Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells
Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiqu...
Gespeichert in:
| Veröffentlicht in: | Oncotarget Jg. 7; H. 23; S. 34084 - 34099 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
07.06.2016
|
| Schlagworte: | |
| ISSN: | 1949-2553 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/- CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans. |
|---|---|
| AbstractList | Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/- CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans. |
| Author | Tanowitz, Herbert B Cappello, Anna Rita Krstic-Demonacos, Marija Lamb, Rebecca Sotgia, Federica Lisanti, Michael P Mutti, Luciano Martinez-Outschoorn, Ubaldo E Fiorillo, Marco |
| Author_xml | – sequence: 1 givenname: Marco surname: Fiorillo fullname: Fiorillo, Marco organization: The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy – sequence: 2 givenname: Rebecca surname: Lamb fullname: Lamb, Rebecca organization: The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK – sequence: 3 givenname: Herbert B surname: Tanowitz fullname: Tanowitz, Herbert B organization: Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA – sequence: 4 givenname: Luciano surname: Mutti fullname: Mutti, Luciano organization: School of Environment and Life Sciences, University of Salford, Salford, UK – sequence: 5 givenname: Marija surname: Krstic-Demonacos fullname: Krstic-Demonacos, Marija organization: School of Environment and Life Sciences, University of Salford, Salford, UK – sequence: 6 givenname: Anna Rita surname: Cappello fullname: Cappello, Anna Rita organization: The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy – sequence: 7 givenname: Ubaldo E surname: Martinez-Outschoorn fullname: Martinez-Outschoorn, Ubaldo E organization: The Sidney Kimmel Cancer Center, Philadelphia, PA, USA – sequence: 8 givenname: Federica surname: Sotgia fullname: Sotgia, Federica organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK – sequence: 9 givenname: Michael P surname: Lisanti fullname: Lisanti, Michael P organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27136895$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kN1LwzAUxYMobs69-yR59KWzSdM28U2GusKg4gf4VtLkblbapEtS0f_ejs17Hi6cc_hxuRfo1FgDCF2ReEF4ltBba5QN0m0hLASh9ARNiWAiommaTNDc-694nJTlnIpzNKE5STIu0imCF-gH11vfmC2WwX7L3TCi7_ABtne7Jlj1aY12jWyxsl3fwg8uigJLo3H58bwqX3GwGJzUjZIBsJJGgcM-QIcVtK2_RGcb2XqYH_cMvT8-vC1X0bp8Kpb360ixjIaIMsFrYACxppnWoAmrRbZhmWabNOY0qVMGYyQEjNI1UMKTWkjFah3nUtEZujlwe2d3A_hQdY3fXyAN2MFXZGTECeUsH6vXx-pQd6Cr3jWddL_V_2voHxQlabk |
| CitedBy_id | crossref_primary_10_1186_s40001_023_01275_4 crossref_primary_10_1016_j_bmcl_2017_12_059 crossref_primary_10_1038_s41598_023_37677_x crossref_primary_10_1007_s11010_021_04281_4 crossref_primary_10_1038_s41598_020_68777_7 crossref_primary_10_1007_s10863_018_9755_y crossref_primary_10_1016_j_pscia_2022_100002 crossref_primary_10_1186_s12645_023_00185_8 crossref_primary_10_3390_pharmaceutics10020060 crossref_primary_10_1073_pnas_2418525122 crossref_primary_10_3390_cells8111408 crossref_primary_10_1158_1078_0432_CCR_17_3070 crossref_primary_10_1186_s13062_025_00663_6 crossref_primary_10_3390_cancers12071706 crossref_primary_10_1007_s11010_023_04833_w crossref_primary_10_3389_fphar_2024_1375993 crossref_primary_10_1089_omi_2022_0122 crossref_primary_10_3390_genes12010099 crossref_primary_10_1080_17460441_2022_2096588 crossref_primary_10_1016_j_bbrc_2018_06_049 crossref_primary_10_1038_s41420_020_00343_6 crossref_primary_10_1038_s41598_020_76342_5 crossref_primary_10_3389_fonc_2018_00677 crossref_primary_10_1016_j_tcb_2023_03_009 crossref_primary_10_1182_bloodadvances_2019000499 crossref_primary_10_1186_s12885_023_11585_9 crossref_primary_10_1016_j_ejmech_2020_112502 crossref_primary_10_3390_ijms241411540 crossref_primary_10_1016_j_mito_2021_11_002 crossref_primary_10_1186_s13046_021_02000_x crossref_primary_10_2174_0929867326666190628163633 crossref_primary_10_1016_j_bioorg_2021_105160 crossref_primary_10_3390_biom10121623 crossref_primary_10_3390_cancers17010059 crossref_primary_10_3389_fonc_2020_537930 crossref_primary_10_3390_biomedicines8080270 crossref_primary_10_3390_antiox10121872 crossref_primary_10_1080_15384101_2018_1515551 crossref_primary_10_1097_JCP_0000000000001541 crossref_primary_10_3390_cells10071772 crossref_primary_10_2174_0929867326666190712150638 crossref_primary_10_3389_fonc_2022_1046630 crossref_primary_10_1080_15376516_2018_1506848 crossref_primary_10_1155_2019_9618065 crossref_primary_10_3390_cancers13215447 crossref_primary_10_1186_s13058_025_02072_z crossref_primary_10_3390_cancers15010062 crossref_primary_10_1002_jbt_22195 crossref_primary_10_1016_j_bbrc_2018_04_042 crossref_primary_10_1080_14786419_2019_1641805 crossref_primary_10_1186_s40170_024_00342_6 crossref_primary_10_1007_s00432_022_04212_w crossref_primary_10_1007_s12017_021_08678_8 crossref_primary_10_1038_onc_2017_368 crossref_primary_10_3390_cells9122669 crossref_primary_10_1007_s10555_021_10005_3 crossref_primary_10_1016_j_bbrc_2018_11_182 crossref_primary_10_3389_fphar_2022_893873 crossref_primary_10_1002_2211_5463_12226 crossref_primary_10_1016_j_mito_2024_101951 crossref_primary_10_1016_j_ajpath_2025_08_009 crossref_primary_10_1016_j_heliyon_2024_e30639 crossref_primary_10_1126_sciadv_adv2930 crossref_primary_10_3390_cancers15041344 crossref_primary_10_1186_s13046_020_01724_6 crossref_primary_10_1016_j_molstruc_2024_137696 crossref_primary_10_3390_cancers14194694 crossref_primary_10_3390_ijms21176014 crossref_primary_10_1016_j_bbabio_2018_03_018 crossref_primary_10_1016_j_critrevonc_2021_103545 crossref_primary_10_1158_1078_0432_CCR_24_3296 crossref_primary_10_1016_j_semcancer_2017_01_006 crossref_primary_10_1186_s40170_021_00274_5 crossref_primary_10_1186_s12964_025_02160_9 crossref_primary_10_3389_fphar_2022_1011115 crossref_primary_10_1002_mc_23092 crossref_primary_10_1016_j_prp_2021_153529 crossref_primary_10_1158_2159_8290_CD_16_0441 crossref_primary_10_1042_BCJ20180384 crossref_primary_10_1016_j_ctarc_2020_100210 crossref_primary_10_3390_cancers14092297 crossref_primary_10_1038_s41419_023_05955_1 crossref_primary_10_1021_acs_molpharmaceut_5c00341 crossref_primary_10_1016_j_bcp_2022_114966 crossref_primary_10_1158_0008_5472_CAN_17_3993 crossref_primary_10_3390_cells9071693 crossref_primary_10_1002_ijch_201600109 crossref_primary_10_1002_advs_202101267 crossref_primary_10_1038_s41556_020_0477_0 crossref_primary_10_4252_wjsc_v10_i11_172 crossref_primary_10_1016_j_semcancer_2020_04_006 crossref_primary_10_3390_ijms252212441 crossref_primary_10_1016_j_neo_2024_101076 crossref_primary_10_3892_ijo_2019_4720 crossref_primary_10_1038_s41419_019_1414_7 crossref_primary_10_3389_fcimb_2024_1368019 crossref_primary_10_1016_j_bbrc_2021_02_027 crossref_primary_10_1016_j_ejphar_2021_174256 crossref_primary_10_3390_medsci5020014 crossref_primary_10_1016_j_ejps_2020_105401 crossref_primary_10_3390_biomedicines9020178 crossref_primary_10_1016_j_mib_2022_102228 crossref_primary_10_1186_s13287_022_02856_6 crossref_primary_10_1016_j_semcancer_2020_03_011 crossref_primary_10_3390_biomedicines12122730 crossref_primary_10_1016_j_semcdb_2019_05_025 crossref_primary_10_3390_ijms24054954 crossref_primary_10_1016_j_ijpharm_2022_121775 crossref_primary_10_1016_j_jtbi_2022_111248 crossref_primary_10_1186_s12967_023_04498_5 crossref_primary_10_3389_fonc_2021_740720 crossref_primary_10_1089_ars_2019_7898 crossref_primary_10_3389_fonc_2021_670804 crossref_primary_10_1016_j_semcancer_2017_06_012 crossref_primary_10_3390_cancers10090337 crossref_primary_10_1186_s12916_022_02643_3 crossref_primary_10_3389_fonc_2021_632181 crossref_primary_10_1038_s41598_020_74808_0 crossref_primary_10_1111_febs_15187 crossref_primary_10_1080_01635581_2024_2328377 crossref_primary_10_1080_01635581_2024_2377344 crossref_primary_10_3390_cancers16234081 crossref_primary_10_3390_cells9081819 crossref_primary_10_1016_j_tiv_2019_104737 crossref_primary_10_1016_j_clon_2017_03_005 crossref_primary_10_1016_j_bbadis_2023_166897 crossref_primary_10_1016_j_semcancer_2017_03_003 crossref_primary_10_1177_1010428320965284 crossref_primary_10_1016_j_critrevonc_2020_103095 crossref_primary_10_3390_ijms24065564 crossref_primary_10_1016_j_biopha_2020_111058 crossref_primary_10_1016_j_freeradbiomed_2021_03_001 crossref_primary_10_1158_1078_0432_CCR_20_3913 crossref_primary_10_3389_fonc_2018_00452 crossref_primary_10_3390_ph14111169 crossref_primary_10_1016_j_fbio_2025_107255 crossref_primary_10_1016_j_semcancer_2022_02_002 crossref_primary_10_3390_cells9081896 crossref_primary_10_1080_14728222_2023_2261631 crossref_primary_10_3390_cells10051056 crossref_primary_10_1038_s41598_020_80561_1 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.18632/oncotarget.9122 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| EISSN | 1949-2553 |
| EndPage | 34099 |
| ExternalDocumentID | 27136895 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: K08 CA175193 |
| GroupedDBID | --- 53G ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CGR CUY CVF DIK ECM EIF FRJ GX1 HYE KQ8 M48 NPM OK1 PGMZT RPM 7X8 |
| ID | FETCH-LOGICAL-c462t-2498be4ee0d26dded14b96f46d4f50823b54ed2699e9e9dbe2183b9ac4bd07ac2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 173 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377752100043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Jul 11 10:49:59 EDT 2025 Thu Apr 03 07:05:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 23 |
| Keywords | tumor-initiating cells (TICs) OXPHOS cancer stem-like cells (CSCs) atovaquone mitochondria |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-2498be4ee0d26dded14b96f46d4f50823b54ed2699e9e9dbe2183b9ac4bd07ac2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5085139 |
| PMID | 27136895 |
| PQID | 1823032847 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1823032847 pubmed_primary_27136895 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-07 |
| PublicationDateYYYYMMDD | 2016-06-07 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Oncotarget |
| PublicationTitleAlternate | Oncotarget |
| PublicationYear | 2016 |
| References | 22428931 - Photochem Photobiol. 2012 Jul-Aug;88(4):1016-22 25244355 - J Med Chem. 2014 Oct 9;57(19):7990-8 24905005 - Mol Cell. 2014 Jun 5;54(5):716-27 11101003 - Cell Biol Toxicol. 2000;16(4):207-19 15047214 - Gynecol Oncol. 2004 Apr;93(1):54-8 22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7 21215626 - Bioorg Med Chem Lett. 2011 Feb 1;21(3):1052-6 25850553 - Nat Rev Clin Oncol. 2015 Aug;12(8):445-64 18245469 - Cancer Res. 2008 Feb 1;68(3):700-6 17222787 - Cancer Cell. 2007 Jan;11(1):3-5 21389643 - J Nippon Med Sch. 2011;78(1):13-21 9020100 - J Biol Chem. 1997 Feb 14;272(7):3961-6 19632833 - Bioorg Med Chem Lett. 2009 Sep 1;19(17):5091-4 26087310 - Oncotarget. 2015 Jun 20;6(17 ):14777-95 25708684 - Oncotarget. 2015 Feb 28;6(6):3553-62 19169242 - Nature. 2009 Apr 9;458(7239):776-9 26492365 - Cell Death Dis. 2015 Oct 22;6:e1930 15917236 - J Biol Chem. 2005 Jul 22;280(29):27458-65 10610011 - Pharmacotherapy. 1999 Sep;19(9):1050-6 18366788 - Breast Cancer Res. 2008;10(2):R25 8479489 - N Engl J Med. 1993 May 27;328(21):1521-7 20530697 - Clin Cancer Res. 2010 Jun 15;16(12):3153-62 23208510 - Oncogene. 2013 Jul 25;32(30):3483-90 8684102 - Lancet. 1996 Jun 1;347(9014):1511-4 21172432 - Biochim Biophys Acta. 2011 Aug;1812(8):1032-40 26406445 - PLoS One. 2015 Sep 25;10(9):e0136192 25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84 16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4 25562155 - Cell Physiol Biochem. 2014;34(6):2070-80 15108804 - Curr Opin Genet Dev. 2004 Feb;14(1):43-7 15207251 - Crit Rev Oncol Hematol. 2004 Jul;51(1):1-28 25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37 19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16 10447880 - Mol Microbiol. 1999 Aug;33(4):704-11 9806551 - Nat Genet. 1998 Nov;20(3):291-3 19682730 - Cell. 2009 Aug 21;138(4):645-59 19569044 - Int J Cancer. 2009 Dec 15;125(12):2829-35 26365176 - Cell Metab. 2015 Oct 6;22(4):590-605 1314606 - Biochem Pharmacol. 1992 Apr 1;43(7):1545-53 23903006 - J Pharmacol Sci. 2013;122(4):299-304 17899367 - Breast Cancer Res Treat. 2008 Aug;110(3):439-52 22094260 - Cancer Cell. 2011 Nov 15;20(5):674-88 20531305 - Oncogene. 2010 Aug 26;29(34):4741-51 18445819 - J Natl Cancer Inst. 2008 May 7;100(9):672-9 25915429 - Oncotarget. 2015 May 10;6(13):10728-45 16810242 - Nature. 2006 Jun 29;441(7097):1075-9 |
| References_xml | – reference: 17899367 - Breast Cancer Res Treat. 2008 Aug;110(3):439-52 – reference: 25708684 - Oncotarget. 2015 Feb 28;6(6):3553-62 – reference: 26365176 - Cell Metab. 2015 Oct 6;22(4):590-605 – reference: 20530697 - Clin Cancer Res. 2010 Jun 15;16(12):3153-62 – reference: 1314606 - Biochem Pharmacol. 1992 Apr 1;43(7):1545-53 – reference: 10610011 - Pharmacotherapy. 1999 Sep;19(9):1050-6 – reference: 17222787 - Cancer Cell. 2007 Jan;11(1):3-5 – reference: 19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16 – reference: 25244355 - J Med Chem. 2014 Oct 9;57(19):7990-8 – reference: 21172432 - Biochim Biophys Acta. 2011 Aug;1812(8):1032-40 – reference: 16810242 - Nature. 2006 Jun 29;441(7097):1075-9 – reference: 19632833 - Bioorg Med Chem Lett. 2009 Sep 1;19(17):5091-4 – reference: 19569044 - Int J Cancer. 2009 Dec 15;125(12):2829-35 – reference: 26087310 - Oncotarget. 2015 Jun 20;6(17 ):14777-95 – reference: 25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84 – reference: 9020100 - J Biol Chem. 1997 Feb 14;272(7):3961-6 – reference: 23903006 - J Pharmacol Sci. 2013;122(4):299-304 – reference: 16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4 – reference: 19169242 - Nature. 2009 Apr 9;458(7239):776-9 – reference: 8684102 - Lancet. 1996 Jun 1;347(9014):1511-4 – reference: 15917236 - J Biol Chem. 2005 Jul 22;280(29):27458-65 – reference: 25915429 - Oncotarget. 2015 May 10;6(13):10728-45 – reference: 21389643 - J Nippon Med Sch. 2011;78(1):13-21 – reference: 18245469 - Cancer Res. 2008 Feb 1;68(3):700-6 – reference: 26406445 - PLoS One. 2015 Sep 25;10(9):e0136192 – reference: 25850553 - Nat Rev Clin Oncol. 2015 Aug;12(8):445-64 – reference: 15108804 - Curr Opin Genet Dev. 2004 Feb;14(1):43-7 – reference: 24905005 - Mol Cell. 2014 Jun 5;54(5):716-27 – reference: 20531305 - Oncogene. 2010 Aug 26;29(34):4741-51 – reference: 22428931 - Photochem Photobiol. 2012 Jul-Aug;88(4):1016-22 – reference: 8479489 - N Engl J Med. 1993 May 27;328(21):1521-7 – reference: 22094260 - Cancer Cell. 2011 Nov 15;20(5):674-88 – reference: 15207251 - Crit Rev Oncol Hematol. 2004 Jul;51(1):1-28 – reference: 22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7 – reference: 21215626 - Bioorg Med Chem Lett. 2011 Feb 1;21(3):1052-6 – reference: 11101003 - Cell Biol Toxicol. 2000;16(4):207-19 – reference: 19682730 - Cell. 2009 Aug 21;138(4):645-59 – reference: 18366788 - Breast Cancer Res. 2008;10(2):R25 – reference: 10447880 - Mol Microbiol. 1999 Aug;33(4):704-11 – reference: 9806551 - Nat Genet. 1998 Nov;20(3):291-3 – reference: 25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37 – reference: 25562155 - Cell Physiol Biochem. 2014;34(6):2070-80 – reference: 18445819 - J Natl Cancer Inst. 2008 May 7;100(9):672-9 – reference: 15047214 - Gynecol Oncol. 2004 Apr;93(1):54-8 – reference: 26492365 - Cell Death Dis. 2015 Oct 22;6:e1930 – reference: 23208510 - Oncogene. 2013 Jul 25;32(30):3483-90 |
| SSID | ssj0000547829 |
| Score | 2.5285926 |
| Snippet | Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 34084 |
| SubjectTerms | Antimalarials - pharmacology Antineoplastic Agents - pharmacology Atovaquone - pharmacology Drug Repositioning Electron Transport Complex III - antagonists & inhibitors Humans MCF-7 Cells Neoplastic Stem Cells - drug effects Oxidative Phosphorylation - drug effects |
| Title | Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27136895 https://www.proquest.com/docview/1823032847 |
| Volume | 7 |
| WOSCitedRecordID | wos000377752100043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevDiA1_1xQpeY5t081gvImJpD7YFFXIL-5iAB5O2aYs_35lNqidBkEAOCSHD8O1k9pvJfIzdBCGI3OTSI2EcT-RKeRIg8oyfxAniq6tBO7GJeDRK0lROGsKtatoq1zHRBWpbGuLIOz5VhHoUTO-nM49Uo6i62khobLJWD1MZQnWcJt8cS5eGVQWyqU4mUS_olDTywPVY30qfFHN_yyvd96W_91_L9tluk1nyhxoKB2wDikMGmGCjK0tiBDjur1dqtiwLuOO1dXT1A9c0xsDCEhS5azGHTz4cDrkqLB-nk8H4hS9KDnNl3Q9z3BBS5pxGQHMi_qsj9tZ_en0ceI2ygmdEFCw83HMlGgRA1wYRBjjrCy2jXERW5CHV3nQoAG9JCXhYDZRIaamM0LYbKxMcs60CrT1l-EpMIRAGMgb0dqi1H4CKc0ukijSxaLPrtdcyRC5ZpQool1X247c2O6ldn03rERtZgHvnKJHh2R-ePmc7aELk-rfiC9bKcd3CJds2q8V7Nb9ykMDzaPL8BXVtxkg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repurposing+atovaquone%3A+targeting+mitochondrial+complex+III+and+OXPHOS+to+eradicate+cancer+stem+cells&rft.jtitle=Oncotarget&rft.au=Fiorillo%2C+Marco&rft.au=Lamb%2C+Rebecca&rft.au=Tanowitz%2C+Herbert+B&rft.au=Mutti%2C+Luciano&rft.date=2016-06-07&rft.eissn=1949-2553&rft.volume=7&rft.issue=23&rft.spage=34084&rft_id=info:doi/10.18632%2Foncotarget.9122&rft_id=info%3Apmid%2F27136895&rft_id=info%3Apmid%2F27136895&rft.externalDocID=27136895 |