Human- versus Artificial Intelligence

AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in artificial intelligence Ročník 4; s. 622364
Hlavní autoři: Korteling, J. E. (Hans)., van de Boer-Visschedijk, G. C., Blankendaal, R. A. M., Boonekamp, R. C., Eikelboom, A. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 25.03.2021
Témata:
ISSN:2624-8212, 2624-8212
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and “collaborate” with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI “partners” with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying ‘psychological’ mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.
AbstractList AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and "collaborate" with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI "partners" with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying 'psychological' mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and "collaborate" with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI "partners" with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying 'psychological' mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.
AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and “collaborate” with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI “partners” with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying ‘psychological’ mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.
AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and "collaborate" with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI "partners" with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying 'psychological' mechanisms of AI. So, in order to obtain well-functioning human-AI systems, in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.
AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence and artificial intelligence. Discussions on many relevant topics, such as trustworthiness, explainability, and ethics are characterized by implicit anthropocentric and anthropomorphistic conceptions and, for instance, the pursuit of human-like intelligence as the golden standard for Artificial Intelligence. In order to provide more agreement and to substantiate possible future research objectives, this paper presents three notions on the similarities and differences between human- and artificial intelligence: 1) the fundamental constraints of human (and artificial) intelligence, 2) human intelligence as one of many possible forms of general intelligence, and 3) the high potential impact of multiple (integrated) forms of narrow-hybrid AI applications. For the time being, AI systems will have fundamentally different cognitive qualities and abilities than biological systems. For this reason, a most prominent issue is how we can use (and “collaborate” with) these systems as effectively as possible? For what tasks and under what conditions, decisions are safe to leave to AI and when is human judgment required? How can we capitalize on the specific strengths of human- and artificial intelligence? How to deploy AI systems effectively to complement and compensate for the inherent constraints of human cognition (and vice versa)? Should we pursue the development of AI “partners” with human (-level) intelligence or should we focus more at supplementing human limitations? In order to answer these questions, humans working with AI systems in the workplace or in policy making have to develop an adequate mental model of the underlying ‘psychological’ mechanisms of AI. So, in order to obtain well-functioning human-AI systems, Intelligence Awareness in humans should be addressed more vigorously. For this purpose a first framework for educational content is proposed.
Author van de Boer-Visschedijk, G. C.
Boonekamp, R. C.
Blankendaal, R. A. M.
Korteling, J. E. (Hans).
Eikelboom, A. R.
AuthorAffiliation TNO Human Factors, Soesterberg , Netherlands
AuthorAffiliation_xml – name: TNO Human Factors, Soesterberg , Netherlands
Author_xml – sequence: 1
  givenname: J. E. (Hans).
  surname: Korteling
  fullname: Korteling, J. E. (Hans).
– sequence: 2
  givenname: G. C.
  surname: van de Boer-Visschedijk
  fullname: van de Boer-Visschedijk, G. C.
– sequence: 3
  givenname: R. A. M.
  surname: Blankendaal
  fullname: Blankendaal, R. A. M.
– sequence: 4
  givenname: R. C.
  surname: Boonekamp
  fullname: Boonekamp, R. C.
– sequence: 5
  givenname: A. R.
  surname: Eikelboom
  fullname: Eikelboom, A. R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33981990$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFDEYxoNUbN323pPsRfAya_Imk4-LUIrahYIXew5J5s02ZXZSk5lC_3tn3FpawVNC8jy_9-N5T46GPCAh54xuONfmcywubYAC20gALsUbcgISRKOBwdGL-zE5q_WOUgotbRmDd-SYc6OZMfSEfLya9m5o1g9Y6lTXF2VMMYXk-vV2GLHv0w6HgKfkbXR9xbOnc0Vuvn39eXnVXP_4vr28uG6CkDA23LNOMypp541p29axDgT3QlClwEfVojLRyA5AsOBbAVoIrZTyMXaeg-crsj1wu-zu7H1Je1cebXbJ_nnIZWfd3GHo0XpQzgSOXvogvHcOo3EROxSBRk0X1pcD637ye-wCDmNx_Svo658h3dpdfrDzBFpoOgM-PQFK_jVhHe0-1TDvxA2Yp2qhBcmpVPOIK_LhZa3nIn_3PAvoQRBKrrVgfJYwapc07ZKmXdK0hzRni_zHEtLoxpSXblP_f-Nv5Xqj-A
CitedBy_id crossref_primary_10_1016_j_ijinfomgt_2024_102775
crossref_primary_10_1177_02783649241284058
crossref_primary_10_1109_TGRS_2025_3557380
crossref_primary_10_3389_fcomp_2022_1070493
crossref_primary_10_1080_01615440_2024_2414925
crossref_primary_10_1177_00469580231221285
crossref_primary_10_1108_JIC_06_2024_0195
crossref_primary_10_1007_s00146_022_01458_3
crossref_primary_10_3390_bioengineering11111111
crossref_primary_10_1080_00038628_2023_2278500
crossref_primary_10_1007_s43681_024_00461_2
crossref_primary_10_1186_s43093_025_00438_5
crossref_primary_10_1016_j_aimed_2024_12_011
crossref_primary_10_34133_research_0755
crossref_primary_10_1177_10949968241265855
crossref_primary_10_1016_j_ijinfomgt_2025_102940
crossref_primary_10_1177_10711813251358264
crossref_primary_10_20473_jpkm_v10i12025_1_20
crossref_primary_10_2478_orga_2024_0024
crossref_primary_10_4103_jpbs_jpbs_1287_23
crossref_primary_10_1080_10447318_2025_2530079
crossref_primary_10_1016_j_dcn_2024_101470
crossref_primary_10_3390_healthcare12020223
crossref_primary_10_1093_bib_bbac326
crossref_primary_10_7759_cureus_48643
crossref_primary_10_1177_07488068241245520
crossref_primary_10_3390_systems11030114
crossref_primary_10_1038_s41598_025_00286_x
crossref_primary_10_1007_s12144_025_07917_6
crossref_primary_10_25300_MISQ_2025_19133
crossref_primary_10_1186_s41239_024_00455_4
crossref_primary_10_3390_cancers16111981
crossref_primary_10_1016_j_tre_2025_104053
crossref_primary_10_3390_cancers16244230
crossref_primary_10_1007_s10462_024_10888_y
crossref_primary_10_1177_17470161241235772
crossref_primary_10_3389_frvir_2025_1451273
crossref_primary_10_3390_land11122325
crossref_primary_10_3389_frai_2025_1603562
crossref_primary_10_1016_j_neucom_2023_126267
crossref_primary_10_3390_app13021163
crossref_primary_10_1016_j_pec_2024_108400
crossref_primary_10_1186_s40545_023_00624_2
crossref_primary_10_1055_a_2407_7994
crossref_primary_10_1007_s44163_022_00023_7
crossref_primary_10_7759_cureus_37023
crossref_primary_10_1016_j_jtha_2024_12_030
crossref_primary_10_1016_j_prp_2023_154989
crossref_primary_10_1007_s00405_024_08868_7
crossref_primary_10_1016_j_outlook_2025_102445
crossref_primary_10_1136_bmjopen_2022_066322
crossref_primary_10_7759_cureus_35237
crossref_primary_10_1016_j_eswa_2025_127858
crossref_primary_10_1039_D4NR04875J
crossref_primary_10_1002_ksa_12737
crossref_primary_10_1186_s13677_025_00759_4
crossref_primary_10_25139_jsk_v9i2_9405
crossref_primary_10_1080_08839514_2024_2411462
crossref_primary_10_1016_j_sapharm_2023_05_016
crossref_primary_10_1007_s10015_024_01000_2
crossref_primary_10_1097_CIN_0000000000001177
crossref_primary_10_1186_s12909_025_07544_6
crossref_primary_10_1016_j_grets_2025_100235
crossref_primary_10_56294_saludcyt20251586
crossref_primary_10_1080_10382046_2025_2458561
crossref_primary_10_3390_md21020100
crossref_primary_10_71112_tqmy6k83
crossref_primary_10_1080_10401334_2025_2521001
crossref_primary_10_3389_fpsyg_2021_629354
crossref_primary_10_1111_jocd_70241
crossref_primary_10_1177_0958305X251375955
crossref_primary_10_1007_s13752_024_00483_3
crossref_primary_10_1186_s12940_025_01186_3
crossref_primary_10_1002_pd_6445
crossref_primary_10_1007_s44163_022_00038_0
crossref_primary_10_3390_buildings12081134
crossref_primary_10_3389_fncom_2024_1395901
crossref_primary_10_1002_hpm_3709
crossref_primary_10_3390_educsci14020172
crossref_primary_10_3390_bs12040103
crossref_primary_10_1007_s44163_022_00039_z
crossref_primary_10_70749_ijbr_v3i2_731
crossref_primary_10_7759_cureus_90469
crossref_primary_10_1007_s11914_023_00852_0
crossref_primary_10_3389_fpsyg_2023_1209761
crossref_primary_10_3390_jpm14050443
crossref_primary_10_3389_fped_2024_1404600
crossref_primary_10_1007_s10916_024_02075_x
crossref_primary_10_1007_s10742_025_00351_y
crossref_primary_10_1007_s12027_022_00725_6
crossref_primary_10_1007_s11191_024_00530_2
crossref_primary_10_3390_app11125467
crossref_primary_10_30827_dreh_23_2025_33670
crossref_primary_10_1108_JIC_07_2024_0201
crossref_primary_10_3390_jmse13010158
crossref_primary_10_7759_cureus_51466
crossref_primary_10_3390_sym17060934
crossref_primary_10_3390_rel16080948
crossref_primary_10_23887_jere_v9i1_83227
crossref_primary_10_1055_s_0043_1777746
crossref_primary_10_3389_fpsyg_2025_1627289
crossref_primary_10_1007_s44206_023_00054_2
crossref_primary_10_1080_10494820_2025_2457351
crossref_primary_10_1016_j_techfore_2022_121763
crossref_primary_10_3389_frai_2024_1477535
crossref_primary_10_1108_EJIM_05_2024_0520
crossref_primary_10_1007_s11191_024_00534_y
crossref_primary_10_1016_j_oor_2024_100225
crossref_primary_10_29105_vtga11_3_1141
crossref_primary_10_1007_s10639_023_12223_4
crossref_primary_10_1016_j_nexres_2025_100639
crossref_primary_10_3390_app12042250
crossref_primary_10_3390_ai6090220
crossref_primary_10_1177_15553434221129166
crossref_primary_10_3390_hearts5010007
crossref_primary_10_1007_s10439_023_03305_y
crossref_primary_10_1038_s41598_024_58087_7
crossref_primary_10_1016_j_puhe_2023_12_032
crossref_primary_10_1016_j_sftr_2025_101152
crossref_primary_10_1002_mar_21699
crossref_primary_10_1016_j_ijinfomgt_2025_102875
crossref_primary_10_1177_01461672241288338
crossref_primary_10_1038_s41598_025_95387_y
crossref_primary_10_7759_cureus_79556
crossref_primary_10_3390_biomedicines13051019
crossref_primary_10_1080_14703297_2024_2391044
crossref_primary_10_3390_computers14090380
crossref_primary_10_3390_info15080443
crossref_primary_10_7759_cureus_81162
crossref_primary_10_1111_ijun_12428
crossref_primary_10_1111_nin_12583
crossref_primary_10_5334_jime_995
crossref_primary_10_1080_14606925_2025_2452084
crossref_primary_10_1080_09588221_2025_2503900
crossref_primary_10_3390_arts11050083
crossref_primary_10_1016_j_heliyon_2024_e40037
crossref_primary_10_1109_ACCESS_2024_3510459
crossref_primary_10_1016_j_scriptamat_2024_116175
crossref_primary_10_3390_vaccines11071217
crossref_primary_10_3103_S0147688224700679
crossref_primary_10_1016_j_biosystems_2025_105548
crossref_primary_10_1016_j_joitmc_2025_100578
crossref_primary_10_3390_healthcare11060887
crossref_primary_10_1007_s13042_025_02536_w
crossref_primary_10_1007_s40123_021_00430_6
crossref_primary_10_1093_ced_llad255
crossref_primary_10_51707_2618_0529_2025_32_03
crossref_primary_10_1007_s00393_024_01535_6
crossref_primary_10_1016_j_techsoc_2024_102662
crossref_primary_10_1080_14703297_2025_2499174
crossref_primary_10_1080_23311886_2024_2367085
crossref_primary_10_1109_JIOT_2025_3544555
crossref_primary_10_2139_ssrn_5391810
crossref_primary_10_1109_ACCESS_2025_3536300
crossref_primary_10_1002_tea_70009
crossref_primary_10_1007_s00422_023_00979_4
crossref_primary_10_1038_s41592_024_02327_1
crossref_primary_10_3390_diagnostics14232731
crossref_primary_10_1108_DLP_04_2024_0067
crossref_primary_10_3390_educsci13090865
crossref_primary_10_1016_j_acorp_2023_100082
crossref_primary_10_1097_TA_0000000000004030
crossref_primary_10_3390_nu16132066
crossref_primary_10_3390_act14040185
crossref_primary_10_1007_s10805_024_09543_6
crossref_primary_10_1016_j_procir_2024_10_073
crossref_primary_10_7759_cureus_69000
crossref_primary_10_1051_shsconf_202316001012
crossref_primary_10_1016_j_jisa_2025_104116
crossref_primary_10_1177_21582440231211079
crossref_primary_10_1038_s41598_024_70031_3
crossref_primary_10_1016_j_inffus_2023_102135
crossref_primary_10_1038_s41598_025_11172_x
crossref_primary_10_7759_cureus_71472
crossref_primary_10_1016_j_destud_2025_101303
crossref_primary_10_3389_fpsyg_2023_1339782
crossref_primary_10_2196_49459
crossref_primary_10_1109_TLT_2025_3574466
crossref_primary_10_3390_app142411612
crossref_primary_10_1007_s43681_022_00139_7
crossref_primary_10_1007_s00146_021_01315_9
crossref_primary_10_2147_JMDH_S439223
crossref_primary_10_1080_0142159X_2024_2413425
crossref_primary_10_1111_aphw_12621
crossref_primary_10_23104_ME_e7
crossref_primary_10_1080_08838151_2025_2519730
crossref_primary_10_3390_make6010032
crossref_primary_10_1080_1750399X_2025_2542022
crossref_primary_10_3390_coatings14070827
crossref_primary_10_1007_s13198_025_02755_y
crossref_primary_10_1016_j_clsr_2024_106053
crossref_primary_10_3390_electronics14153024
crossref_primary_10_26634_jet_21_1_20532
crossref_primary_10_1371_journal_pone_0288109
crossref_primary_10_3390_act13080278
Cites_doi 10.1016/j.tics.2011.01.005
10.5898/JHRI.3.1.Johnson
10.2307/1884852
10.1016/j.tics.2007.05.005
10.1016/j.socec.2010.10.008
10.1037/0278-7393.26.3.566
10.1038/nature24270
10.1201/9780429458330-3
10.1037/a0016755
10.1109/TCDS.2018.2851569
10.1007/978-3-319-09274-4_1
10.1109/MIS.2012.37
10.3389/fpsyg.2018.01561
10.1187/cbe.12-06-0074
10.1126/science.185.4157.1124
10.1007/978-3-030-22341-0_45
10.1016/j.obhdp.2004.03.003
10.1037/1089-2680.2.2.175
10.1145/3232078.3232238
10.1177/0146167202286008
10.1126/science.162.3859.1243
10.1037/0096-3445.124.2.207
10.3758/bf03197432
10.1016/0010-0285(70)90005-8
10.1086/377665
10.1023/a:1026517309871
10.1007/s00146-020-01005-y
10.1016/j.neuron.2011.09.027
10.1007/s12652-018-1165-9
10.1037//0096-1523.27.4.763
10.1016/0010-0285(73)90033-9
10.1080/00224545.1981.9924371
10.1521/soco.2009.27.5.733
10.1037/h0031207
10.1007/978-3-642-34103-8_20
10.1126/science.186.4165.752
10.1037//0096-1523.4.2.210
10.1126/science.275.5302.969Dane
10.1017/S0140525X16001837
10.1177/1745691612454303
10.1080/10447318.2020.1741118
10.1113/jphysiol.1968.sp008469
10.1006/jhev.2000.0435
10.1109/TTS.2020.2992669
10.1007/978-3-319-26485-1_33
10.1109/MIS.2004.74
10.1037/rev0000017
10.1177/1550147716665500
10.13140/RG.2.2.27981.56800
10.1038/scientificamerican0992-60
10.1146/annurev.psych.53.100901.135213
10.1080/07370024.2004.9667337
10.1146/annurev-psych-120709-145346
10.1037/0021-9010.72.3.416
10.1016/j.artint.2007.10.011
10.1080/09540091.2016.1271400
10.1126/science.7455683
10.1037/h0027768
ContentType Journal Article
Copyright Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom.
Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom
Copyright_xml – notice: Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom.
– notice: Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom. 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/frai.2021.622364
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Korteling et al
EISSN 2624-8212
ExternalDocumentID oai_doaj_org_article_b27a9c3eb6bc4bbaaef9afede4c0f80b
PMC8108480
33981990
10_3389_frai_2021_622364
Genre Journal Article
Review
GroupedDBID 53G
9T4
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
PGMZT
RPM
ACXDI
ADMLS
NPM
7X8
5PM
ID FETCH-LOGICAL-c462t-3b1d81060db99555a1d243b440772bf75e79f96d2241cb5428448777bffdb32b3
IEDL.DBID DOA
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751704800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-8212
IngestDate Fri Oct 03 12:50:38 EDT 2025
Tue Sep 30 16:46:40 EDT 2025
Fri Sep 05 12:09:35 EDT 2025
Wed Feb 19 02:07:08 EST 2025
Sat Nov 29 02:47:43 EST 2025
Tue Nov 18 22:07:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords human intelligence
human-level artificial intelligence
narrow artificial intelligence
cognitive bias
cognitive complexity
human-AI collaboration
artificial general intelligence
artificial intelligence
Language English
License Copyright © 2021 Korteling, van de Boer-Visschedijk, Blankendaal, Boonekamp and Eikelboom.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-3b1d81060db99555a1d243b440772bf75e79f96d2241cb5428448777bffdb32b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Cesar Collazos, University of Cauca, Colombia
Edited by: Esma Aïmeur, Université de Montréal, Canada
Ranilson Oscar Araújo Paiva, Federal University of Alagoas, Brazil
This article was submitted to AI for Human Learning and Behavior Change, a section of the journal Frontiers in Artificial Intelligence
OpenAccessLink https://doaj.org/article/b27a9c3eb6bc4bbaaef9afede4c0f80b
PMID 33981990
PQID 2526306724
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b27a9c3eb6bc4bbaaef9afede4c0f80b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8108480
proquest_miscellaneous_2526306724
pubmed_primary_33981990
crossref_primary_10_3389_frai_2021_622364
crossref_citationtrail_10_3389_frai_2021_622364
PublicationCentury 2000
PublicationDate 2021-03-25
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in artificial intelligence
PublicationTitleAlternate Front Artif Intell
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Baron (B5) 2004; 94
Isaacson (B42) 2011; 72
McDowd (B14) 1988
Tversky (B95) 1981; 211
Belkom (B6) 2019
Grind (B33) 1997
Tooby (B93) 2005
Horowitz (B41) 2018
Kahneman (B47) 2011
Peeters (B72) 2020; 38
Coley (B19) 2012; 11
Müller (B67) 2016
Siegel (B87) 2005
Rogers (B80) 1995; 124
Tegmark (B92) 2017
Silver (B88) 2017; 550
Williams (B100) 1978; 6
Wood (B102) 1987; 72
Hoffrage (B40) 2000; 26
Kurzweil (B58) 2005
Lichtenstein (B61) 1971; 89
Risen (B78) 2015; 123
Aliman (B2) 2020
Kurzweil (B59) 1990
van den Bosch (B105) 2018
Korteling (B53); 9
Haring (B35) 2018; 10
Bar (B4) 2007; 11
Nosek (B69) 2011; 15
Bao (B3) 1997; 275
Nickerson (B68) 1998; 2
Furnham (B27) 2011; 40
Boden (B10) 2017; 29
Gibson (B30) 1966
Taylor (B91) 1981; 113
Brodal (B16) 1981
Bieger (B9) 2014
B103
Ackermann (B1) 2018
Goertzel (B32) 2007; 171
Wingfield (B101) 1981
Weisstein (B98) 1974; 186
Gerla (B28) 2014; 12
Bostrom (B13) 2014
Tversky (B96) 1973; 5
Fink (B25) 2012
Minsky (B64) 1986
Kahneman (B45) 2009; 64
Werkhoven (B99) 2018
Korteling (B52) 2020
Reicher (B46) 1969; 81
Shatz (B84) 1992; 267
McBrearty (B62) 2000; 39
Goertzel (B23) 2014
Roese (B79) 2012; 7
Kahle (B44) 1979
McClelland (B63) 1978; 4
Rich (B77) 2009
Petraglia (B73) 1998
Shneiderman (B85); 1
Gigerenzer (B31) 2011; 62
Damasio (B21) 1994
Moravec (B66) 1998; 1
Simon (B89) 1955; 69
Korteling (B55) 2021
Toet (B104) 2016
Bradshaw (B15) 2012; 27
Bergstein (B8) 2017
Shafir (B83) 2002; 53
Haselton (B36) 2009; 27
Pomerantz (B74) 1981
Cialdini (B18) 1984
Hoffman (B39) 2019
van den Bosch (B106) 2019
Kosslyn (B56) 1992
Lake (B60) 2017; 40
Feldman-Barret (B24) 2017
Rich (B76) 1991
Henshilwood (B38) 2003; 44
Hardin (B34) 1968; 162
Haselton (B37) 2005
Johnson (B43) 2014; 3
Patt (B71) 2000; 21
Wheeler (B90) 1970; 1
Russell (B82) 2014
Tversky (B94) 1974; 185
Gibson (B29) 1979
Krämer (B57) 2012
Elands (B22) 2019; 188
Rubinstein (B81) 2001; 27
Brown (B17) 2020; 2005
Collazos (B20) 2019; 10
Klein (B50) 2004; 19
Fischetti (B26) 2011
Korteling (B54)
Katz (B48) 1968; 195
Kiesler (B49) 2004; 19
Korteling (B51) 1994
Pronin (B75) 2002; 28
Moravec (B65) 1988
Shneiderman (B86); 36
References_xml – volume-title: Report TNO 2018 R11654. Soesterberg: TNO defense safety and security
  ident: B54
  article-title: Effecten van de inzet van Non-Human Intelligent Collaborators op Opleiding and Training [V1719]
– volume: 15
  start-page: 152
  year: 2011
  ident: B69
  article-title: Implicit social cognition: from measures to mechanisms
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.01.005
– volume: 3
  start-page: 43
  year: 2014
  ident: B43
  article-title: Coactive design: designing support for interdependence in joint activity
  publication-title: J. Human-Robot Interaction
  doi: 10.5898/JHRI.3.1.Johnson
– volume: 69
  start-page: 99
  year: 1955
  ident: B89
  article-title: A behavioral model of rational choice
  publication-title: Q. J. Econ.
  doi: 10.2307/1884852
– start-page: 1
  volume-title: Int. J. Humanities Soc. Sci.
  year: 2016
  ident: B104
  article-title: Effects of personal characteristics on susceptibility to decision bias: a literature study
– volume: 11
  start-page: 280
  year: 2007
  ident: B4
  article-title: The proactive brain: using analogies and associations to generate predictions
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.05.005
– volume: 40
  start-page: 35
  year: 2011
  ident: B27
  article-title: A literature review of the anchoring effect
  publication-title: The J. Socio-Economics
  doi: 10.1016/j.socec.2010.10.008
– volume-title: Natuurlijke intelligentie: over denken, intelligentie en bewustzijn van mensen en andere dieren
  year: 1997
  ident: B33
– volume: 26
  start-page: 566
  year: 2000
  ident: B40
  article-title: Hindsight bias: a by-product of knowledge updating?
  publication-title: J. Exp. Psychol. Learn. Mem. Cogn.
  doi: 10.1037/0278-7393.26.3.566
– volume: 550
  start-page: 354
  year: 2017
  ident: B88
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– start-page: 5
  volume-title: Handbook of evolutionary psychology
  year: 2005
  ident: B93
  article-title: Conceptual foundations of evolutionary psychology
– volume-title: How emotions are made: the secret life of the brain
  year: 2017
  ident: B24
– start-page: 43
  volume-title: Human performance in automated and autonomous systems
  year: 2019
  ident: B39
  article-title: The quest for alternatives to “levels of automation” and “task allocation
  doi: 10.1201/9780429458330-3
– volume: 64
  start-page: 515
  year: 2009
  ident: B45
  article-title: Conditions for intuitive expertize: a failure to disagree
  publication-title: Am. Psychol.
  doi: 10.1037/a0016755
– volume: 10
  start-page: 843
  year: 2018
  ident: B35
  article-title: Ffab—the form function attribution bias in human-robot interaction
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2851569
– volume-title: 7th international conference, AGI 2014 quebec city, QC, Canada, august 1–4, 2014 proceedings
  year: 2014
  ident: B9
  article-title: Raising AI: tutoring matters
  doi: 10.1007/978-3-319-09274-4_1
– year: 2019
  ident: B6
  article-title: Duikboten zwemmen niet: de zoektocht naar intelligente machines
– volume: 27
  start-page: 8
  year: 2012
  ident: B15
  article-title: Introduction to special issue on human-agent-robot teamwork
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2012.37
– volume: 9
  start-page: 1561
  ident: B53
  article-title: A neural network framework for cognitive bias
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01561
– volume-title: Influence: the psychology of persuation
  year: 1984
  ident: B18
– volume: 11
  start-page: 209
  year: 2012
  ident: B19
  article-title: Common origins of diverse misconceptions: cognitive principles and the development of biology thinking
  publication-title: CBE Life Sci. Educ.
  doi: 10.1187/cbe.12-06-0074
– volume: 185
  start-page: 1124
  year: 1974
  ident: B94
  article-title: Judgment under uncertainty: heuristics and biases
  publication-title: Science
  doi: 10.1126/science.185.4157.1124
– start-page: 572
  year: 2019
  ident: B106
  article-title: Six challenges for human-AI Co-learning
  publication-title: Adaptive instructional systems
  doi: 10.1007/978-3-030-22341-0_45
– volume-title: Essential neuroscience
  year: 2005
  ident: B87
– volume: 94
  start-page: 74
  year: 2004
  ident: B5
  article-title: Omission bias, individual differences, and normality
  publication-title: Organizational Behav. Hum. Decis. Process.
  doi: 10.1016/j.obhdp.2004.03.003
– volume: 2
  start-page: 175
  year: 1998
  ident: B68
  article-title: Confirmation bias: a ubiquitous phenomenon in many guises
  publication-title: Rev. Gen. Psychol.
  doi: 10.1037/1089-2680.2.2.175
– start-page: 1
  year: 2018
  ident: B99
  article-title: Telling autonomous systems what to do
  doi: 10.1145/3232078.3232238
– volume: 28
  start-page: 369
  year: 2002
  ident: B75
  article-title: The bias blind spot: perceptions of bias in self versus others
  publication-title: Personal. Soc. Psychol. Bull.
  doi: 10.1177/0146167202286008
– volume-title: Wet Mind: the new cognitive neuroscience
  year: 1992
  ident: B56
– volume: 162
  start-page: 1243
  year: 1968
  ident: B34
  article-title: The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality
  publication-title: Science
  doi: 10.1126/science.162.3859.1243
– volume: 124
  start-page: 207e231
  year: 1995
  ident: B80
  article-title: Costs of a predictible switch between simple cognitive tasks
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.124.2.207
– volume-title: Perceptual organization
  year: 1981
  ident: B74
  article-title: Perceptual organization in information processing
– volume-title: The singularity is near
  year: 2005
  ident: B58
– year: 2018
  ident: B105
  article-title: Human-AI cooperation to benefit military decision making
– volume: 6
  start-page: 85
  year: 1978
  ident: B100
  article-title: Line segments are perceived better in a coherent context than alone: an object-line effect in visual perception
  publication-title: Mem. Cognit
  doi: 10.3758/bf03197432
– volume: 1
  start-page: 59
  year: 1970
  ident: B90
  article-title: Processes in word recognition
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(70)90005-8
– volume-title: Bulletin of the atomic scientists
  year: 2018
  ident: B41
  article-title: The promise and peril of military applications of artificial intelligence
– volume: 44
  start-page: 627
  year: 2003
  ident: B38
  article-title: The origin of modern human behavior
  publication-title: Curr. Anthropol.
  doi: 10.1086/377665
– volume: 21
  start-page: 45
  year: 2000
  ident: B71
  article-title: Action bias and environmental decisions
  publication-title: J. Risk Uncertain.
  doi: 10.1023/a:1026517309871
– volume: 38
  start-page: 217
  year: 2020
  ident: B72
  article-title: Hybrid collective intelligence in a human–AI society
  publication-title: AI and Society
  doi: 10.1007/s00146-020-01005-y
– volume: 72
  start-page: 231
  year: 2011
  ident: B42
  article-title: How inhibition shapes cortical activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.027
– volume: 10
  start-page: 4789
  year: 2019
  ident: B20
  article-title: Descriptive theory of awareness for groupware development
  publication-title: J. Ambient Intelligence Humanized Comput.
  doi: 10.1007/s12652-018-1165-9
– volume: 27
  start-page: 763
  year: 2001
  ident: B81
  article-title: Executive control of cognitive processes in task switching
  publication-title: J. Exp. Psychol. Hum. Percept Perform.
  doi: 10.1037//0096-1523.27.4.763
– volume-title: Thinking, fast and slow
  year: 2011
  ident: B47
– volume-title: The Society of Mind
  year: 1986
  ident: B64
– volume: 1
  year: 1998
  ident: B66
  article-title: When will computer hardware match the human brain?
  publication-title: J. Evol. Tech.
– volume: 5
  start-page: 207
  year: 1973
  ident: B96
  article-title: Availability: a heuristic for judging frequency and probability
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(73)90033-9
– volume: 113
  start-page: 201
  year: 1981
  ident: B91
  article-title: Self-serving and group-serving bias in attribution
  publication-title: J. Soc. Psychol.
  doi: 10.1080/00224545.1981.9924371
– volume: 27
  start-page: 733
  year: 2009
  ident: B36
  article-title: Adaptive rationality: an evolutionary perspective on cognitive bias
  publication-title: Soc. Cogn.
  doi: 10.1521/soco.2009.27.5.733
– volume: 89
  start-page: 46
  year: 1971
  ident: B61
  article-title: Reversals of preference between bids and choices in gambling decisions
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0031207
– volume-title: The ecological approach to visual perception
  year: 1979
  ident: B29
– volume-title: Social robotics. ICSR 2012Lecture notes in computer science
  year: 2012
  ident: B25
  article-title: Anthropomorphism and human likeness in the design of robots and human-robot interaction
  doi: 10.1007/978-3-642-34103-8_20
– volume: 186
  start-page: 752
  year: 1974
  ident: B98
  article-title: Visual detection of line segments: an object-superiority effect
  publication-title: Science
  doi: 10.1126/science.186.4165.752
– volume: 4
  start-page: 210
  year: 1978
  ident: B63
  article-title: Perception and masking of wholes and parts
  publication-title: J. Exp. Psychol. Hum. Percept Perform.
  doi: 10.1037//0096-1523.4.2.210
– volume: 2005
  start-page: 14165v4
  year: 2020
  ident: B17
  article-title: Language models are few-shot learners
  publication-title: arXiv
– volume: 275
  start-page: 969
  year: 1997
  ident: B3
  article-title: Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses
  publication-title: Science
  doi: 10.1126/science.275.5302.969Dane
– volume: 40
  start-page: e253
  year: 2017
  ident: B60
  article-title: Building machines that learn and think like people
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X16001837
– volume-title: Band 3: nervensysteme und SinnesorganeTaschenatlas de anatomie. Stutttgart
  year: 1979
  ident: B44
– volume: 7
  start-page: 411
  year: 2012
  ident: B79
  article-title: Hindsight bias
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691612454303
– volume-title: Mind children
  year: 1988
  ident: B65
– volume-title: Computers vs brains. Scientific American 175
  year: 2011
  ident: B26
– volume: 36
  start-page: 495
  ident: B86
  article-title: Human-centered artificial intelligence: reliable, safe & trustworthy
  publication-title: Int. J. Human–Computer Interaction
  doi: 10.1080/10447318.2020.1741118
– volume-title: Artificial Intelligence Framework: a visual introduction to machine learning and AI
  year: 2018
  ident: B1
– volume: 195
  start-page: 481
  year: 1968
  ident: B48
  article-title: The role of calcium in neuromuscular facilitation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1968.sp008469
– volume: 39
  start-page: 453
  year: 2000
  ident: B62
  article-title: The revolution that wasn't: a new interpretation of the origin of modern human behavior
  publication-title: J. Hum. Evol.
  doi: 10.1006/jhev.2000.0435
– start-page: 724
  volume-title: The handbook of evolutionary psychology
  year: 2005
  ident: B37
  article-title: The evolution of cognitive bias
– volume-title: Hybrid cognitive-affective Strategies for AI safety
  year: 2020
  ident: B2
– volume-title: Descartes’ error: emotion, reason and the human brain
  year: 1994
  ident: B21
– volume: 1
  start-page: 73
  ident: B85
  article-title: Design lessons from AI’s two grand goals: human emulation and useful applications
  publication-title: IEEE Trans. Tech. Soc.
  doi: 10.1109/TTS.2020.2992669
– volume-title: Life 3.0: being human in the age of artificial intelligence
  year: 2017
  ident: B92
– volume-title: Early human behavior in global context
  year: 1998
  ident: B73
– volume-title: Fundamental issues of artificial intelligence
  year: 2016
  ident: B67
  article-title: Future progress in artificial intelligence: a survey of expert opinion
  doi: 10.1007/978-3-319-26485-1_33
– volume-title: AI isn’t very smart yet. But we need to get moving to make sure automation works for more people
  year: 2017
  ident: B8
– volume: 188
  start-page: 302
  year: 2019
  ident: B22
  article-title: Governing ethical and effective behavior of intelligent systems: a novel framework for meaningful human control in a military context
  publication-title: Militaire Spectator
– volume: 19
  start-page: 91
  year: 2004
  ident: B50
  article-title: Ten challenges for making automation a ‘team player’ in joint human-agent activity
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2004.74
– volume: 123
  start-page: 182
  year: 2015
  ident: B78
  article-title: Believing what we do not believe: acquiescence to superstitious beliefs and other powerful intuitions
  publication-title: Psychol. Rev.
  doi: 10.1037/rev0000017
– volume-title: The psychology of human memory
  year: 1981
  ident: B101
– volume: 12
  start-page: 241
  year: 2014
  ident: B28
  article-title: Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds
  publication-title: WF-IoT
  doi: 10.1177/1550147716665500
– start-page: 1
  year: 2021
  ident: B55
  article-title: Retention and transfer of cognitive bias mitigation interventions: a systematic literature study
  publication-title: Front. Psychol.
  doi: 10.13140/RG.2.2.27981.56800
– volume: 267
  start-page: 60
  year: 1992
  ident: B84
  article-title: The developing brain
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0992-60
– volume: 53
  start-page: 491
  year: 2002
  ident: B83
  article-title: Rationality
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.53.100901.135213
– volume: 19
  start-page: 1
  year: 2004
  ident: B49
  article-title: Introduction to this special issue on human–robot interaction
  publication-title: Int J Hum-Comput. Int.
  doi: 10.1080/07370024.2004.9667337
– volume-title: Multiple-task performance and aging
  year: 1994
  ident: B51
– volume-title: The senses considered as perceptual systems
  year: 1966
  ident: B30
– volume: 62
  start-page: 451
  year: 2011
  ident: B31
  article-title: Heuristic decision making
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev-psych-120709-145346
– start-page: 215
  volume-title: Human-computer interaction: the agency perspectiveStudies in computational intelligence
  year: 2012
  ident: B57
  article-title: Human-agent and human-robot interaction theory: similarities to and differences from human-human interaction
– volume: 72
  start-page: 416
  year: 1987
  ident: B102
  article-title: Task complexity as a moderator of goal effects: a meta-analysis
  publication-title: J. Appl. Psychol.
  doi: 10.1037/0021-9010.72.3.416
– volume: 171
  start-page: 1161
  year: 2007
  ident: B32
  article-title: Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's the singularity is near, and McDermott’s critique of Kurzweil
  publication-title: Artif. Intelligence
  doi: 10.1016/j.artint.2007.10.011
– volume: 29
  start-page: 124
  year: 2017
  ident: B10
  article-title: Principles of robotics: regulating robots in the real world
  publication-title: Connect. Sci.
  doi: 10.1080/09540091.2016.1271400
– year: 2014
  ident: B23
  article-title: Preface
  publication-title: 7th international conference, AGI 2014 Quebec City, QC, Canada, August 1–4, 2014 Proceedings
– volume-title: Encyclopedia of behavioral neuroscience
  year: 2020
  ident: B52
  article-title: Cognitive biases
– start-page: 267
  volume-title: J. Exp. Psychol. Hum. Percept. Perform
  year: 1988
  ident: B14
  article-title: Effects of aging and task difficulty on divided attention performance
– volume-title: Artificial intelligence: a modern approach
  year: 2014
  ident: B82
– volume-title: Superintelligence: pathts, dangers, strategies
  year: 2014
  ident: B13
– volume-title: The age of intelligent machines
  year: 1990
  ident: B59
– volume-title: Neurological anatomy in relation to clinical medicine
  year: 1981
  ident: B16
– volume: 211
  start-page: 453
  year: 1981
  ident: B95
  article-title: The framing of decisions and the psychology of choice
  publication-title: Science
  doi: 10.1126/science.7455683
– volume: 81
  start-page: 274
  year: 1969
  ident: B46
  article-title: Perceptual recognition as a function of meaningfulness of stimulus material
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0027768
– ident: B103
– volume-title: Articial intelligence
  year: 2009
  ident: B77
– volume-title: Artificial intelligence
  year: 1991
  ident: B76
SSID ssj0002505112
Score 2.613508
SecondaryResourceType review_article
Snippet AI is one of the most debated subjects of today and there seems little common understanding concerning the differences and similarities of human intelligence...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 622364
SubjectTerms artificial general intelligence
Artificial Intelligence
cognitive complexity
human intelligence
human-level artificial intelligence
narrow artificial intelligence
Title Human- versus Artificial Intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/33981990
https://www.proquest.com/docview/2526306724
https://pubmed.ncbi.nlm.nih.gov/PMC8108480
https://doaj.org/article/b27a9c3eb6bc4bbaaef9afede4c0f80b
Volume 4
WOSCitedRecordID wos000751704800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-8212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002505112
  issn: 2624-8212
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61qIde6IMWFloUJDhwSDexk9g-tlVRK1WIA0h7szx-iJWqgPbB7-9Mkl3togouvSaO7HwTe-bLjL4BOC3RpyZEzIOKdU7-OOVGBZWnRKelYSKUOkv_VpeXejIxVxutvrgmrJcH7oEbo1DOeBmxQV8hOheTcSmGWPki6QL59KWoZ4NM8RnMjp0iiT4vSSzMjNPMTYkOivJLI1g0fcsPdXL9_4oxH5dKbviei7ewOwSN2dd-se_gRWzfw5tVQ4Zs2J97cNb9ks8zLrVYzrvxvUBE9mtDefMD3Fz8uP7-Mx_6IOS-asQil1gGTdStCGhMXdeuDKKSWBEXUwKTqqMyyTSBvbHHmggFcS6lFKYUUAqUH2GnvWvjAWSibLTGwvtERErq4Ci8qDA0LopGxlKOYLxCxfpBJJx7VfyxRBYYR8s4WsbR9jiO4Hz9xH0vkPHE2G8M9HocS1t3F8jgdjC4fc7gIzhZmcnSVuD8hmvj3XJuRU0vwallmmi_N9t6KikNxT6mGIHaMujWWrbvtNPbTm6boNeVLg7_x-KP4DXjwUVsov4EO4vZMn6GV_5hMZ3PjuGlmujj7kv-C6wt-sM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-+versus+Artificial+Intelligence&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Korteling%2C+J.+E.+%28Hans%29.&rft.au=van+de+Boer-Visschedijk%2C+G.+C.&rft.au=Blankendaal%2C+R.+A.+M.&rft.au=Boonekamp%2C+R.+C.&rft.date=2021-03-25&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-8212&rft.volume=4&rft_id=info:doi/10.3389%2Ffrai.2021.622364&rft_id=info%3Apmid%2F33981990&rft.externalDocID=PMC8108480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon