Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces

Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural systems and rehabilitation engineering Ročník 31; s. 2545 - 2551
Hlavní autori: Xu, Haoyin, Hsu, Sheng-Hsiou, Nakanishi, Masaki, Lin, Yufan, Jung, Tzyy-Ping, Cauwenberghs, Gert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability.
AbstractList Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability.Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability.
Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability.
Author Lin, Yufan
Xu, Haoyin
Hsu, Sheng-Hsiou
Nakanishi, Masaki
Cauwenberghs, Gert
Jung, Tzyy-Ping
Author_xml – sequence: 1
  givenname: Haoyin
  surname: Xu
  fullname: Xu, Haoyin
  organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Sheng-Hsiou
  orcidid: 0000-0002-7358-9958
  surname: Hsu
  fullname: Hsu, Sheng-Hsiou
  organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Masaki
  orcidid: 0000-0003-0415-072X
  surname: Nakanishi
  fullname: Nakanishi, Masaki
  email: masaki@sccn.ucsd.edu
  organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
– sequence: 4
  givenname: Yufan
  orcidid: 0000-0003-2321-5242
  surname: Lin
  fullname: Lin, Yufan
  organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
– sequence: 5
  givenname: Tzyy-Ping
  orcidid: 0000-0002-8377-2166
  surname: Jung
  fullname: Jung, Tzyy-Ping
  email: tpjung@ucsd.edu
  organization: Department of Bioengineering, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
– sequence: 6
  givenname: Gert
  orcidid: 0000-0002-3166-5529
  surname: Cauwenberghs
  fullname: Cauwenberghs, Gert
  email: gcauwenberghs@ucsd.edu
  organization: Department of Bioengineering, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37262122$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFvFCEUhYmpse3qHzDGTOKLL7PChRng0a6rbmzU2OorYRhoWGeHLTAm_nuZ7taYPvhygZvvnFzuOUcnYxgtQs8JXhKC5Zvrz1ff1kvAQJcUBMaCPEJnpGlEjYHgk_lOWc0o4FN0ntIWY8Lbhj9Bp5RDCwTgDH26yn43DVOq3tnkb8bKhVj98GnSQ7X-FX7avvoash2zL40Lncr7Imo_1quw20_Zxmozluq0sekpeuz0kOyz47lA39-vr1cf68svHzart5e1YS3kGjrnHAfXdkDByMbKrrNgSCcl1oYxgSmhpsetA11YzZ3thQTChOFgnKYLtDn49kFv1T76nY6_VdBe3TVCvFE6Zm8Gq7AxgrdOF93s3HZCUs45SEYJ7vqueL0-eO1juJ1symrnk7HDoEcbpqRAAFAumlIX6NUDdBumOJafzhQlkpFWFurlkZq6ne3_jne_8gKIA2BiSClap4zPOvsw5rLYQRGs5nTVXbpqTlcd0y1SeCC9d_-v6MVB5K21_wgIA2CM_gG6266V
CODEN ITNSB3
CitedBy_id crossref_primary_10_2147_JMDH_S509747
crossref_primary_10_1088_2057_1976_ade316
crossref_primary_10_3390_mti8020006
crossref_primary_10_3390_s25154623
crossref_primary_10_1016_j_bbe_2024_05_001
crossref_primary_10_1162_imag_a_00223
crossref_primary_10_1016_j_neuroimage_2024_120548
Cites_doi 10.1016/j.jneumeth.2022.109597
10.1109/MCI.2009.934562
10.1167/iovs.17-22497
10.1016/j.jneumeth.2014.12.004
10.1080/2326263X.2014.944469
10.1016/j.jneumeth.2003.10.009
10.1371/journal.pone.0051077
10.1371/journal.pone.0202478
10.1049/el.2010.0923
10.1109/TBME.2019.2930186
10.1049/PBCE114E_ch11
10.1016/j.neuroimage.2012.08.044
10.1155/2018/4920132
10.1109/TNSRE.2018.2837501
10.1371/journal.pone.0099235
10.1001/jamaophthalmol.2017.0738
10.1142/S0129065714500191
10.3390/s140814601
10.1109/EMBC.2019.8857617
10.1109/TNSRE.2011.2121919
10.1163/156856897X00357
10.1088/2057-1976/ab0cee
10.1073/pnas.1508080112
10.1109/TBME.2014.2300164
10.1109/TBME.2017.2694818
10.1088/1741-2560/8/2/025015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3280081
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2551
ExternalDocumentID oai_doaj_org_article_0cc876fa2cfc4486b893777294310bdb
37262122
10_1109_TNSRE_2023_3280081
10142244
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIP-1719130
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-2bfff72f6b232c95e9bbe2c1b990ac4480313cd06f2a2bfa7fed892148c72cfa3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004186100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:44:17 EDT 2025
Fri Jul 11 15:11:02 EDT 2025
Fri Jul 25 04:12:05 EDT 2025
Thu Apr 03 07:07:20 EDT 2025
Sat Nov 29 07:25:57 EST 2025
Tue Nov 18 21:01:01 EST 2025
Wed Oct 01 07:05:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-2bfff72f6b232c95e9bbe2c1b990ac4480313cd06f2a2bfa7fed892148c72cfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3166-5529
0000-0003-0415-072X
0000-0002-8377-2166
0000-0003-2321-5242
0000-0002-7358-9958
OpenAccessLink https://doaj.org/article/0cc876fa2cfc4486b893777294310bdb
PMID 37262122
PQID 2823194169
PQPubID 85423
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2023_3280081
pubmed_primary_37262122
proquest_miscellaneous_2822378522
proquest_journals_2823194169
ieee_primary_10142244
doaj_primary_oai_doaj_org_article_0cc876fa2cfc4486b893777294310bdb
crossref_primary_10_1109_TNSRE_2023_3280081
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref1
ref17
ref16
ref18
wang (ref22) 2014
gao (ref2) 2014; 61
ref24
ref23
ref26
ref25
ref20
ref21
ward (ref19) 2007
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.jneumeth.2022.109597
– ident: ref1
  doi: 10.1109/MCI.2009.934562
– ident: ref15
  doi: 10.1167/iovs.17-22497
– ident: ref14
  doi: 10.1016/j.jneumeth.2014.12.004
– ident: ref18
  doi: 10.1080/2326263X.2014.944469
– ident: ref26
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref9
  doi: 10.1371/journal.pone.0051077
– ident: ref11
  doi: 10.1371/journal.pone.0202478
– ident: ref16
  doi: 10.1049/el.2010.0923
– ident: ref21
  doi: 10.1109/TBME.2019.2930186
– ident: ref24
  doi: 10.1049/PBCE114E_ch11
– ident: ref25
  doi: 10.1016/j.neuroimage.2012.08.044
– ident: ref4
  doi: 10.1155/2018/4920132
– ident: ref10
  doi: 10.1109/TNSRE.2018.2837501
– year: 2007
  ident: ref19
  publication-title: Table of Linear Feedback Shift Registers
– ident: ref17
  doi: 10.1371/journal.pone.0099235
– start-page: 3037
  year: 2014
  ident: ref22
  article-title: Enhancing detection of steady-state visual evoked potentials using individual training data
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref3
  doi: 10.1001/jamaophthalmol.2017.0738
– ident: ref23
  doi: 10.1142/S0129065714500191
– ident: ref5
  doi: 10.3390/s140814601
– ident: ref28
  doi: 10.1109/EMBC.2019.8857617
– ident: ref27
  doi: 10.1109/TNSRE.2011.2121919
– ident: ref20
  doi: 10.1163/156856897X00357
– ident: ref12
  doi: 10.1088/2057-1976/ab0cee
– ident: ref6
  doi: 10.1073/pnas.1508080112
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref2
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref7
  doi: 10.1109/TBME.2017.2694818
– ident: ref8
  doi: 10.1088/1741-2560/8/2/025015
SSID ssj0017657
Score 2.440599
Snippet Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2545
SubjectTerms Accuracy
Binary codes
Brain-computer interfaces
Comfort
Decoding
Design
EEG
Electroencephalography
Frequency modulation
Frequency ranges
Human-computer interface
Interfaces
Intermediates
m-sequence
Monitoring
Parameters
Perception
Pseudorandom
Steady state
stimulus design
Tradeoffs
Visual evoked potentials
Visual stimuli
Visualization
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9RAcLBFpC9-Vo1WWUF9kVyTzV42--jpFUE4SntK38J-wmG9SC_p73dm80H7UMG3sJlNdjMzmdn5BHgfUIxon-eIAe5SMbcqNdaHlBfBCi21r7SOzSbkalVdXKjTIVk95sJ472PwmZ_RZfTlu8Z2ZCo7pr6yKHLEHuxJKftkrcllIMtY1hM5WKSi4NmYIZOp4_Xq_Gw5o0bhs4JXJAUP4EEheYn_bX5LIMW6_UOjlbt1zih7Th7956ofw8NByWSfe6p4Avf89il8uFlQmK37agLsIzu7Vav7GXw_bze_u8tux77G6A6Gai37udl1OGt53fzyjp02LQUZ4cAChaBjC-ozkY4NIli0MgaK9TqEHyfL9Zdv6dByIbWi5G3KTQhB8lAa1LSsmntljOc2Nyi0tMWjHJV6tC4rA9cIq2XwrlIcz1RWcht08Rz2t83WvwSmlJhzsrAaF4QRzhTGlSqYPDgtSmETyMfvXtthj9QW47KO55JM1RFtNaGtHtCWwKdpzp--Gsc_oReEzgmSKmnHAURPPTBmnVmLAiFoXD3trzSkwNGRAzWrzDiTwCGh9MbremwmcDRSRz2w_a7m5FRVqOOqBN5Nt5FhyQujt77pIgwvZIV6bwIveqqaHj7S5Ks7XvoaDmiDvQnoCPbbq86_gfv2ut3srt5GfvgL3B0Fvw
  priority: 102
  providerName: IEEE
Title Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/10142244
https://www.ncbi.nlm.nih.gov/pubmed/37262122
https://www.proquest.com/docview/2823194169
https://www.proquest.com/docview/2822378522
https://doaj.org/article/0cc876fa2cfc4486b893777294310bdb
Volume 31
WOSCitedRecordID wos001004186100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYEL4lEgtF0ZCbigtInjTeIjS7dCQlpV7YL2ZvkprVp2UTfp7--Mk6y2B8qlV2ecx4wn83lsfwPwKWAY0T7P0QLcpWJsZWqsDykvghW60r7WOhabqGazerGQ5zulvmhPWEcP3CnuJLMWHTZobrGzqEtDAZYgIUa-zDhDf19EPcNkql8_qMrI8YnuLFJR8Gw4LpPJk_ns8mJ6TFXDjwteU0i8F5Iic39fauXfqDNGn7OX8KKHjexb97qv4IlfvYbPuxTBbN7xA7Av7OIe-_Yb-HnZLP-01-2Gncb9GgyBKvu93LTYa3q7vvKOna8b2jaEDRMMa45NqHJEOpR8YDFvGGj31j78OpvOv_9I-yIKqRUlb1JuQggVD6VB7GTl2EtjPLe5wTCkSaNE3mhdVgauUVZXwbtacpwl2Qp1rou3sLdar_x7YFKKMaecqXFBGOFMYVwpg8mD06IUNoF80KOy_TdSoYtrFWcamVRR94p0r3rdJ_B12-dvx6_xoPSEzLOVJG7s2IAjRvUjRv1vxCSwT8bdeRzlwYRI4HCwtuodeaM4LZNKRK0ygY_by-iCtK6iV37dRhleVDUi2QTedaNke_Oi4iWiA_7hMd78AJ6TNroM0CHsNTetP4Jn9rZZbm5G8LRa1KPoB6N4jvEOO3wIQw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcAQFQS88CwQKGAm4oGwTx5vERxa2KmpZVe2Ceov8lFaUDeom_X5mnIfaQ5G4Rc44sTMzmfE8Ad57FCPKpSligNtYTI2MtXE-5pk3QhXKlUqFZhPFYlGencnjPlk95MI450LwmZvQZfDl29q0ZCrbo76yKHLEbbgzFYKnXbrW6DQo8lDYE3lYxCLjyZAjk8i95eL0ZD6hVuGTjJckB7fhXlbwHP_c_JpICpX7-1YrN2udQfrsP_zPdT-CB72ayT53dPEYbrn1E_hwtaQwW3b1BNhHdnKtWvdTODxtVr_b83bDvob4DoaKLfu52rQ4a35Z_3KWHdcNhRnhwAzFoGUz6jQRDy0iWLAzeor22oEf-_Pll4O4b7oQG5HzJubae19wn2vUtYycOqm14ybVKLaUwcMcFXs0Nsk9VwirCu9sKTmeqkzBjVfZM9ha12v3ApiUYsrJxqqtF1pYnWmbS69Tb5XIhYkgHb57Zfo9UmOM8yqcTBJZBbRVhLaqR1sEn8Y5f7p6HP-EnhE6R0iqpR0GED1Vz5pVYgyKBK9w9bS_XJMKR4cO1K0SbXUEO4TSK6_rsBnB7kAdVc_4m4qTW1WilisjeDfeRpYlP4xau7oNMDwrStR8I3jeUdX48IEmX97w0rdw_2D5_ag6-rY4fAXbtNnOILQLW81F617DXXPZrDYXbwJv_AWaDQkG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulus+Design+for+Visual+Evoked+Potential+Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Haoyin&rft.au=Hsu%2C+Sheng-Hsiou&rft.au=Nakanishi%2C+Masaki&rft.au=Lin%2C+Yufan&rft.date=2023&rft.eissn=1558-0210&rft.volume=31&rft.spage=2545&rft_id=info:doi/10.1109%2FTNSRE.2023.3280081&rft_id=info%3Apmid%2F37262122&rft.externalDocID=37262122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon