Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces
Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this st...
Uložené v:
| Vydané v: | IEEE transactions on neural systems and rehabilitation engineering Ročník 31; s. 2545 - 2551 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability. |
|---|---|
| AbstractList | Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability.Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability. Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters have been shown to affect both decoding accuracy and subjective perception experience, implying the need for a trade-off in design. In this study, we comprehensively and systematically compared various combinations of amplitude contrast and spectral content parameters in the stimulus design to quantify their impact on decoding performance and subject comfort. Specifically, three parameters were investigated: 1) contrast level, 2) temporal pattern (periodic steady-state or pseudo-random code-modulated), and 3) frequency range. We collected electroencephalogram (EEG) data and subjective perception ratings from ten subjects and evaluated the decoding accuracy and subject comfort rating for different combinations of the stimulus parameters. Our results indicate that while high-frequency steady-state VEP (SSVEP) stimuli were rated the most comfortable, they also had the lowest decoding accuracy. Conversely, low-frequency SSVEP stimuli were rated the least comfortable but had the highest decoding accuracy. Standard and high-frequency M-sequence code-modulated VEPs (c-VEPs) produced intermediates between the two. We observed a consistent trade-off relationship between decoding accuracy and subjective comfort level across all parameters. Based on our findings, we offer c-VEP as a preferable stimulus for achieving reliable decoding accuracy while maintaining a reasonable level of comfortability. |
| Author | Lin, Yufan Xu, Haoyin Hsu, Sheng-Hsiou Nakanishi, Masaki Cauwenberghs, Gert Jung, Tzyy-Ping |
| Author_xml | – sequence: 1 givenname: Haoyin surname: Xu fullname: Xu, Haoyin organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA – sequence: 2 givenname: Sheng-Hsiou orcidid: 0000-0002-7358-9958 surname: Hsu fullname: Hsu, Sheng-Hsiou organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA – sequence: 3 givenname: Masaki orcidid: 0000-0003-0415-072X surname: Nakanishi fullname: Nakanishi, Masaki email: masaki@sccn.ucsd.edu organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA – sequence: 4 givenname: Yufan orcidid: 0000-0003-2321-5242 surname: Lin fullname: Lin, Yufan organization: Swartz Center of Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA – sequence: 5 givenname: Tzyy-Ping orcidid: 0000-0002-8377-2166 surname: Jung fullname: Jung, Tzyy-Ping email: tpjung@ucsd.edu organization: Department of Bioengineering, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA – sequence: 6 givenname: Gert orcidid: 0000-0002-3166-5529 surname: Cauwenberghs fullname: Cauwenberghs, Gert email: gcauwenberghs@ucsd.edu organization: Department of Bioengineering, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37262122$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVFvFCEUhYmpse3qHzDGTOKLL7PChRng0a6rbmzU2OorYRhoWGeHLTAm_nuZ7taYPvhygZvvnFzuOUcnYxgtQs8JXhKC5Zvrz1ff1kvAQJcUBMaCPEJnpGlEjYHgk_lOWc0o4FN0ntIWY8Lbhj9Bp5RDCwTgDH26yn43DVOq3tnkb8bKhVj98GnSQ7X-FX7avvoash2zL40Lncr7Imo_1quw20_Zxmozluq0sekpeuz0kOyz47lA39-vr1cf68svHzart5e1YS3kGjrnHAfXdkDByMbKrrNgSCcl1oYxgSmhpsetA11YzZ3thQTChOFgnKYLtDn49kFv1T76nY6_VdBe3TVCvFE6Zm8Gq7AxgrdOF93s3HZCUs45SEYJ7vqueL0-eO1juJ1symrnk7HDoEcbpqRAAFAumlIX6NUDdBumOJafzhQlkpFWFurlkZq6ne3_jne_8gKIA2BiSClap4zPOvsw5rLYQRGs5nTVXbpqTlcd0y1SeCC9d_-v6MVB5K21_wgIA2CM_gG6266V |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_2147_JMDH_S509747 crossref_primary_10_1088_2057_1976_ade316 crossref_primary_10_3390_mti8020006 crossref_primary_10_3390_s25154623 crossref_primary_10_1016_j_bbe_2024_05_001 crossref_primary_10_1162_imag_a_00223 crossref_primary_10_1016_j_neuroimage_2024_120548 |
| Cites_doi | 10.1016/j.jneumeth.2022.109597 10.1109/MCI.2009.934562 10.1167/iovs.17-22497 10.1016/j.jneumeth.2014.12.004 10.1080/2326263X.2014.944469 10.1016/j.jneumeth.2003.10.009 10.1371/journal.pone.0051077 10.1371/journal.pone.0202478 10.1049/el.2010.0923 10.1109/TBME.2019.2930186 10.1049/PBCE114E_ch11 10.1016/j.neuroimage.2012.08.044 10.1155/2018/4920132 10.1109/TNSRE.2018.2837501 10.1371/journal.pone.0099235 10.1001/jamaophthalmol.2017.0738 10.1142/S0129065714500191 10.3390/s140814601 10.1109/EMBC.2019.8857617 10.1109/TNSRE.2011.2121919 10.1163/156856897X00357 10.1088/2057-1976/ab0cee 10.1073/pnas.1508080112 10.1109/TBME.2014.2300164 10.1109/TBME.2017.2694818 10.1088/1741-2560/8/2/025015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
| DOI | 10.1109/TNSRE.2023.3280081 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 2551 |
| ExternalDocumentID | oai_doaj_org_article_0cc876fa2cfc4486b893777294310bdb 37262122 10_1109_TNSRE_2023_3280081 10142244 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: IIP-1719130 funderid: 10.13039/100000001 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c462t-2bfff72f6b232c95e9bbe2c1b990ac4480313cd06f2a2bfa7fed892148c72cfa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004186100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:44:17 EDT 2025 Fri Jul 11 15:11:02 EDT 2025 Fri Jul 25 04:12:05 EDT 2025 Thu Apr 03 07:07:20 EDT 2025 Sat Nov 29 07:25:57 EST 2025 Tue Nov 18 21:01:01 EST 2025 Wed Oct 01 07:05:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-2bfff72f6b232c95e9bbe2c1b990ac4480313cd06f2a2bfa7fed892148c72cfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3166-5529 0000-0003-0415-072X 0000-0002-8377-2166 0000-0003-2321-5242 0000-0002-7358-9958 |
| OpenAccessLink | https://doaj.org/article/0cc876fa2cfc4486b893777294310bdb |
| PMID | 37262122 |
| PQID | 2823194169 |
| PQPubID | 85423 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2023_3280081 pubmed_primary_37262122 proquest_miscellaneous_2822378522 proquest_journals_2823194169 ieee_primary_10142244 doaj_primary_oai_doaj_org_article_0cc876fa2cfc4486b893777294310bdb crossref_primary_10_1109_TNSRE_2023_3280081 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref1 ref17 ref16 ref18 wang (ref22) 2014 gao (ref2) 2014; 61 ref24 ref23 ref26 ref25 ref20 ref21 ward (ref19) 2007 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1016/j.jneumeth.2022.109597 – ident: ref1 doi: 10.1109/MCI.2009.934562 – ident: ref15 doi: 10.1167/iovs.17-22497 – ident: ref14 doi: 10.1016/j.jneumeth.2014.12.004 – ident: ref18 doi: 10.1080/2326263X.2014.944469 – ident: ref26 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref9 doi: 10.1371/journal.pone.0051077 – ident: ref11 doi: 10.1371/journal.pone.0202478 – ident: ref16 doi: 10.1049/el.2010.0923 – ident: ref21 doi: 10.1109/TBME.2019.2930186 – ident: ref24 doi: 10.1049/PBCE114E_ch11 – ident: ref25 doi: 10.1016/j.neuroimage.2012.08.044 – ident: ref4 doi: 10.1155/2018/4920132 – ident: ref10 doi: 10.1109/TNSRE.2018.2837501 – year: 2007 ident: ref19 publication-title: Table of Linear Feedback Shift Registers – ident: ref17 doi: 10.1371/journal.pone.0099235 – start-page: 3037 year: 2014 ident: ref22 article-title: Enhancing detection of steady-state visual evoked potentials using individual training data publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref3 doi: 10.1001/jamaophthalmol.2017.0738 – ident: ref23 doi: 10.1142/S0129065714500191 – ident: ref5 doi: 10.3390/s140814601 – ident: ref28 doi: 10.1109/EMBC.2019.8857617 – ident: ref27 doi: 10.1109/TNSRE.2011.2121919 – ident: ref20 doi: 10.1163/156856897X00357 – ident: ref12 doi: 10.1088/2057-1976/ab0cee – ident: ref6 doi: 10.1073/pnas.1508080112 – volume: 61 start-page: 1436 year: 2014 ident: ref2 article-title: Visual and auditory brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – ident: ref7 doi: 10.1109/TBME.2017.2694818 – ident: ref8 doi: 10.1088/1741-2560/8/2/025015 |
| SSID | ssj0017657 |
| Score | 2.440599 |
| Snippet | Visual stimuli design plays an important role in brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs). Variations in stimulus parameters... |
| SourceID | doaj proquest pubmed crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2545 |
| SubjectTerms | Accuracy Binary codes Brain-computer interfaces Comfort Decoding Design EEG Electroencephalography Frequency modulation Frequency ranges Human-computer interface Interfaces Intermediates m-sequence Monitoring Parameters Perception Pseudorandom Steady state stimulus design Tradeoffs Visual evoked potentials Visual stimuli Visualization |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9RAcLBFpC9-Vo1WWUF9kVyTzV42--jpFUE4SntK38J-wmG9SC_p73dm80H7UMG3sJlNdjMzmdn5BHgfUIxon-eIAe5SMbcqNdaHlBfBCi21r7SOzSbkalVdXKjTIVk95sJ472PwmZ_RZfTlu8Z2ZCo7pr6yKHLEHuxJKftkrcllIMtY1hM5WKSi4NmYIZOp4_Xq_Gw5o0bhs4JXJAUP4EEheYn_bX5LIMW6_UOjlbt1zih7Th7956ofw8NByWSfe6p4Avf89il8uFlQmK37agLsIzu7Vav7GXw_bze_u8tux77G6A6Gai37udl1OGt53fzyjp02LQUZ4cAChaBjC-ozkY4NIli0MgaK9TqEHyfL9Zdv6dByIbWi5G3KTQhB8lAa1LSsmntljOc2Nyi0tMWjHJV6tC4rA9cIq2XwrlIcz1RWcht08Rz2t83WvwSmlJhzsrAaF4QRzhTGlSqYPDgtSmETyMfvXtthj9QW47KO55JM1RFtNaGtHtCWwKdpzp--Gsc_oReEzgmSKmnHAURPPTBmnVmLAiFoXD3trzSkwNGRAzWrzDiTwCGh9MbremwmcDRSRz2w_a7m5FRVqOOqBN5Nt5FhyQujt77pIgwvZIV6bwIveqqaHj7S5Ks7XvoaDmiDvQnoCPbbq86_gfv2ut3srt5GfvgL3B0Fvw priority: 102 providerName: IEEE |
| Title | Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces |
| URI | https://ieeexplore.ieee.org/document/10142244 https://www.ncbi.nlm.nih.gov/pubmed/37262122 https://www.proquest.com/docview/2823194169 https://www.proquest.com/docview/2822378522 https://doaj.org/article/0cc876fa2cfc4486b893777294310bdb |
| Volume | 31 |
| WOSCitedRecordID | wos001004186100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYEL4lEgtF0ZCbigtInjTeIjS7dCQlpV7YL2ZvkprVp2UTfp7--Mk6y2B8qlV2ecx4wn83lsfwPwKWAY0T7P0QLcpWJsZWqsDykvghW60r7WOhabqGazerGQ5zulvmhPWEcP3CnuJLMWHTZobrGzqEtDAZYgIUa-zDhDf19EPcNkql8_qMrI8YnuLFJR8Gw4LpPJk_ns8mJ6TFXDjwteU0i8F5Iic39fauXfqDNGn7OX8KKHjexb97qv4IlfvYbPuxTBbN7xA7Av7OIe-_Yb-HnZLP-01-2Gncb9GgyBKvu93LTYa3q7vvKOna8b2jaEDRMMa45NqHJEOpR8YDFvGGj31j78OpvOv_9I-yIKqRUlb1JuQggVD6VB7GTl2EtjPLe5wTCkSaNE3mhdVgauUVZXwbtacpwl2Qp1rou3sLdar_x7YFKKMaecqXFBGOFMYVwpg8mD06IUNoF80KOy_TdSoYtrFWcamVRR94p0r3rdJ_B12-dvx6_xoPSEzLOVJG7s2IAjRvUjRv1vxCSwT8bdeRzlwYRI4HCwtuodeaM4LZNKRK0ygY_by-iCtK6iV37dRhleVDUi2QTedaNke_Oi4iWiA_7hMd78AJ6TNroM0CHsNTetP4Jn9rZZbm5G8LRa1KPoB6N4jvEOO3wIQw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcAQFQS88CwQKGAm4oGwTx5vERxa2KmpZVe2Ceov8lFaUDeom_X5mnIfaQ5G4Rc44sTMzmfE8Ad57FCPKpSligNtYTI2MtXE-5pk3QhXKlUqFZhPFYlGencnjPlk95MI450LwmZvQZfDl29q0ZCrbo76yKHLEbbgzFYKnXbrW6DQo8lDYE3lYxCLjyZAjk8i95eL0ZD6hVuGTjJckB7fhXlbwHP_c_JpICpX7-1YrN2udQfrsP_zPdT-CB72ayT53dPEYbrn1E_hwtaQwW3b1BNhHdnKtWvdTODxtVr_b83bDvob4DoaKLfu52rQ4a35Z_3KWHdcNhRnhwAzFoGUz6jQRDy0iWLAzeor22oEf-_Pll4O4b7oQG5HzJubae19wn2vUtYycOqm14ybVKLaUwcMcFXs0Nsk9VwirCu9sKTmeqkzBjVfZM9ha12v3ApiUYsrJxqqtF1pYnWmbS69Tb5XIhYkgHb57Zfo9UmOM8yqcTBJZBbRVhLaqR1sEn8Y5f7p6HP-EnhE6R0iqpR0GED1Vz5pVYgyKBK9w9bS_XJMKR4cO1K0SbXUEO4TSK6_rsBnB7kAdVc_4m4qTW1WilisjeDfeRpYlP4xau7oNMDwrStR8I3jeUdX48IEmX97w0rdw_2D5_ag6-rY4fAXbtNnOILQLW81F617DXXPZrDYXbwJv_AWaDQkG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulus+Design+for+Visual+Evoked+Potential+Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Haoyin&rft.au=Hsu%2C+Sheng-Hsiou&rft.au=Nakanishi%2C+Masaki&rft.au=Lin%2C+Yufan&rft.date=2023&rft.eissn=1558-0210&rft.volume=31&rft.spage=2545&rft_id=info:doi/10.1109%2FTNSRE.2023.3280081&rft_id=info%3Apmid%2F37262122&rft.externalDocID=37262122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |