Human- versus Artificial Intelligence
AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by imp...
Saved in:
| Published in: | Frontiers in artificial intelligence Vol. 4; p. 622364 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media S.A
25.03.2021
|
| Subjects: | |
| ISSN: | 2624-8212, 2624-8212 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and “collaborate” with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI “partners” with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying ‘psychological’ mechanisms of AI. So, in order to obtain well-functioning human-AI systems,
Intelligence Awareness
in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed. |
|---|---|
| AbstractList | AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and "collaborate" with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI "partners" with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying 'psychological' mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and "collaborate" with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI "partners" with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying 'psychological' mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed. AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and “collaborate” with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI “partners” with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying ‘psychological’ mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed. AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and "collaborate" with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI "partners" with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying 'psychological' mechanisms of AI. So, in order to obtain well-functioning human-AI systems, in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed. AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and “collaborate” with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI “partners” with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying ‘psychological’ mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed. |
| Author | van de Boer-Visschedijk, G. C. Boonekamp, R. C. Blankendaal, R. A. M. Korteling, J. E. (Hans). Eikelboom, A. R. |
| AuthorAffiliation | TNO Human Factors, Soesterberg , Netherlands |
| AuthorAffiliation_xml | – name: TNO Human Factors, Soesterberg , Netherlands |
| Author_xml | – sequence: 1 givenname: J. E. (Hans). surname: Korteling fullname: Korteling, J. E. (Hans). – sequence: 2 givenname: G. C. surname: van de Boer-Visschedijk fullname: van de Boer-Visschedijk, G. C. – sequence: 3 givenname: R. A. M. surname: Blankendaal fullname: Blankendaal, R. A. M. – sequence: 4 givenname: R. C. surname: Boonekamp fullname: Boonekamp, R. C. – sequence: 5 givenname: A. R. surname: Eikelboom fullname: Eikelboom, A. R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33981990$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1rFDEYxoNUbN323pPsRfAya_Imk4-LUIrahYIXew5J5s02ZXZSk5lC_3tn3FpawVNC8jy_9-N5T46GPCAh54xuONfmcywubYAC20gALsUbcgISRKOBwdGL-zE5q_WOUgotbRmDd-SYc6OZMfSEfLya9m5o1g9Y6lTXF2VMMYXk-vV2GLHv0w6HgKfkbXR9xbOnc0Vuvn39eXnVXP_4vr28uG6CkDA23LNOMypp541p29axDgT3QlClwEfVojLRyA5AsOBbAVoIrZTyMXaeg-crsj1wu-zu7H1Je1cebXbJ_nnIZWfd3GHo0XpQzgSOXvogvHcOo3EROxSBRk0X1pcD637ye-wCDmNx_Svo658h3dpdfrDzBFpoOgM-PQFK_jVhHe0-1TDvxA2Yp2qhBcmpVPOIK_LhZa3nIn_3PAvoQRBKrrVgfJYwapc07ZKmXdK0hzRni_zHEtLoxpSXblP_f-Nv5Xqj-A |
| CitedBy_id | crossref_primary_10_1016_j_ijinfomgt_2024_102775 crossref_primary_10_1177_02783649241284058 crossref_primary_10_1109_TGRS_2025_3557380 crossref_primary_10_3389_fcomp_2022_1070493 crossref_primary_10_1080_01615440_2024_2414925 crossref_primary_10_1177_00469580231221285 crossref_primary_10_1108_JIC_06_2024_0195 crossref_primary_10_1007_s00146_022_01458_3 crossref_primary_10_3390_bioengineering11111111 crossref_primary_10_1080_00038628_2023_2278500 crossref_primary_10_1007_s43681_024_00461_2 crossref_primary_10_1186_s43093_025_00438_5 crossref_primary_10_1016_j_aimed_2024_12_011 crossref_primary_10_34133_research_0755 crossref_primary_10_1177_10949968241265855 crossref_primary_10_1016_j_ijinfomgt_2025_102940 crossref_primary_10_1177_10711813251358264 crossref_primary_10_20473_jpkm_v10i12025_1_20 crossref_primary_10_2478_orga_2024_0024 crossref_primary_10_4103_jpbs_jpbs_1287_23 crossref_primary_10_1080_10447318_2025_2530079 crossref_primary_10_1016_j_dcn_2024_101470 crossref_primary_10_3390_healthcare12020223 crossref_primary_10_1093_bib_bbac326 crossref_primary_10_7759_cureus_48643 crossref_primary_10_1177_07488068241245520 crossref_primary_10_3390_systems11030114 crossref_primary_10_1038_s41598_025_00286_x crossref_primary_10_1007_s12144_025_07917_6 crossref_primary_10_25300_MISQ_2025_19133 crossref_primary_10_1186_s41239_024_00455_4 crossref_primary_10_3390_cancers16111981 crossref_primary_10_1016_j_tre_2025_104053 crossref_primary_10_3390_cancers16244230 crossref_primary_10_1007_s10462_024_10888_y crossref_primary_10_1177_17470161241235772 crossref_primary_10_3389_frvir_2025_1451273 crossref_primary_10_3390_land11122325 crossref_primary_10_3389_frai_2025_1603562 crossref_primary_10_1016_j_neucom_2023_126267 crossref_primary_10_3390_app13021163 crossref_primary_10_1016_j_pec_2024_108400 crossref_primary_10_1186_s40545_023_00624_2 crossref_primary_10_1055_a_2407_7994 crossref_primary_10_1007_s44163_022_00023_7 crossref_primary_10_7759_cureus_37023 crossref_primary_10_1016_j_jtha_2024_12_030 crossref_primary_10_1016_j_prp_2023_154989 crossref_primary_10_1007_s00405_024_08868_7 crossref_primary_10_1016_j_outlook_2025_102445 crossref_primary_10_1136_bmjopen_2022_066322 crossref_primary_10_7759_cureus_35237 crossref_primary_10_1016_j_eswa_2025_127858 crossref_primary_10_1039_D4NR04875J crossref_primary_10_1002_ksa_12737 crossref_primary_10_1186_s13677_025_00759_4 crossref_primary_10_25139_jsk_v9i2_9405 crossref_primary_10_1080_08839514_2024_2411462 crossref_primary_10_1016_j_sapharm_2023_05_016 crossref_primary_10_1007_s10015_024_01000_2 crossref_primary_10_1097_CIN_0000000000001177 crossref_primary_10_1186_s12909_025_07544_6 crossref_primary_10_1016_j_grets_2025_100235 crossref_primary_10_56294_saludcyt20251586 crossref_primary_10_1080_10382046_2025_2458561 crossref_primary_10_3390_md21020100 crossref_primary_10_71112_tqmy6k83 crossref_primary_10_1080_10401334_2025_2521001 crossref_primary_10_3389_fpsyg_2021_629354 crossref_primary_10_1111_jocd_70241 crossref_primary_10_1177_0958305X251375955 crossref_primary_10_1007_s13752_024_00483_3 crossref_primary_10_1186_s12940_025_01186_3 crossref_primary_10_1002_pd_6445 crossref_primary_10_1007_s44163_022_00038_0 crossref_primary_10_3390_buildings12081134 crossref_primary_10_3389_fncom_2024_1395901 crossref_primary_10_1002_hpm_3709 crossref_primary_10_3390_educsci14020172 crossref_primary_10_3390_bs12040103 crossref_primary_10_1007_s44163_022_00039_z crossref_primary_10_70749_ijbr_v3i2_731 crossref_primary_10_7759_cureus_90469 crossref_primary_10_1007_s11914_023_00852_0 crossref_primary_10_3389_fpsyg_2023_1209761 crossref_primary_10_3390_jpm14050443 crossref_primary_10_3389_fped_2024_1404600 crossref_primary_10_1007_s10916_024_02075_x crossref_primary_10_1007_s10742_025_00351_y crossref_primary_10_1007_s12027_022_00725_6 crossref_primary_10_1007_s11191_024_00530_2 crossref_primary_10_3390_app11125467 crossref_primary_10_30827_dreh_23_2025_33670 crossref_primary_10_1108_JIC_07_2024_0201 crossref_primary_10_3390_jmse13010158 crossref_primary_10_7759_cureus_51466 crossref_primary_10_3390_sym17060934 crossref_primary_10_3390_rel16080948 crossref_primary_10_23887_jere_v9i1_83227 crossref_primary_10_1055_s_0043_1777746 crossref_primary_10_3389_fpsyg_2025_1627289 crossref_primary_10_1007_s44206_023_00054_2 crossref_primary_10_1080_10494820_2025_2457351 crossref_primary_10_1016_j_techfore_2022_121763 crossref_primary_10_3389_frai_2024_1477535 crossref_primary_10_1108_EJIM_05_2024_0520 crossref_primary_10_1007_s11191_024_00534_y crossref_primary_10_1016_j_oor_2024_100225 crossref_primary_10_29105_vtga11_3_1141 crossref_primary_10_1007_s10639_023_12223_4 crossref_primary_10_1016_j_nexres_2025_100639 crossref_primary_10_3390_app12042250 crossref_primary_10_3390_ai6090220 crossref_primary_10_1177_15553434221129166 crossref_primary_10_3390_hearts5010007 crossref_primary_10_1007_s10439_023_03305_y crossref_primary_10_1038_s41598_024_58087_7 crossref_primary_10_1016_j_puhe_2023_12_032 crossref_primary_10_1016_j_sftr_2025_101152 crossref_primary_10_1002_mar_21699 crossref_primary_10_1016_j_ijinfomgt_2025_102875 crossref_primary_10_1177_01461672241288338 crossref_primary_10_1038_s41598_025_95387_y crossref_primary_10_7759_cureus_79556 crossref_primary_10_3390_biomedicines13051019 crossref_primary_10_1080_14703297_2024_2391044 crossref_primary_10_3390_computers14090380 crossref_primary_10_3390_info15080443 crossref_primary_10_7759_cureus_81162 crossref_primary_10_1111_ijun_12428 crossref_primary_10_1111_nin_12583 crossref_primary_10_5334_jime_995 crossref_primary_10_1080_14606925_2025_2452084 crossref_primary_10_1080_09588221_2025_2503900 crossref_primary_10_3390_arts11050083 crossref_primary_10_1016_j_heliyon_2024_e40037 crossref_primary_10_1109_ACCESS_2024_3510459 crossref_primary_10_1016_j_scriptamat_2024_116175 crossref_primary_10_3390_vaccines11071217 crossref_primary_10_3103_S0147688224700679 crossref_primary_10_1016_j_biosystems_2025_105548 crossref_primary_10_1016_j_joitmc_2025_100578 crossref_primary_10_3390_healthcare11060887 crossref_primary_10_1007_s13042_025_02536_w crossref_primary_10_1007_s40123_021_00430_6 crossref_primary_10_1093_ced_llad255 crossref_primary_10_51707_2618_0529_2025_32_03 crossref_primary_10_1007_s00393_024_01535_6 crossref_primary_10_1016_j_techsoc_2024_102662 crossref_primary_10_1080_14703297_2025_2499174 crossref_primary_10_1080_23311886_2024_2367085 crossref_primary_10_1109_JIOT_2025_3544555 crossref_primary_10_2139_ssrn_5391810 crossref_primary_10_1109_ACCESS_2025_3536300 crossref_primary_10_1002_tea_70009 crossref_primary_10_1007_s00422_023_00979_4 crossref_primary_10_1038_s41592_024_02327_1 crossref_primary_10_3390_diagnostics14232731 crossref_primary_10_1108_DLP_04_2024_0067 crossref_primary_10_3390_educsci13090865 crossref_primary_10_1016_j_acorp_2023_100082 crossref_primary_10_1097_TA_0000000000004030 crossref_primary_10_3390_nu16132066 crossref_primary_10_3390_act14040185 crossref_primary_10_1007_s10805_024_09543_6 crossref_primary_10_1016_j_procir_2024_10_073 crossref_primary_10_7759_cureus_69000 crossref_primary_10_1051_shsconf_202316001012 crossref_primary_10_1016_j_jisa_2025_104116 crossref_primary_10_1177_21582440231211079 crossref_primary_10_1038_s41598_024_70031_3 crossref_primary_10_1016_j_inffus_2023_102135 crossref_primary_10_1038_s41598_025_11172_x crossref_primary_10_7759_cureus_71472 crossref_primary_10_1016_j_destud_2025_101303 crossref_primary_10_3389_fpsyg_2023_1339782 crossref_primary_10_2196_49459 crossref_primary_10_1109_TLT_2025_3574466 crossref_primary_10_3390_app142411612 crossref_primary_10_1007_s43681_022_00139_7 crossref_primary_10_1007_s00146_021_01315_9 crossref_primary_10_2147_JMDH_S439223 crossref_primary_10_1080_0142159X_2024_2413425 crossref_primary_10_1111_aphw_12621 crossref_primary_10_23104_ME_e7 crossref_primary_10_1080_08838151_2025_2519730 crossref_primary_10_3390_make6010032 crossref_primary_10_1080_1750399X_2025_2542022 crossref_primary_10_3390_coatings14070827 crossref_primary_10_1007_s13198_025_02755_y crossref_primary_10_1016_j_clsr_2024_106053 crossref_primary_10_3390_electronics14153024 crossref_primary_10_26634_jet_21_1_20532 crossref_primary_10_1371_journal_pone_0288109 crossref_primary_10_3390_act13080278 |
| Cites_doi | 10.1016/j.tics.2011.01.005 10.5898/JHRI.3.1.Johnson 10.2307/1884852 10.1016/j.tics.2007.05.005 10.1016/j.socec.2010.10.008 10.1037/0278-7393.26.3.566 10.1038/nature24270 10.1201/9780429458330-3 10.1037/a0016755 10.1109/TCDS.2018.2851569 10.1007/978-3-319-09274-4_1 10.1109/MIS.2012.37 10.3389/fpsyg.2018.01561 10.1187/cbe.12-06-0074 10.1126/science.185.4157.1124 10.1007/978-3-030-22341-0_45 10.1016/j.obhdp.2004.03.003 10.1037/1089-2680.2.2.175 10.1145/3232078.3232238 10.1177/0146167202286008 10.1126/science.162.3859.1243 10.1037/0096-3445.124.2.207 10.3758/bf03197432 10.1016/0010-0285(70)90005-8 10.1086/377665 10.1023/a:1026517309871 10.1007/s00146-020-01005-y 10.1016/j.neuron.2011.09.027 10.1007/s12652-018-1165-9 10.1037//0096-1523.27.4.763 10.1016/0010-0285(73)90033-9 10.1080/00224545.1981.9924371 10.1521/soco.2009.27.5.733 10.1037/h0031207 10.1007/978-3-642-34103-8_20 10.1126/science.186.4165.752 10.1037//0096-1523.4.2.210 10.1126/science.275.5302.969Dane 10.1017/S0140525X16001837 10.1177/1745691612454303 10.1080/10447318.2020.1741118 10.1113/jphysiol.1968.sp008469 10.1006/jhev.2000.0435 10.1109/TTS.2020.2992669 10.1007/978-3-319-26485-1_33 10.1109/MIS.2004.74 10.1037/rev0000017 10.1177/1550147716665500 10.13140/RG.2.2.27981.56800 10.1038/scientificamerican0992-60 10.1146/annurev.psych.53.100901.135213 10.1080/07370024.2004.9667337 10.1146/annurev-psych-120709-145346 10.1037/0021-9010.72.3.416 10.1016/j.artint.2007.10.011 10.1080/09540091.2016.1271400 10.1126/science.7455683 10.1037/h0027768 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom |
| Copyright_xml | – notice: Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. – notice: Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/frai.2021.622364 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Korteling et al |
| EISSN | 2624-8212 |
| ExternalDocumentID | oai_doaj_org_article_b27a9c3eb6bc4bbaaef9afede4c0f80b PMC8108480 33981990 10_3389_frai_2021_622364 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 9T4 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ OK1 PGMZT RPM ACXDI ADMLS NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c462t-3b1d81060db99555a1d243b440772bf75e79f96d2241cb5428448777bffdb32b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751704800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-8212 |
| IngestDate | Fri Oct 03 12:50:38 EDT 2025 Tue Sep 30 16:46:40 EDT 2025 Fri Sep 05 12:09:35 EDT 2025 Wed Feb 19 02:07:08 EST 2025 Sat Nov 29 02:47:43 EST 2025 Tue Nov 18 22:07:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | human intelligence human-level artificial intelligence narrow artificial intelligence cognitive bias cognitive complexity human-AI collaboration artificial general intelligence artificial intelligence |
| Language | English |
| License | Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-3b1d81060db99555a1d243b440772bf75e79f96d2241cb5428448777bffdb32b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Cesar Collazos, University of Cauca, Colombia Edited by: Esma Aïmeur, Université de Montréal, Canada Ranilson Oscar Araújo Paiva, Federal University of Alagoas, Brazil This article was submitted to AI for Human Learning and Behavior Change, a section of the journal Frontiers in Artificial Intelligence |
| OpenAccessLink | https://doaj.org/article/b27a9c3eb6bc4bbaaef9afede4c0f80b |
| PMID | 33981990 |
| PQID | 2526306724 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b27a9c3eb6bc4bbaaef9afede4c0f80b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8108480 proquest_miscellaneous_2526306724 pubmed_primary_33981990 crossref_primary_10_3389_frai_2021_622364 crossref_citationtrail_10_3389_frai_2021_622364 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-25 |
| PublicationDateYYYYMMDD | 2021-03-25 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in artificial intelligence |
| PublicationTitleAlternate | Front Artif Intell |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Baron (B5) 2004; 94 Isaacson (B42) 2011; 72 McDowd (B14) 1988 Tversky (B95) 1981; 211 Belkom (B6) 2019 Grind (B33) 1997 Tooby (B93) 2005 Horowitz (B41) 2018 Kahneman (B47) 2011 Peeters (B72) 2020; 38 Coley (B19) 2012; 11 Müller (B67) 2016 Siegel (B87) 2005 Rogers (B80) 1995; 124 Tegmark (B92) 2017 Silver (B88) 2017; 550 Williams (B100) 1978; 6 Wood (B102) 1987; 72 Hoffrage (B40) 2000; 26 Kurzweil (B58) 2005 Lichtenstein (B61) 1971; 89 Risen (B78) 2015; 123 Aliman (B2) 2020 Kurzweil (B59) 1990 van den Bosch (B105) 2018 Korteling (B53); 9 Haring (B35) 2018; 10 Bar (B4) 2007; 11 Nosek (B69) 2011; 15 Bao (B3) 1997; 275 Nickerson (B68) 1998; 2 Furnham (B27) 2011; 40 Boden (B10) 2017; 29 Gibson (B30) 1966 Taylor (B91) 1981; 113 Brodal (B16) 1981 Bieger (B9) 2014 B103 Ackermann (B1) 2018 Goertzel (B32) 2007; 171 Wingfield (B101) 1981 Weisstein (B98) 1974; 186 Gerla (B28) 2014; 12 Bostrom (B13) 2014 Tversky (B96) 1973; 5 Fink (B25) 2012 Minsky (B64) 1986 Kahneman (B45) 2009; 64 Werkhoven (B99) 2018 Korteling (B52) 2020 Reicher (B46) 1969; 81 Shatz (B84) 1992; 267 McBrearty (B62) 2000; 39 Goertzel (B23) 2014 Roese (B79) 2012; 7 Kahle (B44) 1979 McClelland (B63) 1978; 4 Rich (B77) 2009 Petraglia (B73) 1998 Shneiderman (B85); 1 Gigerenzer (B31) 2011; 62 Damasio (B21) 1994 Moravec (B66) 1998; 1 Simon (B89) 1955; 69 Korteling (B55) 2021 Toet (B104) 2016 Bradshaw (B15) 2012; 27 Bergstein (B8) 2017 Shafir (B83) 2002; 53 Haselton (B36) 2009; 27 Pomerantz (B74) 1981 Cialdini (B18) 1984 Hoffman (B39) 2019 van den Bosch (B106) 2019 Kosslyn (B56) 1992 Lake (B60) 2017; 40 Feldman-Barret (B24) 2017 Rich (B76) 1991 Henshilwood (B38) 2003; 44 Hardin (B34) 1968; 162 Haselton (B37) 2005 Johnson (B43) 2014; 3 Patt (B71) 2000; 21 Wheeler (B90) 1970; 1 Russell (B82) 2014 Tversky (B94) 1974; 185 Gibson (B29) 1979 Krämer (B57) 2012 Elands (B22) 2019; 188 Rubinstein (B81) 2001; 27 Brown (B17) 2020; 2005 Collazos (B20) 2019; 10 Klein (B50) 2004; 19 Fischetti (B26) 2011 Korteling (B54) Katz (B48) 1968; 195 Kiesler (B49) 2004; 19 Korteling (B51) 1994 Pronin (B75) 2002; 28 Moravec (B65) 1988 Shneiderman (B86); 36 |
| References_xml | – volume-title: Report TNO 2018 R11654. Soesterberg: TNO defense safety and security ident: B54 article-title: Effecten van de inzet van Non-Human Intelligent Collaborators op Opleiding and Training [V1719] – volume: 15 start-page: 152 year: 2011 ident: B69 article-title: Implicit social cognition: from measures to mechanisms publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.01.005 – volume: 3 start-page: 43 year: 2014 ident: B43 article-title: Coactive design: designing support for interdependence in joint activity publication-title: J. Human-Robot Interaction doi: 10.5898/JHRI.3.1.Johnson – volume: 69 start-page: 99 year: 1955 ident: B89 article-title: A behavioral model of rational choice publication-title: Q. J. Econ. doi: 10.2307/1884852 – start-page: 1 volume-title: Int. J. Humanities Soc. Sci. year: 2016 ident: B104 article-title: Effects of personal characteristics on susceptibility to decision bias: a literature study – volume: 11 start-page: 280 year: 2007 ident: B4 article-title: The proactive brain: using analogies and associations to generate predictions publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.05.005 – volume: 40 start-page: 35 year: 2011 ident: B27 article-title: A literature review of the anchoring effect publication-title: The J. Socio-Economics doi: 10.1016/j.socec.2010.10.008 – volume-title: Natuurlijke intelligentie: over denken, intelligentie en bewustzijn van mensen en andere dieren year: 1997 ident: B33 – volume: 26 start-page: 566 year: 2000 ident: B40 article-title: Hindsight bias: a by-product of knowledge updating? publication-title: J. Exp. Psychol. Learn. Mem. Cogn. doi: 10.1037/0278-7393.26.3.566 – volume: 550 start-page: 354 year: 2017 ident: B88 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – start-page: 5 volume-title: Handbook of evolutionary psychology year: 2005 ident: B93 article-title: Conceptual foundations of evolutionary psychology – volume-title: How emotions are made: the secret life of the brain year: 2017 ident: B24 – start-page: 43 volume-title: Human performance in automated and autonomous systems year: 2019 ident: B39 article-title: The quest for alternatives to “levels of automation” and “task allocation doi: 10.1201/9780429458330-3 – volume: 64 start-page: 515 year: 2009 ident: B45 article-title: Conditions for intuitive expertize: a failure to disagree publication-title: Am. Psychol. doi: 10.1037/a0016755 – volume: 10 start-page: 843 year: 2018 ident: B35 article-title: Ffab—the form function attribution bias in human-robot interaction publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2851569 – volume-title: 7th international conference, AGI 2014 quebec city, QC, Canada, august 1–4, 2014 proceedings year: 2014 ident: B9 article-title: Raising AI: tutoring matters doi: 10.1007/978-3-319-09274-4_1 – year: 2019 ident: B6 article-title: Duikboten zwemmen niet: de zoektocht naar intelligente machines – volume: 27 start-page: 8 year: 2012 ident: B15 article-title: Introduction to special issue on human-agent-robot teamwork publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2012.37 – volume: 9 start-page: 1561 ident: B53 article-title: A neural network framework for cognitive bias publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01561 – volume-title: Influence: the psychology of persuation year: 1984 ident: B18 – volume: 11 start-page: 209 year: 2012 ident: B19 article-title: Common origins of diverse misconceptions: cognitive principles and the development of biology thinking publication-title: CBE Life Sci. Educ. doi: 10.1187/cbe.12-06-0074 – volume: 185 start-page: 1124 year: 1974 ident: B94 article-title: Judgment under uncertainty: heuristics and biases publication-title: Science doi: 10.1126/science.185.4157.1124 – start-page: 572 year: 2019 ident: B106 article-title: Six challenges for human-AI Co-learning publication-title: Adaptive instructional systems doi: 10.1007/978-3-030-22341-0_45 – volume-title: Essential neuroscience year: 2005 ident: B87 – volume: 94 start-page: 74 year: 2004 ident: B5 article-title: Omission bias, individual differences, and normality publication-title: Organizational Behav. Hum. Decis. Process. doi: 10.1016/j.obhdp.2004.03.003 – volume: 2 start-page: 175 year: 1998 ident: B68 article-title: Confirmation bias: a ubiquitous phenomenon in many guises publication-title: Rev. Gen. Psychol. doi: 10.1037/1089-2680.2.2.175 – start-page: 1 year: 2018 ident: B99 article-title: Telling autonomous systems what to do doi: 10.1145/3232078.3232238 – volume: 28 start-page: 369 year: 2002 ident: B75 article-title: The bias blind spot: perceptions of bias in self versus others publication-title: Personal. Soc. Psychol. Bull. doi: 10.1177/0146167202286008 – volume-title: Wet Mind: the new cognitive neuroscience year: 1992 ident: B56 – volume: 162 start-page: 1243 year: 1968 ident: B34 article-title: The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality publication-title: Science doi: 10.1126/science.162.3859.1243 – volume: 124 start-page: 207e231 year: 1995 ident: B80 article-title: Costs of a predictible switch between simple cognitive tasks publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.124.2.207 – volume-title: Perceptual organization year: 1981 ident: B74 article-title: Perceptual organization in information processing – volume-title: The singularity is near year: 2005 ident: B58 – year: 2018 ident: B105 article-title: Human-AI cooperation to benefit military decision making – volume: 6 start-page: 85 year: 1978 ident: B100 article-title: Line segments are perceived better in a coherent context than alone: an object-line effect in visual perception publication-title: Mem. Cognit doi: 10.3758/bf03197432 – volume: 1 start-page: 59 year: 1970 ident: B90 article-title: Processes in word recognition publication-title: Cogn. Psychol. doi: 10.1016/0010-0285(70)90005-8 – volume-title: Bulletin of the atomic scientists year: 2018 ident: B41 article-title: The promise and peril of military applications of artificial intelligence – volume: 44 start-page: 627 year: 2003 ident: B38 article-title: The origin of modern human behavior publication-title: Curr. Anthropol. doi: 10.1086/377665 – volume: 21 start-page: 45 year: 2000 ident: B71 article-title: Action bias and environmental decisions publication-title: J. Risk Uncertain. doi: 10.1023/a:1026517309871 – volume: 38 start-page: 217 year: 2020 ident: B72 article-title: Hybrid collective intelligence in a human–AI society publication-title: AI and Society doi: 10.1007/s00146-020-01005-y – volume: 72 start-page: 231 year: 2011 ident: B42 article-title: How inhibition shapes cortical activity publication-title: Neuron doi: 10.1016/j.neuron.2011.09.027 – volume: 10 start-page: 4789 year: 2019 ident: B20 article-title: Descriptive theory of awareness for groupware development publication-title: J. Ambient Intelligence Humanized Comput. doi: 10.1007/s12652-018-1165-9 – volume: 27 start-page: 763 year: 2001 ident: B81 article-title: Executive control of cognitive processes in task switching publication-title: J. Exp. Psychol. Hum. Percept Perform. doi: 10.1037//0096-1523.27.4.763 – volume-title: Thinking, fast and slow year: 2011 ident: B47 – volume-title: The Society of Mind year: 1986 ident: B64 – volume: 1 year: 1998 ident: B66 article-title: When will computer hardware match the human brain? publication-title: J. Evol. Tech. – volume: 5 start-page: 207 year: 1973 ident: B96 article-title: Availability: a heuristic for judging frequency and probability publication-title: Cogn. Psychol. doi: 10.1016/0010-0285(73)90033-9 – volume: 113 start-page: 201 year: 1981 ident: B91 article-title: Self-serving and group-serving bias in attribution publication-title: J. Soc. Psychol. doi: 10.1080/00224545.1981.9924371 – volume: 27 start-page: 733 year: 2009 ident: B36 article-title: Adaptive rationality: an evolutionary perspective on cognitive bias publication-title: Soc. Cogn. doi: 10.1521/soco.2009.27.5.733 – volume: 89 start-page: 46 year: 1971 ident: B61 article-title: Reversals of preference between bids and choices in gambling decisions publication-title: J. Exp. Psychol. doi: 10.1037/h0031207 – volume-title: The ecological approach to visual perception year: 1979 ident: B29 – volume-title: Social robotics. ICSR 2012Lecture notes in computer science year: 2012 ident: B25 article-title: Anthropomorphism and human likeness in the design of robots and human-robot interaction doi: 10.1007/978-3-642-34103-8_20 – volume: 186 start-page: 752 year: 1974 ident: B98 article-title: Visual detection of line segments: an object-superiority effect publication-title: Science doi: 10.1126/science.186.4165.752 – volume: 4 start-page: 210 year: 1978 ident: B63 article-title: Perception and masking of wholes and parts publication-title: J. Exp. Psychol. Hum. Percept Perform. doi: 10.1037//0096-1523.4.2.210 – volume: 2005 start-page: 14165v4 year: 2020 ident: B17 article-title: Language models are few-shot learners publication-title: arXiv – volume: 275 start-page: 969 year: 1997 ident: B3 article-title: Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses publication-title: Science doi: 10.1126/science.275.5302.969Dane – volume: 40 start-page: e253 year: 2017 ident: B60 article-title: Building machines that learn and think like people publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X16001837 – volume-title: Band 3: nervensysteme und SinnesorganeTaschenatlas de anatomie. Stutttgart year: 1979 ident: B44 – volume: 7 start-page: 411 year: 2012 ident: B79 article-title: Hindsight bias publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691612454303 – volume-title: Mind children year: 1988 ident: B65 – volume-title: Computers vs brains. Scientific American 175 year: 2011 ident: B26 – volume: 36 start-page: 495 ident: B86 article-title: Human-centered artificial intelligence: reliable, safe & trustworthy publication-title: Int. J. Human–Computer Interaction doi: 10.1080/10447318.2020.1741118 – volume-title: Artificial Intelligence Framework: a visual introduction to machine learning and AI year: 2018 ident: B1 – volume: 195 start-page: 481 year: 1968 ident: B48 article-title: The role of calcium in neuromuscular facilitation publication-title: J. Physiol. doi: 10.1113/jphysiol.1968.sp008469 – volume: 39 start-page: 453 year: 2000 ident: B62 article-title: The revolution that wasn't: a new interpretation of the origin of modern human behavior publication-title: J. Hum. Evol. doi: 10.1006/jhev.2000.0435 – start-page: 724 volume-title: The handbook of evolutionary psychology year: 2005 ident: B37 article-title: The evolution of cognitive bias – volume-title: Hybrid cognitive-affective Strategies for AI safety year: 2020 ident: B2 – volume-title: Descartes’ error: emotion, reason and the human brain year: 1994 ident: B21 – volume: 1 start-page: 73 ident: B85 article-title: Design lessons from AI’s two grand goals: human emulation and useful applications publication-title: IEEE Trans. Tech. Soc. doi: 10.1109/TTS.2020.2992669 – volume-title: Life 3.0: being human in the age of artificial intelligence year: 2017 ident: B92 – volume-title: Early human behavior in global context year: 1998 ident: B73 – volume-title: Fundamental issues of artificial intelligence year: 2016 ident: B67 article-title: Future progress in artificial intelligence: a survey of expert opinion doi: 10.1007/978-3-319-26485-1_33 – volume-title: AI isn’t very smart yet. But we need to get moving to make sure automation works for more people year: 2017 ident: B8 – volume: 188 start-page: 302 year: 2019 ident: B22 article-title: Governing ethical and effective behavior of intelligent systems: a novel framework for meaningful human control in a military context publication-title: Militaire Spectator – volume: 19 start-page: 91 year: 2004 ident: B50 article-title: Ten challenges for making automation a ‘team player’ in joint human-agent activity publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2004.74 – volume: 123 start-page: 182 year: 2015 ident: B78 article-title: Believing what we do not believe: acquiescence to superstitious beliefs and other powerful intuitions publication-title: Psychol. Rev. doi: 10.1037/rev0000017 – volume-title: The psychology of human memory year: 1981 ident: B101 – volume: 12 start-page: 241 year: 2014 ident: B28 article-title: Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds publication-title: WF-IoT doi: 10.1177/1550147716665500 – start-page: 1 year: 2021 ident: B55 article-title: Retention and transfer of cognitive bias mitigation interventions: a systematic literature study publication-title: Front. Psychol. doi: 10.13140/RG.2.2.27981.56800 – volume: 267 start-page: 60 year: 1992 ident: B84 article-title: The developing brain publication-title: Sci. Am. doi: 10.1038/scientificamerican0992-60 – volume: 53 start-page: 491 year: 2002 ident: B83 article-title: Rationality publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.53.100901.135213 – volume: 19 start-page: 1 year: 2004 ident: B49 article-title: Introduction to this special issue on human–robot interaction publication-title: Int J Hum-Comput. Int. doi: 10.1080/07370024.2004.9667337 – volume-title: Multiple-task performance and aging year: 1994 ident: B51 – volume-title: The senses considered as perceptual systems year: 1966 ident: B30 – volume: 62 start-page: 451 year: 2011 ident: B31 article-title: Heuristic decision making publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-120709-145346 – start-page: 215 volume-title: Human-computer interaction: the agency perspectiveStudies in computational intelligence year: 2012 ident: B57 article-title: Human-agent and human-robot interaction theory: similarities to and differences from human-human interaction – volume: 72 start-page: 416 year: 1987 ident: B102 article-title: Task complexity as a moderator of goal effects: a meta-analysis publication-title: J. Appl. Psychol. doi: 10.1037/0021-9010.72.3.416 – volume: 171 start-page: 1161 year: 2007 ident: B32 article-title: Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's the singularity is near, and McDermott’s critique of Kurzweil publication-title: Artif. Intelligence doi: 10.1016/j.artint.2007.10.011 – volume: 29 start-page: 124 year: 2017 ident: B10 article-title: Principles of robotics: regulating robots in the real world publication-title: Connect. Sci. doi: 10.1080/09540091.2016.1271400 – year: 2014 ident: B23 article-title: Preface publication-title: 7th international conference, AGI 2014 Quebec City, QC, Canada, August 1–4, 2014 Proceedings – volume-title: Encyclopedia of behavioral neuroscience year: 2020 ident: B52 article-title: Cognitive biases – start-page: 267 volume-title: J. Exp. Psychol. Hum. Percept. Perform year: 1988 ident: B14 article-title: Effects of aging and task difficulty on divided attention performance – volume-title: Artificial intelligence: a modern approach year: 2014 ident: B82 – volume-title: Superintelligence: pathts, dangers, strategies year: 2014 ident: B13 – volume-title: The age of intelligent machines year: 1990 ident: B59 – volume-title: Neurological anatomy in relation to clinical medicine year: 1981 ident: B16 – volume: 211 start-page: 453 year: 1981 ident: B95 article-title: The framing of decisions and the psychology of choice publication-title: Science doi: 10.1126/science.7455683 – volume: 81 start-page: 274 year: 1969 ident: B46 article-title: Perceptual recognition as a function of meaningfulness of stimulus material publication-title: J. Exp. Psychol. doi: 10.1037/h0027768 – ident: B103 – volume-title: Articial intelligence year: 2009 ident: B77 – volume-title: Artificial intelligence year: 1991 ident: B76 |
| SSID | ssj0002505112 |
| Score | 2.613508 |
| SecondaryResourceType | review_article |
| Snippet | AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 622364 |
| SubjectTerms | artificial general intelligence Artificial Intelligence cognitive complexity human intelligence human-level artificial intelligence narrow artificial intelligence |
| Title | Human- versus Artificial Intelligence |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33981990 https://www.proquest.com/docview/2526306724 https://pubmed.ncbi.nlm.nih.gov/PMC8108480 https://doaj.org/article/b27a9c3eb6bc4bbaaef9afede4c0f80b |
| Volume | 4 |
| WOSCitedRecordID | wos000751704800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-8212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002505112 issn: 2624-8212 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VxKEXWqAt2xaUSnDoId2sP-L4SBEILqiHIu3N8sSOulKVRfvB72cmzq52UVUuXBNbtt7Ynnnx5A3AmfSSTv6IufeyzNUo6BwNsVYVLK0uGcnlp2IT5u6uGo_tr41SX5wTluSBE3BDFMbbWkYssVaI3sfG-iaGqOqiqQrk05eing0yxWcwO3aKJNK9JLEwO2xmfkJ0UIx-lIJF07f8UCfX_68Y83mq5IbvuX4P-33QmF2kyR7Am9gewrtVQYas359HcN59ks8zTrVYzrv2SSAiu91Q3vwA99dXvy9v8r4OQl6rUixyiaNQEXUrAlqrtfajIJRERVzMCGyMjsY2tgzsjWvURCiIcxljsGkCSoHyI-y20zYeQ1bW2rPqV2kFKkv9NP9oKgKxxMDKYgMYrlBxdS8SzrUq_joiC4yjYxwd4-gSjgP4vu7xkAQy_tP2JwO9bsfS1t0DMrjrDe5eMvgAvq3M5Ggr8P2Gb-N0OXdCi5IZkKCBPiWzrYeS0lLsY4sBmC2Dbs1l-007-dPJbRP0laqKz68x-S_wlvHgJDahv8LuYraMJ7BXPy4m89kp7Jhxddqt5CdRjPj9 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-+versus+Artificial+Intelligence&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Korteling%2C+J.+E.+%28Hans%29.&rft.au=van+de+Boer-Visschedijk%2C+G.+C.&rft.au=Blankendaal%2C+R.+A.+M.&rft.au=Boonekamp%2C+R.+C.&rft.date=2021-03-25&rft.issn=2624-8212&rft.eissn=2624-8212&rft.volume=4&rft_id=info:doi/10.3389%2Ffrai.2021.622364&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frai_2021_622364 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon |