Simultaneous Effect of Diameter and Concentration of Multi-Walled Carbon Nanotubes on Mechanical and Electrical Properties of Cement Mortars: With and without Biosilica

In this work, the effect of multi-walled carbon nanotubes (MWCNT1, MWCNT2, and MWCNT3) with different outer diameters and specific surface areas on the mechanical and electrical properties of cement mortar have been investigated. Various concentrations of MWCNTs were used (0.05, 0.10, and 0.15%), th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Jg. 14; H. 15; S. 1271
Hauptverfasser: Malumyan, Suren A., Muradyan, Nelli G., Kalantaryan, Marine A., Arzumanyan, Avetik A., Melikyan, Yeghvard, Laroze, David, Barseghyan, Manuk G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.08.2024
Schlagworte:
ISSN:2079-4991, 2079-4991
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the effect of multi-walled carbon nanotubes (MWCNT1, MWCNT2, and MWCNT3) with different outer diameters and specific surface areas on the mechanical and electrical properties of cement mortar have been investigated. Various concentrations of MWCNTs were used (0.05, 0.10, and 0.15%), the effective dispersion of which was carried out by an Ultrasonic machine (for 40 min with 160 W power and a 24 kHz frequency) using a surfactant. Composites have been processed with a biosilica content of 10% by weight of cement and without it. Compressive strength tests were carried out on days 7 and 28 of curing. The 7-day compressive strength of samples prepared without biosilica increased compared to the result of the control sample (6.4% for MWCNT1, 7.4% for MWCNT2, and 10.8% for MWCNT3), as did those using biosilica (6.7% in the case of MWCNT1, 29.2% for MWCNT2, and 2.1% for MWCNT3). Compressive strength tests of 28-day specimens yielded the following results: 21.7% for MWCNT1, 3.8% for MWCNT2, and 4.2% for MWCNT3 in the absence of biosilica and 8.5%, 12.6%, and 6.3% with biosilica, respectively. The maximum increase in compressive strength was observed in the composites treated with a 0.1% MWCNT concentration, while in the case of 0.05 and 0.15% concentrations, the compressive strengths were relatively low. The MWCNT-reinforced cement matrix obtained electrical properties due to the high electrical conductivity of these particles. The effect of MWCNT concentrations of 0.05, 0.10, and 0.15 wt% on the electrical properties of cement mortar, especially the bulk electrical resistivity and piezoresistive characteristics of cement mortar, was studied in this work. At a concentration of 0.05%, the lowest value of resistivity was obtained, and then it started to increase. The obtained results show that all investigated specimens have piezoresistive properties and that the measurements led to a deviation in fractional change in resistivity.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14151271