Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells

Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget Jg. 7; H. 23; S. 34084 - 34099
Hauptverfasser: Fiorillo, Marco, Lamb, Rebecca, Tanowitz, Herbert B, Mutti, Luciano, Krstic-Demonacos, Marija, Cappello, Anna Rita, Martinez-Outschoorn, Ubaldo E, Sotgia, Federica, Lisanti, Michael P
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 07.06.2016
Schlagworte:
ISSN:1949-2553
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/- CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans.
AbstractList Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/- CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans.
Author Tanowitz, Herbert B
Cappello, Anna Rita
Krstic-Demonacos, Marija
Lamb, Rebecca
Sotgia, Federica
Lisanti, Michael P
Mutti, Luciano
Martinez-Outschoorn, Ubaldo E
Fiorillo, Marco
Author_xml – sequence: 1
  givenname: Marco
  surname: Fiorillo
  fullname: Fiorillo, Marco
  organization: The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
– sequence: 2
  givenname: Rebecca
  surname: Lamb
  fullname: Lamb, Rebecca
  organization: The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
– sequence: 3
  givenname: Herbert B
  surname: Tanowitz
  fullname: Tanowitz, Herbert B
  organization: Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
– sequence: 4
  givenname: Luciano
  surname: Mutti
  fullname: Mutti, Luciano
  organization: School of Environment and Life Sciences, University of Salford, Salford, UK
– sequence: 5
  givenname: Marija
  surname: Krstic-Demonacos
  fullname: Krstic-Demonacos, Marija
  organization: School of Environment and Life Sciences, University of Salford, Salford, UK
– sequence: 6
  givenname: Anna Rita
  surname: Cappello
  fullname: Cappello, Anna Rita
  organization: The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
– sequence: 7
  givenname: Ubaldo E
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E
  organization: The Sidney Kimmel Cancer Center, Philadelphia, PA, USA
– sequence: 8
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
– sequence: 9
  givenname: Michael P
  surname: Lisanti
  fullname: Lisanti, Michael P
  organization: The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27136895$$D View this record in MEDLINE/PubMed
BookMark eNo1kN1LwzAUxYMobs69-yR59KWzSdM28U2GusKg4gf4VtLkblbapEtS0f_ejs17Hi6cc_hxuRfo1FgDCF2ReEF4ltBba5QN0m0hLASh9ARNiWAiommaTNDc-694nJTlnIpzNKE5STIu0imCF-gH11vfmC2WwX7L3TCi7_ABtne7Jlj1aY12jWyxsl3fwg8uigJLo3H58bwqX3GwGJzUjZIBsJJGgcM-QIcVtK2_RGcb2XqYH_cMvT8-vC1X0bp8Kpb360ixjIaIMsFrYACxppnWoAmrRbZhmWabNOY0qVMGYyQEjNI1UMKTWkjFah3nUtEZujlwe2d3A_hQdY3fXyAN2MFXZGTECeUsH6vXx-pQd6Cr3jWddL_V_2voHxQlabk
CitedBy_id crossref_primary_10_1186_s40001_023_01275_4
crossref_primary_10_1016_j_bmcl_2017_12_059
crossref_primary_10_1038_s41598_023_37677_x
crossref_primary_10_1007_s11010_021_04281_4
crossref_primary_10_1038_s41598_020_68777_7
crossref_primary_10_1007_s10863_018_9755_y
crossref_primary_10_1016_j_pscia_2022_100002
crossref_primary_10_1186_s12645_023_00185_8
crossref_primary_10_3390_pharmaceutics10020060
crossref_primary_10_1073_pnas_2418525122
crossref_primary_10_3390_cells8111408
crossref_primary_10_1158_1078_0432_CCR_17_3070
crossref_primary_10_1186_s13062_025_00663_6
crossref_primary_10_3390_cancers12071706
crossref_primary_10_1007_s11010_023_04833_w
crossref_primary_10_3389_fphar_2024_1375993
crossref_primary_10_1089_omi_2022_0122
crossref_primary_10_3390_genes12010099
crossref_primary_10_1080_17460441_2022_2096588
crossref_primary_10_1016_j_bbrc_2018_06_049
crossref_primary_10_1038_s41420_020_00343_6
crossref_primary_10_1038_s41598_020_76342_5
crossref_primary_10_3389_fonc_2018_00677
crossref_primary_10_1016_j_tcb_2023_03_009
crossref_primary_10_1182_bloodadvances_2019000499
crossref_primary_10_1186_s12885_023_11585_9
crossref_primary_10_1016_j_ejmech_2020_112502
crossref_primary_10_3390_ijms241411540
crossref_primary_10_1016_j_mito_2021_11_002
crossref_primary_10_1186_s13046_021_02000_x
crossref_primary_10_2174_0929867326666190628163633
crossref_primary_10_1016_j_bioorg_2021_105160
crossref_primary_10_3390_biom10121623
crossref_primary_10_3390_cancers17010059
crossref_primary_10_3389_fonc_2020_537930
crossref_primary_10_3390_biomedicines8080270
crossref_primary_10_3390_antiox10121872
crossref_primary_10_1080_15384101_2018_1515551
crossref_primary_10_1097_JCP_0000000000001541
crossref_primary_10_3390_cells10071772
crossref_primary_10_2174_0929867326666190712150638
crossref_primary_10_3389_fonc_2022_1046630
crossref_primary_10_1080_15376516_2018_1506848
crossref_primary_10_1155_2019_9618065
crossref_primary_10_3390_cancers13215447
crossref_primary_10_1186_s13058_025_02072_z
crossref_primary_10_3390_cancers15010062
crossref_primary_10_1002_jbt_22195
crossref_primary_10_1016_j_bbrc_2018_04_042
crossref_primary_10_1080_14786419_2019_1641805
crossref_primary_10_1186_s40170_024_00342_6
crossref_primary_10_1007_s00432_022_04212_w
crossref_primary_10_1007_s12017_021_08678_8
crossref_primary_10_1038_onc_2017_368
crossref_primary_10_3390_cells9122669
crossref_primary_10_1007_s10555_021_10005_3
crossref_primary_10_1016_j_bbrc_2018_11_182
crossref_primary_10_3389_fphar_2022_893873
crossref_primary_10_1002_2211_5463_12226
crossref_primary_10_1016_j_mito_2024_101951
crossref_primary_10_1016_j_ajpath_2025_08_009
crossref_primary_10_1016_j_heliyon_2024_e30639
crossref_primary_10_1126_sciadv_adv2930
crossref_primary_10_3390_cancers15041344
crossref_primary_10_1186_s13046_020_01724_6
crossref_primary_10_1016_j_molstruc_2024_137696
crossref_primary_10_3390_cancers14194694
crossref_primary_10_3390_ijms21176014
crossref_primary_10_1016_j_bbabio_2018_03_018
crossref_primary_10_1016_j_critrevonc_2021_103545
crossref_primary_10_1158_1078_0432_CCR_24_3296
crossref_primary_10_1016_j_semcancer_2017_01_006
crossref_primary_10_1186_s40170_021_00274_5
crossref_primary_10_1186_s12964_025_02160_9
crossref_primary_10_3389_fphar_2022_1011115
crossref_primary_10_1002_mc_23092
crossref_primary_10_1016_j_prp_2021_153529
crossref_primary_10_1158_2159_8290_CD_16_0441
crossref_primary_10_1042_BCJ20180384
crossref_primary_10_1016_j_ctarc_2020_100210
crossref_primary_10_3390_cancers14092297
crossref_primary_10_1038_s41419_023_05955_1
crossref_primary_10_1021_acs_molpharmaceut_5c00341
crossref_primary_10_1016_j_bcp_2022_114966
crossref_primary_10_1158_0008_5472_CAN_17_3993
crossref_primary_10_3390_cells9071693
crossref_primary_10_1002_ijch_201600109
crossref_primary_10_1002_advs_202101267
crossref_primary_10_1038_s41556_020_0477_0
crossref_primary_10_4252_wjsc_v10_i11_172
crossref_primary_10_1016_j_semcancer_2020_04_006
crossref_primary_10_3390_ijms252212441
crossref_primary_10_1016_j_neo_2024_101076
crossref_primary_10_3892_ijo_2019_4720
crossref_primary_10_1038_s41419_019_1414_7
crossref_primary_10_3389_fcimb_2024_1368019
crossref_primary_10_1016_j_bbrc_2021_02_027
crossref_primary_10_1016_j_ejphar_2021_174256
crossref_primary_10_3390_medsci5020014
crossref_primary_10_1016_j_ejps_2020_105401
crossref_primary_10_3390_biomedicines9020178
crossref_primary_10_1016_j_mib_2022_102228
crossref_primary_10_1186_s13287_022_02856_6
crossref_primary_10_1016_j_semcancer_2020_03_011
crossref_primary_10_3390_biomedicines12122730
crossref_primary_10_1016_j_semcdb_2019_05_025
crossref_primary_10_3390_ijms24054954
crossref_primary_10_1016_j_ijpharm_2022_121775
crossref_primary_10_1016_j_jtbi_2022_111248
crossref_primary_10_1186_s12967_023_04498_5
crossref_primary_10_3389_fonc_2021_740720
crossref_primary_10_1089_ars_2019_7898
crossref_primary_10_3389_fonc_2021_670804
crossref_primary_10_1016_j_semcancer_2017_06_012
crossref_primary_10_3390_cancers10090337
crossref_primary_10_1186_s12916_022_02643_3
crossref_primary_10_3389_fonc_2021_632181
crossref_primary_10_1038_s41598_020_74808_0
crossref_primary_10_1111_febs_15187
crossref_primary_10_1080_01635581_2024_2328377
crossref_primary_10_1080_01635581_2024_2377344
crossref_primary_10_3390_cancers16234081
crossref_primary_10_3390_cells9081819
crossref_primary_10_1016_j_tiv_2019_104737
crossref_primary_10_1016_j_clon_2017_03_005
crossref_primary_10_1016_j_bbadis_2023_166897
crossref_primary_10_1016_j_semcancer_2017_03_003
crossref_primary_10_1177_1010428320965284
crossref_primary_10_1016_j_critrevonc_2020_103095
crossref_primary_10_3390_ijms24065564
crossref_primary_10_1016_j_biopha_2020_111058
crossref_primary_10_1016_j_freeradbiomed_2021_03_001
crossref_primary_10_1158_1078_0432_CCR_20_3913
crossref_primary_10_3389_fonc_2018_00452
crossref_primary_10_3390_ph14111169
crossref_primary_10_1016_j_fbio_2025_107255
crossref_primary_10_1016_j_semcancer_2022_02_002
crossref_primary_10_3390_cells9081896
crossref_primary_10_1080_14728222_2023_2261631
crossref_primary_10_3390_cells10051056
crossref_primary_10_1038_s41598_020_80561_1
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.18632/oncotarget.9122
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1949-2553
EndPage 34099
ExternalDocumentID 27136895
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: K08 CA175193
GroupedDBID ---
53G
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CGR
CUY
CVF
DIK
ECM
EIF
FRJ
GX1
HYE
KQ8
M48
NPM
OK1
PGMZT
RPM
7X8
ID FETCH-LOGICAL-c462t-2498be4ee0d26dded14b96f46d4f50823b54ed2699e9e9dbe2183b9ac4bd07ac2
IEDL.DBID 7X8
ISICitedReferencesCount 173
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377752100043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Jul 11 10:49:59 EDT 2025
Thu Apr 03 07:05:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 23
Keywords tumor-initiating cells (TICs)
OXPHOS
cancer stem-like cells (CSCs)
atovaquone
mitochondria
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-2498be4ee0d26dded14b96f46d4f50823b54ed2699e9e9dbe2183b9ac4bd07ac2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5085139
PMID 27136895
PQID 1823032847
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1823032847
pubmed_primary_27136895
PublicationCentury 2000
PublicationDate 2016-06-07
PublicationDateYYYYMMDD 2016-06-07
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncotarget
PublicationTitleAlternate Oncotarget
PublicationYear 2016
References 22428931 - Photochem Photobiol. 2012 Jul-Aug;88(4):1016-22
25244355 - J Med Chem. 2014 Oct 9;57(19):7990-8
24905005 - Mol Cell. 2014 Jun 5;54(5):716-27
11101003 - Cell Biol Toxicol. 2000;16(4):207-19
15047214 - Gynecol Oncol. 2004 Apr;93(1):54-8
22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7
21215626 - Bioorg Med Chem Lett. 2011 Feb 1;21(3):1052-6
25850553 - Nat Rev Clin Oncol. 2015 Aug;12(8):445-64
18245469 - Cancer Res. 2008 Feb 1;68(3):700-6
17222787 - Cancer Cell. 2007 Jan;11(1):3-5
21389643 - J Nippon Med Sch. 2011;78(1):13-21
9020100 - J Biol Chem. 1997 Feb 14;272(7):3961-6
19632833 - Bioorg Med Chem Lett. 2009 Sep 1;19(17):5091-4
26087310 - Oncotarget. 2015 Jun 20;6(17 ):14777-95
25708684 - Oncotarget. 2015 Feb 28;6(6):3553-62
19169242 - Nature. 2009 Apr 9;458(7239):776-9
26492365 - Cell Death Dis. 2015 Oct 22;6:e1930
15917236 - J Biol Chem. 2005 Jul 22;280(29):27458-65
10610011 - Pharmacotherapy. 1999 Sep;19(9):1050-6
18366788 - Breast Cancer Res. 2008;10(2):R25
8479489 - N Engl J Med. 1993 May 27;328(21):1521-7
20530697 - Clin Cancer Res. 2010 Jun 15;16(12):3153-62
23208510 - Oncogene. 2013 Jul 25;32(30):3483-90
8684102 - Lancet. 1996 Jun 1;347(9014):1511-4
21172432 - Biochim Biophys Acta. 2011 Aug;1812(8):1032-40
26406445 - PLoS One. 2015 Sep 25;10(9):e0136192
25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84
16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4
25562155 - Cell Physiol Biochem. 2014;34(6):2070-80
15108804 - Curr Opin Genet Dev. 2004 Feb;14(1):43-7
15207251 - Crit Rev Oncol Hematol. 2004 Jul;51(1):1-28
25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37
19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16
10447880 - Mol Microbiol. 1999 Aug;33(4):704-11
9806551 - Nat Genet. 1998 Nov;20(3):291-3
19682730 - Cell. 2009 Aug 21;138(4):645-59
19569044 - Int J Cancer. 2009 Dec 15;125(12):2829-35
26365176 - Cell Metab. 2015 Oct 6;22(4):590-605
1314606 - Biochem Pharmacol. 1992 Apr 1;43(7):1545-53
23903006 - J Pharmacol Sci. 2013;122(4):299-304
17899367 - Breast Cancer Res Treat. 2008 Aug;110(3):439-52
22094260 - Cancer Cell. 2011 Nov 15;20(5):674-88
20531305 - Oncogene. 2010 Aug 26;29(34):4741-51
18445819 - J Natl Cancer Inst. 2008 May 7;100(9):672-9
25915429 - Oncotarget. 2015 May 10;6(13):10728-45
16810242 - Nature. 2006 Jun 29;441(7097):1075-9
References_xml – reference: 17899367 - Breast Cancer Res Treat. 2008 Aug;110(3):439-52
– reference: 25708684 - Oncotarget. 2015 Feb 28;6(6):3553-62
– reference: 26365176 - Cell Metab. 2015 Oct 6;22(4):590-605
– reference: 20530697 - Clin Cancer Res. 2010 Jun 15;16(12):3153-62
– reference: 1314606 - Biochem Pharmacol. 1992 Apr 1;43(7):1545-53
– reference: 10610011 - Pharmacotherapy. 1999 Sep;19(9):1050-6
– reference: 17222787 - Cancer Cell. 2007 Jan;11(1):3-5
– reference: 19545218 - Expert Opin Biol Ther. 2009 Aug;9(8):1005-16
– reference: 25244355 - J Med Chem. 2014 Oct 9;57(19):7990-8
– reference: 21172432 - Biochim Biophys Acta. 2011 Aug;1812(8):1032-40
– reference: 16810242 - Nature. 2006 Jun 29;441(7097):1075-9
– reference: 19632833 - Bioorg Med Chem Lett. 2009 Sep 1;19(17):5091-4
– reference: 19569044 - Int J Cancer. 2009 Dec 15;125(12):2829-35
– reference: 26087310 - Oncotarget. 2015 Jun 20;6(17 ):14777-95
– reference: 25625193 - Oncotarget. 2015 Mar 10;6(7):4569-84
– reference: 9020100 - J Biol Chem. 1997 Feb 14;272(7):3961-6
– reference: 23903006 - J Pharmacol Sci. 2013;122(4):299-304
– reference: 16377171 - Curr Opin Genet Dev. 2006 Feb;16(1):60-4
– reference: 19169242 - Nature. 2009 Apr 9;458(7239):776-9
– reference: 8684102 - Lancet. 1996 Jun 1;347(9014):1511-4
– reference: 15917236 - J Biol Chem. 2005 Jul 22;280(29):27458-65
– reference: 25915429 - Oncotarget. 2015 May 10;6(13):10728-45
– reference: 21389643 - J Nippon Med Sch. 2011;78(1):13-21
– reference: 18245469 - Cancer Res. 2008 Feb 1;68(3):700-6
– reference: 26406445 - PLoS One. 2015 Sep 25;10(9):e0136192
– reference: 25850553 - Nat Rev Clin Oncol. 2015 Aug;12(8):445-64
– reference: 15108804 - Curr Opin Genet Dev. 2004 Feb;14(1):43-7
– reference: 24905005 - Mol Cell. 2014 Jun 5;54(5):716-27
– reference: 20531305 - Oncogene. 2010 Aug 26;29(34):4741-51
– reference: 22428931 - Photochem Photobiol. 2012 Jul-Aug;88(4):1016-22
– reference: 8479489 - N Engl J Med. 1993 May 27;328(21):1521-7
– reference: 22094260 - Cancer Cell. 2011 Nov 15;20(5):674-88
– reference: 15207251 - Crit Rev Oncol Hematol. 2004 Jul;51(1):1-28
– reference: 22665270 - J Mammary Gland Biol Neoplasia. 2012 Jun;17(2):111-7
– reference: 21215626 - Bioorg Med Chem Lett. 2011 Feb 1;21(3):1052-6
– reference: 11101003 - Cell Biol Toxicol. 2000;16(4):207-19
– reference: 19682730 - Cell. 2009 Aug 21;138(4):645-59
– reference: 18366788 - Breast Cancer Res. 2008;10(2):R25
– reference: 10447880 - Mol Microbiol. 1999 Aug;33(4):704-11
– reference: 9806551 - Nat Genet. 1998 Nov;20(3):291-3
– reference: 25415228 - Oncotarget. 2014 Nov 30;5(22):11029-37
– reference: 25562155 - Cell Physiol Biochem. 2014;34(6):2070-80
– reference: 18445819 - J Natl Cancer Inst. 2008 May 7;100(9):672-9
– reference: 15047214 - Gynecol Oncol. 2004 Apr;93(1):54-8
– reference: 26492365 - Cell Death Dis. 2015 Oct 22;6:e1930
– reference: 23208510 - Oncogene. 2013 Jul 25;32(30):3483-90
SSID ssj0000547829
Score 2.5285926
Snippet Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 34084
SubjectTerms Antimalarials - pharmacology
Antineoplastic Agents - pharmacology
Atovaquone - pharmacology
Drug Repositioning
Electron Transport Complex III - antagonists & inhibitors
Humans
MCF-7 Cells
Neoplastic Stem Cells - drug effects
Oxidative Phosphorylation - drug effects
Title Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells
URI https://www.ncbi.nlm.nih.gov/pubmed/27136895
https://www.proquest.com/docview/1823032847
Volume 7
WOSCitedRecordID wos000377752100043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevDiA1_1xQpeY5t081gvImJpD7YFFXIL-5iAB5O2aYs_35lNqidBkEAOCSHD8O1k9pvJfIzdBCGI3OTSI2EcT-RKeRIg8oyfxAniq6tBO7GJeDRK0lROGsKtatoq1zHRBWpbGuLIOz5VhHoUTO-nM49Uo6i62khobLJWD1MZQnWcJt8cS5eGVQWyqU4mUS_olDTywPVY30qfFHN_yyvd96W_91_L9tluk1nyhxoKB2wDikMGmGCjK0tiBDjur1dqtiwLuOO1dXT1A9c0xsDCEhS5azGHTz4cDrkqLB-nk8H4hS9KDnNl3Q9z3BBS5pxGQHMi_qsj9tZ_en0ceI2ygmdEFCw83HMlGgRA1wYRBjjrCy2jXERW5CHV3nQoAG9JCXhYDZRIaamM0LYbKxMcs60CrT1l-EpMIRAGMgb0dqi1H4CKc0ukijSxaLPrtdcyRC5ZpQool1X247c2O6ldn03rERtZgHvnKJHh2R-ePmc7aELk-rfiC9bKcd3CJds2q8V7Nb9ykMDzaPL8BXVtxkg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repurposing+atovaquone%3A+targeting+mitochondrial+complex+III+and+OXPHOS+to+eradicate+cancer+stem+cells&rft.jtitle=Oncotarget&rft.au=Fiorillo%2C+Marco&rft.au=Lamb%2C+Rebecca&rft.au=Tanowitz%2C+Herbert+B&rft.au=Mutti%2C+Luciano&rft.date=2016-06-07&rft.eissn=1949-2553&rft.volume=7&rft.issue=23&rft.spage=34084&rft_id=info:doi/10.18632%2Foncotarget.9122&rft_id=info%3Apmid%2F27136895&rft_id=info%3Apmid%2F27136895&rft.externalDocID=27136895