossref_primary_10_1002_ente_202200784
crossref_primary_10_1016_j_eswa_2022_117927
crossref_primary_10_1007_s11760_024_03621_3
crossref_primary_10_1007_s00500_020_05392_8
crossref_primary_10_1109_ACCESS_2023_3243195
crossref_primary_10_1016_j_egypro_2017_03_705
crossref_primary_10_1007_s10111_022_00706_2
crossref_primary_10_1016_j_multra_2022_100049
crossref_primary_10_1016_j_eswa_2020_114035
crossref_primary_10_22630_MIBE_2023_24_4_19
crossref_primary_10_1109_JSEN_2017_2755547
crossref_primary_10_1016_j_ijhydene_2023_10_204
crossref_primary_10_3390_e21020100
crossref_primary_10_1007_s13369_024_09628_9
crossref_primary_10_1371_journal_pone_0127125
crossref_primary_10_1109_TPAMI_2023_3237667
crossref_primary_10_3390_rs11242994
crossref_primary_10_1016_j_engappai_2017_11_002
crossref_primary_10_1002_dac_3387
crossref_primary_10_1016_j_jhydrol_2021_126449
crossref_primary_10_1109_TITS_2021_3076607
crossref_primary_10_1002_cai2_68
crossref_primary_10_1007_s11554_018_0814_8
crossref_primary_10_3390_rs13051002
crossref_primary_10_1016_j_eswa_2021_115558
crossref_primary_10_1007_s11042_018_6324_7
crossref_primary_10_1049_iet_rpg_2016_0240
crossref_primary_10_1111_exsy_13248
crossref_primary_10_1016_j_cor_2022_105958
crossref_primary_10_1080_08911762_2013_878428
crossref_primary_10_1109_JIOT_2020_2981774
crossref_primary_10_1016_j_physa_2020_125567
crossref_primary_10_1002_eng2_70104
crossref_primary_10_1109_ACCESS_2020_2973216
crossref_primary_10_1016_j_apenergy_2024_123007
crossref_primary_10_1016_j_jii_2025_100788
crossref_primary_10_1007_s10346_020_01473_9
crossref_primary_10_1109_ACCESS_2019_2907885
crossref_primary_10_1109_TII_2021_3104111
crossref_primary_10_1016_j_flowmeasinst_2025_102852
crossref_primary_10_1016_j_ndteint_2025_103362
crossref_primary_10_1016_j_eswa_2018_03_052
crossref_primary_10_1016_j_patcog_2019_04_014
crossref_primary_10_1007_s10115_016_0946_8
crossref_primary_10_1177_20414196241281069
crossref_primary_10_1016_j_ebiom_2019_04_055
crossref_primary_10_3390_s151129056
crossref_primary_10_1016_j_jprocont_2023_103080
crossref_primary_10_1002_jbio_201700056
crossref_primary_10_1016_j_compbiomed_2019_01_017
crossref_primary_10_1155_2015_615740
crossref_primary_10_1109_ACCESS_2023_3341156
crossref_primary_10_1016_j_patrec_2014_11_017
crossref_primary_10_1016_j_patrec_2018_11_017
crossref_primary_10_1088_1742_6596_1641_1_012081
crossref_primary_10_4028_p_68Ypy6
crossref_primary_10_1007_s10994_021_06021_7
crossref_primary_10_1007_s10044_021_00977_x
crossref_primary_10_1007_s10115_024_02066_x
crossref_primary_10_1016_j_patcog_2018_02_015
crossref_primary_10_1007_s10489_020_02067_7
crossref_primary_10_1016_j_solener_2014_01_021
crossref_primary_10_1007_s00477_021_01981_7
crossref_primary_10_1109_TKDE_2022_3155450
crossref_primary_10_1093_clinchem_hvab239
crossref_primary_10_1038_s41598_020_59553_8
crossref_primary_10_1007_s00521_019_04467_4
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_1108_IMDS_01_2017_0029
crossref_primary_10_1016_j_ymssp_2020_106693
crossref_primary_10_1016_j_knosys_2020_106268
crossref_primary_10_1109_ACCESS_2023_3239212
crossref_primary_10_1007_s00267_018_1101_y
crossref_primary_10_1109_TCSS_2023_3251319
crossref_primary_10_4018_IJISMD_2019010103
crossref_primary_10_1016_j_cor_2024_106548
crossref_primary_10_3390_a16040215
crossref_primary_10_1007_s13198_021_01424_0
crossref_primary_10_3390_e21050487
crossref_primary_10_1016_j_procs_2020_08_022
crossref_primary_10_1007_s11042_018_6966_5
crossref_primary_10_1136_bmjmed_2021_000070
crossref_primary_10_1016_j_apenergy_2021_118387
crossref_primary_10_1179_1743131X13Y_0000000059
crossref_primary_10_1016_j_eswa_2017_01_024
crossref_primary_10_1016_j_future_2017_12_012
crossref_primary_10_3390_rs6098424
crossref_primary_10_1109_TVCG_2023_3326601
crossref_primary_10_22581_muet1982_2103_16
crossref_primary_10_18697_ajfand_96_19775
crossref_primary_10_3390_rs17020187
crossref_primary_10_1016_j_marpetgeo_2022_105734
crossref_primary_10_1007_s13369_023_08007_0
crossref_primary_10_3390_su14052744
crossref_primary_10_1038_s41598_024_84082_z
crossref_primary_10_1007_s10772_018_9523_8
crossref_primary_10_1088_1742_6596_1992_4_042060
crossref_primary_10_1109_LAWP_2021_3060190
crossref_primary_10_1007_s43684_023_00055_5
crossref_primary_10_3390_en11081975
crossref_primary_10_1016_j_procs_2017_08_210
crossref_primary_10_3390_en12071248
crossref_primary_10_1109_ACCESS_2022_3230935
crossref_primary_10_1109_TIM_2025_3582311
crossref_primary_10_1007_s00500_019_04216_8
crossref_primary_10_1016_j_patrec_2017_10_031
crossref_primary_10_1177_0165551518816302
crossref_primary_10_1016_j_asoc_2016_07_022
crossref_primary_10_1038_s41598_018_21988_5
crossref_primary_10_1007_s12652_018_0697_3
crossref_primary_10_3390_info9040101
crossref_primary_10_1088_1742_6596_930_1_012021
crossref_primary_10_4018_IJDWM_316142
crossref_primary_10_1007_s10514_025_10199_3
crossref_primary_10_3390_jimaging11060173
crossref_primary_10_1051_0004_6361_202555620
crossref_primary_10_1016_j_eswa_2018_09_006
crossref_primary_10_1155_2019_9610212
crossref_primary_10_1007_s10044_024_01228_5
crossref_primary_10_4018_IJIRR_289954
crossref_primary_10_1145_3689036
crossref_primary_10_3390_rs12223708
crossref_primary_10_3390_w12092433
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1177_2374289519873088
crossref_primary_10_1109_JIOT_2019_2935010
crossref_primary_10_20517_jmi_2024_85
crossref_primary_10_3390_math9121423
crossref_primary_10_1177_1729881420912142
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1088_1361_6501_acdf76
crossref_primary_10_1117_1_JEI_33_5_053052
crossref_primary_10_3390_fi15060195
crossref_primary_10_1049_iet_rpg_2016_0982
crossref_primary_10_1007_s00357_018_9296_4
crossref_primary_10_1016_j_cag_2021_10_015
crossref_primary_10_1016_j_diin_2017_05_001
crossref_primary_10_3390_metrology5030048
crossref_primary_10_3233_JIFS_18146
crossref_primary_10_1051_e3sconf_201912525001
crossref_primary_10_1109_ACCESS_2024_3497977
crossref_primary_10_1186_s40064_016_3329_4
crossref_primary_10_1109_ACCESS_2025_3586081
crossref_primary_10_1007_s13042_020_01190_8
crossref_primary_10_1016_j_procs_2016_09_080
crossref_primary_10_1109_TNNLS_2021_3071083
crossref_primary_10_1016_j_trgeo_2023_101053
crossref_primary_10_1007_s11634_022_00510_w
crossref_primary_10_1016_j_eswa_2017_08_050
crossref_primary_10_1109_ACCESS_2021_3085005
crossref_primary_10_1002_joc_8396
crossref_primary_10_1007_s10758_020_09468_0
crossref_primary_10_1007_s10278_022_00653_4
crossref_primary_10_1007_s00607_023_01249_8
crossref_primary_10_3390_app11104406
crossref_primary_10_3390_su11174635
crossref_primary_10_1016_j_engfailanal_2022_106696
crossref_primary_10_1155_2022_3958423
crossref_primary_10_1109_TAP_2022_3143137
crossref_primary_10_1016_j_cageo_2013_04_028
crossref_primary_10_1007_s00778_021_00716_y
crossref_primary_10_1007_s00357_020_09372_3
crossref_primary_10_1109_TFUZZ_2018_2889014
crossref_primary_10_1002_ecs2_4811
crossref_primary_10_1002_sce_21743
crossref_primary_10_1016_j_petrol_2021_109335
crossref_primary_10_1109_ACCESS_2019_2927757
crossref_primary_10_1002_advs_202206982
crossref_primary_10_1007_s40031_014_0106_z
crossref_primary_10_1016_j_knosys_2020_106482
crossref_primary_10_1049_joe_2017_0090
crossref_primary_10_1049_rpg2_12875
crossref_primary_10_1016_j_ecolind_2017_12_022
crossref_primary_10_4018_ijisss_2015040105
crossref_primary_10_1002_ijfe_2344
crossref_primary_10_1016_j_ins_2017_07_036
crossref_primary_10_1007_s11760_019_01469_6
crossref_primary_10_32604_cmc_2024_060090
crossref_primary_10_2478_acss_2023_0001
crossref_primary_10_1007_s41060_023_00452_2
crossref_primary_10_1109_TII_2019_2933675
crossref_primary_10_1109_TVCG_2021_3114839
crossref_primary_10_3390_a16120572
crossref_primary_10_1177_23998083241293833
crossref_primary_10_1007_s00500_018_3565_3
crossref_primary_10_1080_0305764X_2022_2061914
crossref_primary_10_1016_j_cag_2017_01_001
crossref_primary_10_1016_j_neucom_2025_130227
crossref_primary_10_1111_jedm_12208
crossref_primary_10_1016_j_compmedimag_2019_101643
crossref_primary_10_1109_TAP_2023_3304748
crossref_primary_10_1016_j_cie_2020_106290
crossref_primary_10_1109_ACCESS_2024_3350442
crossref_primary_10_1016_j_eswa_2017_06_022
crossref_primary_10_1109_ACCESS_2021_3057113
crossref_primary_10_1016_j_eswa_2015_02_006
crossref_primary_10_24818_EA_2023_62_12
crossref_primary_10_3390_su14148473
crossref_primary_10_1016_j_bspc_2020_102244
crossref_primary_10_1016_j_knosys_2023_111071
crossref_primary_10_3390_app12157378
crossref_primary_10_3390_en12010102
crossref_primary_10_1007_s11227_021_03958_3
crossref_primary_10_1016_j_bpj_2024_03_023
crossref_primary_10_1002_ett_3647
crossref_primary_10_1287_opre_2023_0398
crossref_primary_10_1111_coin_12297
crossref_primary_10_1016_j_compmedimag_2015_02_011
crossref_primary_10_1080_2157930X_2019_1685792
crossref_primary_10_1016_j_ijrmms_2024_105879
crossref_primary_10_1109_JSYST_2014_2313671
crossref_primary_10_3390_electronics10222786
crossref_primary_10_1088_1757_899X_336_1_012017
crossref_primary_10_1109_LRA_2023_3264753
crossref_primary_10_3390_en17143573
crossref_primary_10_1177_1550147717728627
crossref_primary_10_1016_j_asoc_2025_113559
crossref_primary_10_1016_j_eswa_2022_118656
crossref_primary_10_1049_joe_2019_0938
crossref_primary_10_1016_j_apacoust_2017_08_008
crossref_primary_10_1016_j_matchar_2023_113607
crossref_primary_10_1016_j_suscom_2021_100561
crossref_primary_10_1109_TKDE_2020_3021649
crossref_primary_10_3390_math8071070
crossref_primary_10_2166_ws_2020_054
crossref_primary_10_3390_s18082713
crossref_primary_10_1177_1094428117752467
crossref_primary_10_1002_cpe_4109
crossref_primary_10_1007_s00170_024_14601_9
crossref_primary_10_1007_s11760_019_01417_4
crossref_primary_10_1016_j_foreco_2023_121061
crossref_primary_10_1007_s13278_019_0559_9
crossref_primary_10_3233_IDA_192791
crossref_primary_10_1007_s13369_017_2761_2
crossref_primary_10_3934_bdia_2016_1_93
crossref_primary_10_1038_s41598_025_87672_7
crossref_primary_10_1007_s11042_024_18175_2
crossref_primary_10_1186_s13638_020_01853_8
crossref_primary_10_1007_s10044_025_01463_4
crossref_primary_10_1016_j_artmed_2019_05_002
crossref_primary_10_32604_cmc_2025_057693
crossref_primary_10_1016_j_asoc_2021_107899
crossref_primary_10_1016_j_eswa_2020_113435
crossref_primary_10_1155_2014_761468
crossref_primary_10_1109_JBHI_2018_2845939
crossref_primary_10_1016_j_chemolab_2021_104408
crossref_primary_10_1080_00207543_2024_2341415
crossref_primary_10_1016_j_buildenv_2022_109473
crossref_primary_10_1007_s10618_014_0395_5
crossref_primary_10_3847_1538_4357_ade805
crossref_primary_10_1016_j_eswa_2014_07_014
crossref_primary_10_4018_IJHCITP_2018010101
crossref_primary_10_1016_j_bbcan_2021_188588
crossref_primary_10_3390_s16122047
crossref_primary_10_1109_ACCESS_2021_3067060
crossref_primary_10_1016_j_scs_2019_101958
crossref_primary_10_1061__ASCE_PS_1949_1204_0000425
crossref_primary_10_3390_ijgi6120392
crossref_primary_10_1109_TVT_2019_2924669
crossref_primary_10_1007_JHEP08_2021_170
crossref_primary_10_1016_j_datak_2018_04_001
crossref_primary_10_1016_j_compeleceng_2018_04_023
crossref_primary_10_1016_j_eswa_2016_03_008
crossref_primary_10_1016_j_asoc_2017_11_038
crossref_primary_10_1002_widm_1330
crossref_primary_10_1080_1206212X_2020_1735035
crossref_primary_10_1016_j_imu_2019_100239
crossref_primary_10_1016_j_asr_2024_09_013
crossref_primary_10_1016_j_neucom_2024_128101
crossref_primary_10_1016_j_neucom_2019_05_056
crossref_primary_10_1007_s13748_023_00304_x
crossref_primary_10_1016_j_eswa_2018_07_029
crossref_primary_10_1007_s12083_018_0668_7
crossref_primary_10_1007_s12530_018_9235_y
crossref_primary_10_1016_j_ress_2021_108230
crossref_primary_10_1109_TEVC_2022_3144134
crossref_primary_10_1155_2018_6360741
crossref_primary_10_1002_cae_22452
crossref_primary_10_1145_2873064
crossref_primary_10_7603_s40632_016_0010_6
crossref_primary_10_1088_1361_6501_aca2ce
crossref_primary_10_2478_jses_2023_0007
crossref_primary_10_1007_s12065_022_00720_3
crossref_primary_10_1155_2014_847608
crossref_primary_10_1109_TNSM_2017_2785660
crossref_primary_10_3390_app9061215
crossref_primary_10_1016_j_patcog_2019_106969
crossref_primary_10_1002_jrs_70023
crossref_primary_10_1016_j_fuel_2025_135433
crossref_primary_10_1186_s11671_016_1254_7
crossref_primary_10_3233_HIS_190277
crossref_primary_10_1007_s11554_019_00914_6
crossref_primary_10_1016_j_inffus_2024_102411
crossref_primary_10_1061_JPCFEV_CFENG_5008
crossref_primary_10_1016_j_enbuild_2021_110862
crossref_primary_10_3390_su16219244
crossref_primary_10_1080_00051144_2023_2253064
crossref_primary_10_1007_s11042_015_2790_3
crossref_primary_10_3390_buildings13030666
crossref_primary_10_3390_economies13050145
crossref_primary_10_1016_j_rser_2023_114191
crossref_primary_10_3390_a15040117
crossref_primary_10_1007_s10201_015_0454_7
crossref_primary_10_1016_j_scitotenv_2024_170765
crossref_primary_10_1186_s40494_024_01195_4
crossref_primary_10_1007_s12065_020_00562_x
crossref_primary_10_3390_agriengineering6040250
crossref_primary_10_1007_s12065_023_00863_x
crossref_primary_10_1016_j_jqsrt_2018_04_014
crossref_primary_10_1080_21681376_2022_2132180
crossref_primary_10_3390_app9122432
crossref_primary_10_1261_rna_074427_119
crossref_primary_10_3390_app112311524
crossref_primary_10_3390_rs9060532
crossref_primary_10_1016_j_ecolmodel_2019_03_021
crossref_primary_10_1186_s40959_024_00276_4
crossref_primary_10_1016_j_knosys_2021_107230
crossref_primary_10_1007_s00500_018_3289_4
crossref_primary_10_1155_2022_7518422
crossref_primary_10_1109_JSEN_2021_3058717
crossref_primary_10_1109_TQE_2022_3185505
crossref_primary_10_3390_a15060191
crossref_primary_10_1016_j_bbr_2021_113223
crossref_primary_10_1109_TKDE_2020_3002926
crossref_primary_10_1007_s11042_023_18067_x
crossref_primary_10_1115_1_4069681
Cites_doi 10.1109/72.478389
10.1016/j.eswa.2008.11.041
10.1016/0167-8655(93)90058-L
10.1145/331499.331504
10.1016/j.eswa.2008.06.093
10.1002/bs.3830120210
10.1016/j.patrec.2009.09.011
10.1109/TKDE.2004.25
10.1109/TCOM.1985.1096214
10.1016/S0031-3203(03)00190-0
10.1109/TIT.1982.1056489
10.1198/jcgs.2009.08054
10.1007/s00500-008-0392-y
10.1007/BF01908075
10.1007/s10994-009-5103-0
10.1016/j.imavis.2010.10.002
10.1016/j.tcs.2010.05.034
10.1016/j.patrec.2007.01.001
10.1145/1557019.1557115
10.1109/TSMCB.2003.816993
10.1109/TPAMI.2010.88
10.1016/S0377-2217(77)81005-9
10.1016/j.patrec.2009.04.013
10.3233/IDA-2007-11402
10.1016/0167-8655(95)00119-0
10.1007/978-3-540-48247-5_62
10.1109/72.761722
10.1109/TSMC.1977.4309789
10.1109/TPAMI.2002.1017616
10.1109/TPAMI.1984.4767478
10.1109/TVLSI.2009.2017543
10.1109/83.210871
10.1007/BF02287921
10.1071/BT9660127
10.1016/S0031-3203(02)00060-2
10.1016/j.camwa.2009.04.017
10.1016/j.jmva.2006.11.013
10.1016/0304-3975(85)90224-5
10.1016/S0167-8655(99)00069-0
10.1145/1830483.1830573
10.1080/01621459.1937.10503522
10.1137/1.9781611972801.12
10.1049/el:19901037
10.1109/97.329844
10.1145/335191.335388
10.1109/TCOM.1980.1094577
10.1007/BF01897163
10.1016/j.patrec.2007.12.009
10.4304/jetwi.4.1.51-59
10.1080/03610928008827904
10.1093/comjnl/10.3.271
10.1145/272991.272995
10.1007/BF02293907
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.07.021
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 210
ExternalDocumentID 27095898
10_1016_j_eswa_2012_07_021
S0957417412008767
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
08R
AALMO
AAPBV
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
PQEST
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c462t-41691f729478c3dcc0d090a0d183d062d9f3e5afc58f06e86a39f383c1a2c7833
ISICitedReferencesCount 808
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309378200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 10:38:26 EST 2025
Sun Nov 09 13:58:30 EST 2025
Fri Nov 25 01:07:34 EST 2022
Sat Nov 29 04:44:33 EST 2025
Tue Nov 18 22:25:29 EST 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords k-means
Sum of squared error criterion
Partitional clustering
Cluster center initialization
Initialization
Gradient
Non parametric test
Statistical analysis
Cluster
Linear time
K means algorithm
Recommendation
Search algorithm
Gradient descent
Experimental result
Efficiency
Classification
Descent method
Database
Linear complexity
Alternative method
Occupation time
Time complexity
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-41691f729478c3dcc0d090a0d183d062d9f3e5afc58f06e86a39f383c1a2c7833
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1349469217
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1701023823
proquest_miscellaneous_1349469217
pascalfrancis_primary_27095898
crossref_citationtrail_10_1016_j_eswa_2012_07_021
crossref_primary_10_1016_j_eswa_2012_07_021
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_07_021
PublicationCentury 2000
PublicationDate January 2013
2013-1-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chen, Song, Bai, Lin, Chang (b0100) 2011; 33
Hartigan, Wong (b0155) 1979; 28
Milligan, Cooper (b0290) 1988; 5
Pizzuti, C., Talia, D., & Vonella, G. (1999). A divisive initialisation method for clustering algorithms, In
Chen, Chien (b0095) 2010; 18
(pp. 1027–1035).
(pp. 297–302).
(pp. 484–491).
Anderberg (b0030) 1973
Cao, Liang, Jiang (b0085) 2009; 58
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, In
Lance, Williams (b0225) 1967; 10
Likas, Vlassis, Verbeek (b0230) 2003; 36
Tou, Gonzales (b0355) 1974
Aloise, Deshpande, Hansen, Popat (b0020) 2009; 75
Meilă (b0280) 2007; 98
(pp. 877–885).
Maitra, Melnykov (b0265) 2010; 19
Voss, T., Hansen, N., & Igel, C. (2010). Improved step size adaptation for the MO-CMA-ES, In
Zhang, Leung (b0380) 2003; 33
Jain (b0195) 2010; 31
(pp. 281–297).
Huang, Harris (b0175) 1993; 2
Babu, Murty (b0045) 1993; 14
Norušis (b0295) 2011
Celebi (b0090) 2011; 29
Babu, Murty (b0050) 1994; 25
Tarsitano (b0350) 2003; 36
(pp. 32–39).
Späth (b0340) 1977; 1
2’: Merging distance and density based clustering, In
13-21.
Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding, In
Iman, Davenport (b0190) 1980; 9
(pp. 74–76).
+
,
.
Huang, Chen (b0170) 1990; 26
Daniel (b0110) 2000
Lloyd (b0240) 1982; 28
Lu, Tang, Tang, Yang (b0250) 2008; 29
1
Al-Daoud, M. (2005). A new algorithm for cluster initialization, In
(pp. 130–140).
Bei, Gray (b0060) 1985; 33
Gonzalez (b0145) 1985; 38
Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2012). The planar k-means problem is NP-hard.
Bradley, P. S., & Fayyad, U. (1998). Refining initial points for k-means clustering, In
>
Garcia, Herrera (b0140) 2008; 9
He, J., Lan, M., Tan, C. L., Sung, S. Y., & Low, H. B. (2004). Initialization of cluster refinement algorithms: A review and comparative study, In
Bergmann, Hommel (b0065) 1988
Hubert, Arabie (b0180) 1985; 2
Katsavounidis, Kuo, Zhang (b0215) 1994; 1
Su, Dy (b0345) 2007; 11
Astrahan, M. M. (1970). Speech analysis by clustering, or the hyperphoneme method, Tech. Rep. AIM-124, Stanford University.
Redmond, Heneghan (b0325) 2007; 28
Wu, J., Xiong, H., & Chen, J. (2009b). Adapting the right measures for k-means clustering, In
Kaufman, Rousseeuw (b0220) 1990
Milligan (b0285) 1980; 45
Hyvärinen (b0185) 1999; 10
SAS Institute Inc., SAS/STAT 9.2 User’s Guide, SAS Publishing, 2009.
Luengo, Garcia, Herrera (b0245) 2009; 36
Garcia, Fernandez, Luengo, Herrera (b0135) 2009; 13
Matsumoto, Nishimura (b0275) 1998; 8
(pp. 487–494).
Frank, A., & Asuncion, A. (2011). UCI machine learning repository, University of California, Irvine, School of Information and Computer Sciences
Ordonez, Omiecinski (b0305) 2004; 16
Al Hasan, Chaoji, Salem, Zaki (b0015) 2009; 30
van Dongen, S. (2000). Performance criteria for graph clustering and Markov cluster experiments, Tech. Rep. INS-R0012, Centrum voor Wiskunde en Informatica.
Jain, Murty, Flynn (b0200) 1999; 31
Hotelling (b0165) 1936; 1
Mao, Jain (b0270) 1996; 7
Wu, Chen, Xiong, Xie (b0370) 2009; 36
Cook, W. (2011). World TSP, Georgia Institute of Technology
Dash, M., Liu, H., & Xu, X. (2001). ‘1
Bottou, Bengio (b0070) 1995
Hamerly, G. (2010). Making k-means even faster, in
Onoda, Sakai, Yamada (b0300) 2012; 4
Breunig, Kriegel, Ng, Sander (b0080) 2000; 29
Forgy (b0120) 1965; 21
Friedman (b0130) 1937; 32
Jancey (b0205) 1966; 14
Al-Daoud, Roberts (b0010) 1996; 17
Pena, Lozano, Larranaga (b0315) 1999; 20
Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (b0210) 2002; 24
Selim, Ismail (b0335) 1984; 6
(pp. 91–99).
Pal, Majumder (b0310) 1977; 7
Aloise, Hansen, Liberti (b0025) 2010
Ball, Hall (b0055) 1967; 12
Linde, Buzo, Gray (b0235) 1980; 28
Babu (10.1016/j.eswa.2012.07.021_b0050) 1994; 25
10.1016/j.eswa.2012.07.021_b0035
10.1016/j.eswa.2012.07.021_b0150
10.1016/j.eswa.2012.07.021_b0075
Matsumoto (10.1016/j.eswa.2012.07.021_b0275) 1998; 8
Jain (10.1016/j.eswa.2012.07.021_b0200) 1999; 31
Tarsitano (10.1016/j.eswa.2012.07.021_b0350) 2003; 36
Su (10.1016/j.eswa.2012.07.021_b0345) 2007; 11
Aloise (10.1016/j.eswa.2012.07.021_b0020) 2009; 75
10.1016/j.eswa.2012.07.021_b0115
Späth (10.1016/j.eswa.2012.07.021_b0340) 1977; 1
Milligan (10.1016/j.eswa.2012.07.021_b0290) 1988; 5
Mao (10.1016/j.eswa.2012.07.021_b0270) 1996; 7
Breunig (10.1016/j.eswa.2012.07.021_b0080) 2000; 29
Bei (10.1016/j.eswa.2012.07.021_b0060) 1985; 33
Hotelling (10.1016/j.eswa.2012.07.021_b0165) 1936; 1
10.1016/j.eswa.2012.07.021_b0160
Onoda (10.1016/j.eswa.2012.07.021_b0300) 2012; 4
Wu (10.1016/j.eswa.2012.07.021_b0370) 2009; 36
Bottou (10.1016/j.eswa.2012.07.021_b0070) 1995
Aloise (10.1016/j.eswa.2012.07.021_b0025) 2010
Lance (10.1016/j.eswa.2012.07.021_b0225) 1967; 10
Daniel (10.1016/j.eswa.2012.07.021_b0110) 2000
Gonzalez (10.1016/j.eswa.2012.07.021_b0145) 1985; 38
10.1016/j.eswa.2012.07.021_b0260
Jancey (10.1016/j.eswa.2012.07.021_b0205) 1966; 14
Tou (10.1016/j.eswa.2012.07.021_b0355) 1974
Zhang (10.1016/j.eswa.2012.07.021_b0380) 2003; 33
Celebi (10.1016/j.eswa.2012.07.021_b0090) 2011; 29
10.1016/j.eswa.2012.07.021_b0105
Huang (10.1016/j.eswa.2012.07.021_b0175) 1993; 2
Al Hasan (10.1016/j.eswa.2012.07.021_b0015) 2009; 30
Bergmann (10.1016/j.eswa.2012.07.021_b0065) 1988
Luengo (10.1016/j.eswa.2012.07.021_b0245) 2009; 36
Norušis (10.1016/j.eswa.2012.07.021_b0295) 2011
Al-Daoud (10.1016/j.eswa.2012.07.021_b0010) 1996; 17
Hubert (10.1016/j.eswa.2012.07.021_b0180) 1985; 2
10.1016/j.eswa.2012.07.021_b0255
10.1016/j.eswa.2012.07.021_b0330
10.1016/j.eswa.2012.07.021_b0375
Hartigan (10.1016/j.eswa.2012.07.021_b0155) 1979; 28
Hyvärinen (10.1016/j.eswa.2012.07.021_b0185) 1999; 10
Likas (10.1016/j.eswa.2012.07.021_b0230) 2003; 36
Selim (10.1016/j.eswa.2012.07.021_b0335) 1984; 6
Linde (10.1016/j.eswa.2012.07.021_b0235) 1980; 28
Pal (10.1016/j.eswa.2012.07.021_b0310) 1977; 7
Huang (10.1016/j.eswa.2012.07.021_b0170) 1990; 26
Pena (10.1016/j.eswa.2012.07.021_b0315) 1999; 20
Milligan (10.1016/j.eswa.2012.07.021_b0285) 1980; 45
Kanungo (10.1016/j.eswa.2012.07.021_b0210) 2002; 24
Lu (10.1016/j.eswa.2012.07.021_b0250) 2008; 29
Meilă (10.1016/j.eswa.2012.07.021_b0280) 2007; 98
Redmond (10.1016/j.eswa.2012.07.021_b0325) 2007; 28
10.1016/j.eswa.2012.07.021_b0365
10.1016/j.eswa.2012.07.021_b0320
Maitra (10.1016/j.eswa.2012.07.021_b0265) 2010; 19
Ordonez (10.1016/j.eswa.2012.07.021_b0305) 2004; 16
10.1016/j.eswa.2012.07.021_b0040
Forgy (10.1016/j.eswa.2012.07.021_b0120) 1965; 21
Jain (10.1016/j.eswa.2012.07.021_b0195) 2010; 31
10.1016/j.eswa.2012.07.021_b0360
Garcia (10.1016/j.eswa.2012.07.021_b0135) 2009; 13
Kaufman (10.1016/j.eswa.2012.07.021_b0220) 1990
10.1016/j.eswa.2012.07.021_b0005
10.1016/j.eswa.2012.07.021_b0125
Iman (10.1016/j.eswa.2012.07.021_b0190) 1980; 9
Garcia (10.1016/j.eswa.2012.07.021_b0140) 2008; 9
Chen (10.1016/j.eswa.2012.07.021_b0095) 2010; 18
Katsavounidis (10.1016/j.eswa.2012.07.021_b0215) 1994; 1
Cao (10.1016/j.eswa.2012.07.021_b0085) 2009; 58
Ball (10.1016/j.eswa.2012.07.021_b0055) 1967; 12
Babu (10.1016/j.eswa.2012.07.021_b0045) 1993; 14
Chen (10.1016/j.eswa.2012.07.021_b0100) 2011; 33
Friedman (10.1016/j.eswa.2012.07.021_b0130) 1937; 32
Anderberg (10.1016/j.eswa.2012.07.021_b0030) 1973
Lloyd (10.1016/j.eswa.2012.07.021_b0240) 1982; 28
References_xml – volume: 19
  start-page: 354
  year: 2010
  end-page: 376
  ident: b0265
  article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms
  publication-title: Journal of Computational and Graphical Statistics
– reference: Pizzuti, C., Talia, D., & Vonella, G. (1999). A divisive initialisation method for clustering algorithms, In:
– reference: Cook, W. (2011). World TSP, Georgia Institute of Technology,
– volume: 17
  start-page: 451
  year: 1996
  end-page: 455
  ident: b0010
  article-title: New methods for the initialisation of clusters
  publication-title: Pattern Recognition Letters
– volume: 29
  start-page: 93
  year: 2000
  end-page: 104
  ident: b0080
  article-title: LOF: Identifying density-based local outliers
  publication-title: ACM SIGMOD Record
– volume: 9
  start-page: 2677
  year: 2008
  end-page: 2694
  ident: b0140
  article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 27
  year: 1936
  end-page: 35
  ident: b0165
  article-title: Simplified calculation of principal components
  publication-title: Psychometrika
– reference: (pp. 297–302).
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: b0180
  article-title: Comparing partitions
  publication-title: Journal of Classification
– reference: (pp. 487–494).
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: b0145
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theoretical Computer Science
– volume: 14
  start-page: 127
  year: 1966
  end-page: 130
  ident: b0205
  article-title: Multidimensional group analysis
  publication-title: Australian Journal of Botany
– volume: 14
  start-page: 763
  year: 1993
  end-page: 769
  ident: b0045
  article-title: A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm
  publication-title: Pattern Recognition Letters
– reference: 1
– volume: 20
  start-page: 1027
  year: 1999
  end-page: 1040
  ident: b0315
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognition Letters
– volume: 30
  start-page: 994
  year: 2009
  end-page: 1002
  ident: b0015
  article-title: Robust partitional clustering by outlier and density insensitive seeding
  publication-title: Pattern Recognition Letters
– volume: 25
  start-page: 85
  year: 1994
  end-page: 94
  ident: b0050
  article-title: Simulated annealing for selecting optimal initial seeds in the k-means algorithm
  publication-title: Indian Journal of Pure and Applied Mathematics
– volume: 12
  start-page: 153
  year: 1967
  end-page: 155
  ident: b0055
  article-title: A clustering technique for summarizing multivariate data
  publication-title: Behavioral Science
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b0200
  article-title: Data clustering: A review
  publication-title: ACM Computing Surveys
– volume: 8
  start-page: 3
  year: 1998
  end-page: 30
  ident: b0275
  article-title: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator
  publication-title: ACM Transactions on Modeling and Computer Simulation
– reference: >
– volume: 18
  start-page: 957
  year: 2010
  end-page: 966
  ident: b0095
  article-title: Bandwidth adaptive hardware architecture of k-means clustering for video analysis
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– volume: 33
  start-page: 983
  year: 2003
  end-page: 999
  ident: b0380
  article-title: Robust clustering by pruning outliers
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b0130
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– reference: Wu, J., Xiong, H., & Chen, J. (2009b). Adapting the right measures for k-means clustering, In:
– volume: 33
  start-page: 568
  year: 2011
  end-page: 586
  ident: b0100
  article-title: Parallel spectral clustering in distributed systems
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: (pp. 877–885).
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b0155
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: Journal of the Royal Statistical Society C
– reference: Voss, T., Hansen, N., & Igel, C. (2010). Improved step size adaptation for the MO-CMA-ES, In:
– reference: (pp. 1027–1035).
– reference: (pp. 91–99).
– reference: Hamerly, G. (2010). Making k-means even faster, in:
– volume: 10
  start-page: 271
  year: 1967
  end-page: 277
  ident: b0225
  article-title: A general theory of classificatory sorting strategies - II. Clustering systems
  publication-title: The Computer Journal
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: b0230
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognition
– reference: Bradley, P. S., & Fayyad, U. (1998). Refining initial points for k-means clustering, In:
– reference: Frank, A., & Asuncion, A. (2011). UCI machine learning repository, University of California, Irvine, School of Information and Computer Sciences,
– volume: 7
  start-page: 625
  year: 1977
  end-page: 629
  ident: b0310
  article-title: Fuzzy sets and decision making approaches in vowel and speaker recognition
  publication-title: IEEE Transacations on Systems, Man, and Cybernetics
– volume: 58
  start-page: 474
  year: 2009
  end-page: 483
  ident: b0085
  article-title: An initialization method for the k-means algorithm using neighborhood model
  publication-title: Computers and Mathematics with Applications
– volume: 7
  start-page: 16
  year: 1996
  end-page: 29
  ident: b0270
  article-title: A self-organizing network for hyperellipsoidal clustering (HEC)
  publication-title: IEEE Transacations on Neural Networks
– year: 1990
  ident: b0220
  article-title: Finding groups in data: An introduction to cluster analysis
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: b0190
  article-title: Approximations of the critical region of the friedman statistic
  publication-title: Communications in Statistics – Theory and Methods
– volume: 45
  start-page: 325
  year: 1980
  end-page: 342
  ident: b0285
  article-title: An examination of the effect of six types of error perturbation on fifteen clustering algorithms
  publication-title: Psychometrika
– year: 1974
  ident: b0355
  article-title: Pattern recognition principles
– volume: 29
  start-page: 260
  year: 2011
  end-page: 271
  ident: b0090
  article-title: Improving the performance of k-means for color quantization
  publication-title: Image and Vision Computing
– reference: He, J., Lan, M., Tan, C. L., Sung, S. Y., & Low, H. B. (2004). Initialization of cluster refinement algorithms: A review and comparative study, In:
– volume: 98
  start-page: 873
  year: 2007
  end-page: 895
  ident: b0280
  article-title: Comparing clusterings — An information based distance
  publication-title: Journal of Multivariate Analysis
– volume: 36
  start-page: 2955
  year: 2003
  end-page: 2966
  ident: b0350
  article-title: A computational study of several relocation methods for k-means algorithms
  publication-title: Pattern Recognition
– reference: Dash, M., Liu, H., & Xu, X. (2001). ‘1
– reference: (pp. 130–140).
– reference: (pp. 281–297).
– volume: 2
  start-page: 108
  year: 1993
  end-page: 112
  ident: b0175
  article-title: A comparison of several vector quantization codebook generation approaches
  publication-title: IEEE Transactions on Image Processing
– reference: Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2012). The planar k-means problem is NP-hard.
– reference: Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding, In:
– reference: 2’: Merging distance and density based clustering, In:
– volume: 6
  start-page: 81
  year: 1984
  end-page: 87
  ident: b0335
  article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: (pp. 74–76).
– reference: ,
– year: 2011
  ident: b0295
  article-title: IBM SPSS statistics 19 statistical procedures companion
– reference: +
– volume: 28
  start-page: 84
  year: 1980
  end-page: 95
  ident: b0235
  article-title: An algorithm for vector quantizer design
  publication-title: IEEE Transactions on Communications
– start-page: 1
  year: 2010
  end-page: 26
  ident: b0025
  article-title: An improved column generation algorithm for minimum sum-of-squares clustering
  publication-title: Mathematical Programming
– volume: 1
  start-page: 144
  year: 1994
  end-page: 146
  ident: b0215
  article-title: A new initialization technique for generalized Lloyd iteration
  publication-title: IEEE Signal Processing Letters
– volume: 75
  start-page: 245
  year: 2009
  end-page: 248
  ident: b0020
  article-title: NP-hardness of euclidean sum-of-squares clustering
  publication-title: Machine Learning
– year: 1995
  ident: b0070
  article-title: Advances in neural information processing systems
  publication-title: Ch. convergence properties of the k-means algorithms
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: b0185
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Transactions on Neural Networks
– volume: 33
  start-page: 1132
  year: 1985
  end-page: 1133
  ident: b0060
  article-title: An improvement of the minimum distortion encoding algorithm for vector quantization
  publication-title: IEEE Transactions on Communications
– volume: 21
  start-page: 768
  year: 1965
  ident: b0120
  article-title: Cluster analysis of multivariate data: Efficiency vs. interpretability of classification
  publication-title: Biometrics
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b0195
  article-title: Data clustering: 50
  publication-title: Pattern Recognition Letters
– volume: 28
  start-page: 129
  year: 1982
  end-page: 136
  ident: b0240
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transacations on Information Theory
– reference: SAS Institute Inc., SAS/STAT 9.2 User’s Guide, SAS Publishing, 2009.
– volume: 11
  start-page: 319
  year: 2007
  end-page: 338
  ident: b0345
  article-title: In search of deterministic methods for initializing k-means and Gaussian mixture clustering
  publication-title: Intelligent Data Analysis
– reference: van Dongen, S. (2000). Performance criteria for graph clustering and Markov cluster experiments, Tech. Rep. INS-R0012, Centrum voor Wiskunde en Informatica.
– volume: 36
  start-page: 6050
  year: 2009
  end-page: 6061
  ident: b0370
  article-title: External validation measures for k-means clustering: A data distribution perspective
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 881
  year: 2002
  end-page: 892
  ident: b0210
  article-title: An efficient k-means clustering algorithm: analysis and implementation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 4
  start-page: 51
  year: 2012
  end-page: 59
  ident: b0300
  article-title: Careful seeding method based on independent components analysis for k-means clustering
  publication-title: Journal of Emerging Technologies in Web Intelligence
– volume: 1
  start-page: 23
  year: 1977
  end-page: 31
  ident: b0340
  article-title: Computational experiences with the exchange method: Applied to four commonly used partitioning cluster analysis criteria
  publication-title: European Journal of Operational Research
– volume: 29
  start-page: 787
  year: 2008
  end-page: 795
  ident: b0250
  article-title: Hierarchical initialization approach for k-means clustering
  publication-title: Pattern Recognition Letters
– reference: (pp. 484–491).
– reference: Astrahan, M. M. (1970). Speech analysis by clustering, or the hyperphoneme method, Tech. Rep. AIM-124, Stanford University.
– reference: Al-Daoud, M. (2005). A new algorithm for cluster initialization, In:
– volume: 36
  start-page: 7798
  year: 2009
  end-page: 7808
  ident: b0245
  article-title: A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests
  publication-title: Expert Systems with Applications
– reference: MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, In:
– volume: 16
  start-page: 909
  year: 2004
  end-page: 921
  ident: b0305
  article-title: Efficient disk-based k-means clustering for relational databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 26
  start-page: 1618
  year: 1990
  end-page: 1619
  ident: b0170
  article-title: Fast encoding algorithm for VQ-based image coding
  publication-title: Electronics Letters
– reference: .
– year: 1973
  ident: b0030
  article-title: Cluster analysis for applications
– year: 1988
  ident: b0065
  article-title: Multiple hypotheses testing
  publication-title: Ch. improvements of general multiple test procedures for redundant systems of hypotheses
– year: 2000
  ident: b0110
  article-title: Applied nonparametric statistics
– volume: 13
  start-page: 959
  year: 2009
  end-page: 977
  ident: b0135
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
  publication-title: Soft Computing
– volume: 5
  start-page: 181
  year: 1988
  end-page: 204
  ident: b0290
  article-title: A study of standardization of variables in cluster analysis
  publication-title: Journal of Classification
– reference: , 13-21.
– reference: (pp. 32–39).
– volume: 28
  start-page: 965
  year: 2007
  end-page: 973
  ident: b0325
  article-title: A method for initialising the k-means clustering algorithm using kd-trees
  publication-title: Pattern Recognition Letters
– volume: 7
  start-page: 16
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2012.07.021_b0270
  article-title: A self-organizing network for hyperellipsoidal clustering (HEC)
  publication-title: IEEE Transacations on Neural Networks
  doi: 10.1109/72.478389
– volume: 36
  start-page: 7798
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2012.07.021_b0245
  article-title: A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.11.041
– ident: 10.1016/j.eswa.2012.07.021_b0115
– volume: 14
  start-page: 763
  issue: 10
  year: 1993
  ident: 10.1016/j.eswa.2012.07.021_b0045
  article-title: A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(93)90058-L
– ident: 10.1016/j.eswa.2012.07.021_b0125
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.eswa.2012.07.021_b0200
  article-title: Data clustering: A review
  publication-title: ACM Computing Surveys
  doi: 10.1145/331499.331504
– volume: 36
  start-page: 6050
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2012.07.021_b0370
  article-title: External validation measures for k-means clustering: A data distribution perspective
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.093
– ident: 10.1016/j.eswa.2012.07.021_b0035
– volume: 12
  start-page: 153
  issue: 2
  year: 1967
  ident: 10.1016/j.eswa.2012.07.021_b0055
  article-title: A clustering technique for summarizing multivariate data
  publication-title: Behavioral Science
  doi: 10.1002/bs.3830120210
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.eswa.2012.07.021_b0195
  article-title: Data clustering: 50years beyond k-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– volume: 16
  start-page: 909
  issue: 8
  year: 2004
  ident: 10.1016/j.eswa.2012.07.021_b0305
  article-title: Efficient disk-based k-means clustering for relational databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.25
– volume: 33
  start-page: 1132
  issue: 10
  year: 1985
  ident: 10.1016/j.eswa.2012.07.021_b0060
  article-title: An improvement of the minimum distortion encoding algorithm for vector quantization
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOM.1985.1096214
– volume: 36
  start-page: 2955
  issue: 12
  year: 2003
  ident: 10.1016/j.eswa.2012.07.021_b0350
  article-title: A computational study of several relocation methods for k-means algorithms
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(03)00190-0
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.eswa.2012.07.021_b0240
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transacations on Information Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 19
  start-page: 354
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2012.07.021_b0265
  article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2009.08054
– volume: 13
  start-page: 959
  issue: 10
  year: 2009
  ident: 10.1016/j.eswa.2012.07.021_b0135
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
  publication-title: Soft Computing
  doi: 10.1007/s00500-008-0392-y
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 10.1016/j.eswa.2012.07.021_b0180
  article-title: Comparing partitions
  publication-title: Journal of Classification
  doi: 10.1007/BF01908075
– volume: 75
  start-page: 245
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2012.07.021_b0020
  article-title: NP-hardness of euclidean sum-of-squares clustering
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5103-0
– ident: 10.1016/j.eswa.2012.07.021_b0160
– ident: 10.1016/j.eswa.2012.07.021_b0330
– volume: 29
  start-page: 260
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2012.07.021_b0090
  article-title: Improving the performance of k-means for color quantization
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2010.10.002
– ident: 10.1016/j.eswa.2012.07.021_b0260
  doi: 10.1016/j.tcs.2010.05.034
– volume: 28
  start-page: 965
  issue: 8
  year: 2007
  ident: 10.1016/j.eswa.2012.07.021_b0325
  article-title: A method for initialising the k-means clustering algorithm using kd-trees
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2007.01.001
– ident: 10.1016/j.eswa.2012.07.021_b0375
  doi: 10.1145/1557019.1557115
– volume: 33
  start-page: 983
  issue: 6
  year: 2003
  ident: 10.1016/j.eswa.2012.07.021_b0380
  article-title: Robust clustering by pruning outliers
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B
  doi: 10.1109/TSMCB.2003.816993
– volume: 33
  start-page: 568
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2012.07.021_b0100
  article-title: Parallel spectral clustering in distributed systems
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.88
– ident: 10.1016/j.eswa.2012.07.021_b0105
– volume: 1
  start-page: 23
  issue: 1
  year: 1977
  ident: 10.1016/j.eswa.2012.07.021_b0340
  article-title: Computational experiences with the exchange method: Applied to four commonly used partitioning cluster analysis criteria
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(77)81005-9
– volume: 30
  start-page: 994
  issue: 11
  year: 2009
  ident: 10.1016/j.eswa.2012.07.021_b0015
  article-title: Robust partitional clustering by outlier and density insensitive seeding
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.04.013
– volume: 25
  start-page: 85
  issue: 1–2
  year: 1994
  ident: 10.1016/j.eswa.2012.07.021_b0050
  article-title: Simulated annealing for selecting optimal initial seeds in the k-means algorithm
  publication-title: Indian Journal of Pure and Applied Mathematics
– volume: 11
  start-page: 319
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2012.07.021_b0345
  article-title: In search of deterministic methods for initializing k-means and Gaussian mixture clustering
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2007-11402
– year: 1973
  ident: 10.1016/j.eswa.2012.07.021_b0030
– volume: 9
  start-page: 2677
  year: 2008
  ident: 10.1016/j.eswa.2012.07.021_b0140
  article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.eswa.2012.07.021_b0040
– volume: 17
  start-page: 451
  issue: 5
  year: 1996
  ident: 10.1016/j.eswa.2012.07.021_b0010
  article-title: New methods for the initialisation of clusters
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(95)00119-0
– year: 2011
  ident: 10.1016/j.eswa.2012.07.021_b0295
– start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2012.07.021_b0025
  article-title: An improved column generation algorithm for minimum sum-of-squares clustering
  publication-title: Mathematical Programming
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.eswa.2012.07.021_b0155
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: Journal of the Royal Statistical Society C
– ident: 10.1016/j.eswa.2012.07.021_b0320
  doi: 10.1007/978-3-540-48247-5_62
– ident: 10.1016/j.eswa.2012.07.021_b0360
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 10.1016/j.eswa.2012.07.021_b0185
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.761722
– volume: 7
  start-page: 625
  issue: 8
  year: 1977
  ident: 10.1016/j.eswa.2012.07.021_b0310
  article-title: Fuzzy sets and decision making approaches in vowel and speaker recognition
  publication-title: IEEE Transacations on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1977.4309789
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 10.1016/j.eswa.2012.07.021_b0210
  article-title: An efficient k-means clustering algorithm: analysis and implementation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017616
– ident: 10.1016/j.eswa.2012.07.021_b0255
– volume: 6
  start-page: 81
  issue: 1
  year: 1984
  ident: 10.1016/j.eswa.2012.07.021_b0335
  article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1984.4767478
– ident: 10.1016/j.eswa.2012.07.021_b0075
– volume: 18
  start-page: 957
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2012.07.021_b0095
  article-title: Bandwidth adaptive hardware architecture of k-means clustering for video analysis
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  doi: 10.1109/TVLSI.2009.2017543
– volume: 2
  start-page: 108
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2012.07.021_b0175
  article-title: A comparison of several vector quantization codebook generation approaches
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.210871
– volume: 1
  start-page: 27
  issue: 1
  year: 1936
  ident: 10.1016/j.eswa.2012.07.021_b0165
  article-title: Simplified calculation of principal components
  publication-title: Psychometrika
  doi: 10.1007/BF02287921
– volume: 14
  start-page: 127
  issue: 1
  year: 1966
  ident: 10.1016/j.eswa.2012.07.021_b0205
  article-title: Multidimensional group analysis
  publication-title: Australian Journal of Botany
  doi: 10.1071/BT9660127
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2012.07.021_b0230
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 21
  start-page: 768
  year: 1965
  ident: 10.1016/j.eswa.2012.07.021_b0120
  article-title: Cluster analysis of multivariate data: Efficiency vs. interpretability of classification
  publication-title: Biometrics
– ident: 10.1016/j.eswa.2012.07.021_b0005
– volume: 58
  start-page: 474
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2012.07.021_b0085
  article-title: An initialization method for the k-means algorithm using neighborhood model
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2009.04.017
– volume: 98
  start-page: 873
  issue: 5
  year: 2007
  ident: 10.1016/j.eswa.2012.07.021_b0280
  article-title: Comparing clusterings — An information based distance
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2006.11.013
– volume: 38
  start-page: 293
  issue: 2–3
  year: 1985
  ident: 10.1016/j.eswa.2012.07.021_b0145
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theoretical Computer Science
  doi: 10.1016/0304-3975(85)90224-5
– volume: 20
  start-page: 1027
  issue: 10
  year: 1999
  ident: 10.1016/j.eswa.2012.07.021_b0315
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(99)00069-0
– ident: 10.1016/j.eswa.2012.07.021_b0365
  doi: 10.1145/1830483.1830573
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.eswa.2012.07.021_b0130
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– year: 1974
  ident: 10.1016/j.eswa.2012.07.021_b0355
– year: 1995
  ident: 10.1016/j.eswa.2012.07.021_b0070
  article-title: Advances in neural information processing systems
– ident: 10.1016/j.eswa.2012.07.021_b0150
  doi: 10.1137/1.9781611972801.12
– volume: 26
  start-page: 1618
  issue: 19
  year: 1990
  ident: 10.1016/j.eswa.2012.07.021_b0170
  article-title: Fast encoding algorithm for VQ-based image coding
  publication-title: Electronics Letters
  doi: 10.1049/el:19901037
– volume: 1
  start-page: 144
  issue: 10
  year: 1994
  ident: 10.1016/j.eswa.2012.07.021_b0215
  article-title: A new initialization technique for generalized Lloyd iteration
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/97.329844
– volume: 29
  start-page: 93
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2012.07.021_b0080
  article-title: LOF: Identifying density-based local outliers
  publication-title: ACM SIGMOD Record
  doi: 10.1145/335191.335388
– volume: 28
  start-page: 84
  issue: 1
  year: 1980
  ident: 10.1016/j.eswa.2012.07.021_b0235
  article-title: An algorithm for vector quantizer design
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOM.1980.1094577
– volume: 5
  start-page: 181
  issue: 2
  year: 1988
  ident: 10.1016/j.eswa.2012.07.021_b0290
  article-title: A study of standardization of variables in cluster analysis
  publication-title: Journal of Classification
  doi: 10.1007/BF01897163
– volume: 29
  start-page: 787
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2012.07.021_b0250
  article-title: Hierarchical initialization approach for k-means clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2007.12.009
– volume: 4
  start-page: 51
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2012.07.021_b0300
  article-title: Careful seeding method based on independent components analysis for k-means clustering
  publication-title: Journal of Emerging Technologies in Web Intelligence
  doi: 10.4304/jetwi.4.1.51-59
– year: 2000
  ident: 10.1016/j.eswa.2012.07.021_b0110
– year: 1990
  ident: 10.1016/j.eswa.2012.07.021_b0220
– volume: 9
  start-page: 571
  issue: 6
  year: 1980
  ident: 10.1016/j.eswa.2012.07.021_b0190
  article-title: Approximations of the critical region of the friedman statistic
  publication-title: Communications in Statistics – Theory and Methods
  doi: 10.1080/03610928008827904
– year: 1988
  ident: 10.1016/j.eswa.2012.07.021_b0065
  article-title: Multiple hypotheses testing
– volume: 10
  start-page: 271
  issue: 3
  year: 1967
  ident: 10.1016/j.eswa.2012.07.021_b0225
  article-title: A general theory of classificatory sorting strategies - II. Clustering systems
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/10.3.271
– volume: 8
  start-page: 3
  issue: 1
  year: 1998
  ident: 10.1016/j.eswa.2012.07.021_b0275
  article-title: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator
  publication-title: ACM Transactions on Modeling and Computer Simulation
  doi: 10.1145/272991.272995
– volume: 45
  start-page: 325
  issue: 3
  year: 1980
  ident: 10.1016/j.eswa.2012.07.021_b0285
  article-title: An examination of the effect of six types of error perturbation on fifteen clustering algorithms
  publication-title: Psychometrika
  doi: 10.1007/BF02293907
SSID ssj0017007
Score 2.610252
Snippet ► K-means is the most widely used partitional clustering algorithm. ► k-means is highly sensitive to the selection of the initial centers. ► We present an...
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 200
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Cluster analysis
Cluster center initialization
Clustering
Clusters
Collection
Computational efficiency
Computer science; control theory; systems
Data processing. List processing. Character string processing
Exact sciences and technology
Expert systems
k-means
Memory organisation. Data processing
Partitional clustering
Software
Statistical tests
Sum of squared error criterion
Theoretical computing
Title A comparative study of efficient initialization methods for the k-means clustering algorithm
URI https://dx.doi.org/10.1016/j.eswa.2012.07.021
https://www.proquest.com/docview/1349469217
https://www.proquest.com/docview/1701023823
Volume 40
WOSCitedRecordID wos000309378200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMS4htRPiYj8ValcpwPO49hCqwwKjSNqQ9IUeo40JGlVdOO_SP8v5xjOzSbKPDAS1RdkzjN_eo7n-9-h9ArIv3MFYXvFFxyx88K4WS8yByay5By1ciOz5pmE2wy4dNp9LHX-2FrYS5KVlX88jJa_ldVgwyUrUpn_0Hd7U1BAJ9B6XAEtcPxrxQfm7xyzehdW9Jo2XBFqJ3_ucoXykpTgGl6SNdtvuE351yC_RqKcqNIFJoixvLLYjVffz3vxPEVSfLaUEHbIrmt7fDWV_9wnAwPkqPk9bgTfX0_nrw9jk8b4SG48DDRtGg6TY5i7d-qBgLzhfnGRCd0WakOlhnL3ok4Msd3dVOekdTzLWeeEzLdJNFOyJq_qQM8M7sSsmWoqc6HvWYDdDjibCTr74pYSgV72YjoOuwu4fYVQ9imJ1IGz8ojfgPtURZEvI_24nEyfdduTzGi6_DtLzLVWDpx8Oq4v_N4bi-zGv6HhW6gcs0XaByck3vojlmZ4Fgj6j7qyeoBumtWKdjYgBpEthGIlT1En2O8hTncYA4vCtxiDncxhw3mMGAOA-awwRz-hTncYu4R-vQmOTk4dEzbDkf4IV3DCwkjt4BFm8-48HIhSE4ikpEcrEdOQppHhScDmBUCXpBQ8jDzQMI94WZUMO55j1G_WlTyCcI0KlxfZDM5C-Fu4DoVAeUyhzV2ECkmygFy7atNheG0V61VytQmL56lSh2pUkdKWArqGKBhe81SM7rsPDuwGkuNT6p9zRTgtvO6_Y5626EstgbopdV3CjO62qbLKrnY1KkiDPXDiLpsxzlMcUGqPfynfxroGbpFmxYuKmz4HPXXq418gW6Ki_W8Xu0bZP8EXsTPKQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+efficient+initialization+methods+for+the+k-means+clustering+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=EMRE+CELEBI%2C+M&rft.au=KINGRAVI%2C+Hassan+A&rft.au=VELA%2C+Patricio+A&rft.date=2013&rft.pub=Elsevier&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=40&rft.issue=1&rft.spage=200&rft.epage=210&rft_id=info:doi/10.1016%2Fj.eswa.2012.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=27095898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon