Incremental learning of event definitions with Inductive Logic Programming
Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tediou...
Gespeichert in:
| Veröffentlicht in: | Machine learning Jg. 100; H. 2-3; S. 555 - 585 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.09.2015
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-6125, 1573-0565 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge construction. However, learning temporal logical formalisms, which are typically utilized by logic-based event recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive–inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications. |
|---|---|
| AbstractList | Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge construction. However, learning temporal logical formalisms, which are typically utilized by logic-based event recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive-inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications. Issue Title: Special Issue of the ECMLPKDD 2015 Journal Track; Guest Editors: Concha Bielza * João Gama * Alípio Jorge * Indr liobait Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge construction. However, learning temporal logical formalisms, which are typically utilized by logic-based event recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive-inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications. |
| Author | Katzouris, Nikos Paliouras, Georgios Artikis, Alexander |
| Author_xml | – sequence: 1 givenname: Nikos surname: Katzouris fullname: Katzouris, Nikos email: nkatz@iit.demokritos.gr organization: Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens – sequence: 2 givenname: Alexander surname: Artikis fullname: Artikis, Alexander organization: Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Department of Informatics, University of Piraeus – sequence: 3 givenname: Georgios surname: Paliouras fullname: Paliouras, Georgios organization: Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos” |
| BookMark | eNp9kE1LxDAQQIMouH78AG8FL16qmTRJm6OIHysLetBzSLOTNUubaNJV_Pe2rAcR9DQQ3gsz74DshhiQkBOg50BpfZGBKsVLCqIUAlgJO2QGoq5KKqTYJTPaNKKUwMQ-Och5TSllspEzcj8PNmGPYTBd0aFJwYdVEV2B7-NbsUTngx98DLn48MNLMQ_LjR38OxaLuPK2eExxlUzfj9YR2XOmy3j8PQ_J883109VduXi4nV9dLkrLJRtKxpjj1CpskdcGXMtbJQ0FMEtpTLOsBOdCOEVRNRxr07jWOYtQAygnVVsdkrPtv68pvm0wD7r32WLXmYBxkzXUnEvFKqhG9PQXuo6bFMbtRoryqYGCkaq3lE0x54ROWz-Y6eghGd9poHpqrLeN9dhYT431ZMIv8zX53qTPfx22dfLIhhWmHzv9KX0BDNSQSA |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2017_06_013 crossref_primary_10_1007_s10994_021_06105_4 crossref_primary_10_1016_j_artint_2020_103438 crossref_primary_10_1016_j_artint_2018_03_005 crossref_primary_10_1017_S1471068418000248 crossref_primary_10_32604_cmc_2024_047586 crossref_primary_10_1007_s10707_016_0266_x crossref_primary_10_1007_s10994_018_5708_2 crossref_primary_10_1007_s10994_021_06013_7 crossref_primary_10_1007_s10994_021_06038_y crossref_primary_10_1007_s10472_019_09663_5 crossref_primary_10_1109_MTS_2019_2913071 crossref_primary_10_1016_j_procs_2020_08_046 crossref_primary_10_1017_S1471068421000107 crossref_primary_10_1017_S1471068422000011 crossref_primary_10_1016_j_conb_2019_02_004 crossref_primary_10_1017_S1471068416000260 crossref_primary_10_1109_TKDE_2019_2941685 crossref_primary_10_1017_S1471068416000351 crossref_primary_10_1145_3299887_3299899 crossref_primary_10_1007_s10994_021_06089_1 |
| Cites_doi | 10.1007/978-3-540-39917-9_20 10.1093/comjnl/bxp102 10.1007/s10994-008-5079-1 10.1016/j.artmed.2005.06.001 10.3233/IDA-2004-8302 10.1007/BF03037227 10.1109/ICSE.2009.5070527 10.1007/3-540-44960-4_8 10.1016/j.jal.2008.10.007 10.1007/3-540-44960-4_13 10.1007/978-3-642-04584-4_5 10.1007/BF03037383 10.1007/3-540-44797-0_1 10.1023/B:MACH.0000023150.80092.40 10.1007/s10994-009-5116-8 10.1109/TIME.2000.856584 10.1016/j.eswa.2007.11.061 10.1007/s10994-013-5358-3 10.1007/978-3-642-04238-6_16 10.1023/A:1007638124237 10.1007/978-3-540-39917-9_21 10.1145/1055686.1055687 10.1109/TKDE.2014.2356476 10.1142/S021821301000011X 10.1007/11558590_12 10.1007/s10994-011-5259-2 10.1016/0743-1066(94)90035-3 10.1007/3-540-45402-0_5 10.1007/3-540-44797-0_16 10.1017/S0269888912000264 10.1016/S1574-6526(07)03017-9 10.1007/s00165-009-0128-5 10.1007/978-3-642-83189-8 10.1007/978-3-642-28872-2_26 10.1093/logcom/2.6.719 10.2200/S00457ED1V01Y201211AIM019 10.1007/978-3-642-31951-8_12 10.1109/VSPETS.2005.1570907 10.1007/3-540-45628-7_16 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2015 |
| Copyright_xml | – notice: The Author(s) 2015 |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-015-5512-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database (NC LIVE) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 585 |
| ExternalDocumentID | 3778122241 10_1007_s10994_015_5512_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U PUEGO |
| ID | FETCH-LOGICAL-c462t-222f40c9ebe47a1fb4b96a011ad6aa8d354455f90e984e7a8fbffce17119f69b3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359747100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Wed Oct 01 15:07:09 EDT 2025 Tue Nov 04 19:52:00 EST 2025 Sat Nov 29 01:43:26 EST 2025 Tue Nov 18 22:22:56 EST 2025 Fri Feb 21 02:28:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2-3 |
| Keywords | Abductive–Inductive Logic Programming Incremental learning Event recognition Event Calculus |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-222f40c9ebe47a1fb4b96a011ad6aa8d354455f90e984e7a8fbffce17119f69b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-015-5512-1.pdf |
| PQID | 1704026891 |
| PQPubID | 54194 |
| PageCount | 31 |
| ParticipantIDs | proquest_miscellaneous_1744692313 proquest_journals_1704026891 crossref_citationtrail_10_1007_s10994_015_5512_1 crossref_primary_10_1007_s10994_015_5512_1 springer_journals_10_1007_s10994_015_5512_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2015 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Denecker, M., & Kakas, A. (2002). Abduction in logic programming. In Computational logic: Logic programming and beyond, pp. 402–436. OteroRPInduction of the effects of actions by monotonic methodsInductive Logic Programming200328352993102079473 MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming19941962967910.1016/0743-1066(94)90035-3 Bragaglia, S. & Ray, O. (2014). Nonmonotonic learning in large biological networks. In Proceedings of the international conference on inductive logic programming (ILP). Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical communications of the international conference on logic programming (ICLP). Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2012). Learning from vacuously satisfiable scenario-based specifications. In Proceedings of the international conference on fundamental approaches to software engineering (FASE). MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227 LuckhamDSchulteREvent processing glossary, version 1.12008TrentoEvent Processing Technical Society KuzelkaOZeleznyFA restarted strategy for efficient subsumption testingFundamenta Informaticae200889195109 MuellerECommonsense reasoning2006BurlingtonMorgan Kaufmann Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: A generalisation of progol. In Proceedings of the international conference in inductive logic programming (ILP). Ade, H., & Denecker, M. (1995). AILP: Abductive inductive logic programming. In Proceedings of the international joint conference on artificial intelligence (IJCAI). Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. (2005). Avoiding order effects in incremental learning. In AIIA 2005: Advances in artificial intelligence, pp. 110–121. Kimber, T., Broda, K., & Russo, A. (2009). Induction on failure: Learning connected horn theories. In Logic programming and nonmonotonic reasoning, pp. 169–181. Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event logics and transactional update logics. Technical report, Technische Universitat Munchen. Mitchell, T. (1979). Version spaces: An approach to concept learning. PhD thesis, AAI7917262. De Raedt, L., & Bruynooghe, M. (1994). Interactive theory revision. In Machine learning: A multistrategy approach, pp. 239–263. Santos, J., & Muggleton, S. (2010). Subsumer: A prolog theta-subsumption engine. In Technical communications of the 26th international conference on logic programming. GebserMKaminskiRKaufmannBSchaubTAnswer set solving in practiceSynthesis Lectures on Artificial Intelligence and Machine Learning201263123810.2200/S00457ED1V01Y201211AIM019 Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2009). Learning operational requirements from goal models. In Proceedings of the 31st international conference on software engineering (pp. 265–275). IEEE Computer Society. ArtikisASergotMPaliourasGAn event calculus for event recognitionIEEE Transactions on Knowledge and Data Engineering (TKDE)201527489590810.1109/TKDE.2014.2356476 Eshghi, K., & Kowalski, R. (1989). Abduction compared with negation by failure. In Proceedings of the 6th international conference on logic programming. MuellerETEvent calculusFoundations of Artificial Intelligence2008367170810.1016/S1574-6526(07)03017-9 ArtikisASkarlatidisAPortetFPaliourasGLogic-based event recognitionKnowledge Engineering Review2012270446950610.1017/S0269888912000264 LuckhamDThe power of events: An introduction to complex event processing in distributed enterprise systems2001BostonAddison-Wesley Longman Publishing Co., Inc MalobertiJSebagMFast theta-subsumption with constraint satisfaction algorithmsMachine Learning200455213717410.1023/B:MACH.0000023150.80092.401089.68103 Corapi, D., Ray, O., Russo, A., Bandara, A., & Lupu, E. (2008). Learning rules from user behaviour. In Second international workshop on the induction of process models. ArtikisASkarlatidisAPaliourasGBehaviour recognition from video content: A logic programming approachInternational Journal on Artificial Intelligence Tools201019219320910.1142/S021821301000011X Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International conference on logic programming, pp. 1070–1080. DubocALPaesAZaveruchaGUsing the bottom clause and mode declarations in FOL theory revision from examplesMachine Learning20097617310710.1007/s10994-009-5116-8 EspositoFSemeraroGFanizziNFerilliSMultistrategy theory revision: Induction and abduction in inthelexMachine Learning2000281–213315610.1023/A:1007638124237 Badea, L. (2001). A refinement operator for theories. In Proceedings of the international conference on inductive logic programming (ILP). Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2011). An inductive approach for modal transition system refinement. In Technical communications of the international conference of logic programming ICLP (pp. 106–116). Citeseer. KakasAKowalskiRToniFAbductive logic programmingJournal of Logic and Computation19932719770121897410.1093/logcom/2.6.719 KowalskiRSergotMA logic-based calculus of eventsNew Generation Computing198641679610.1007/BF03037383 Sakama, C. (2000). Inverse entailment in nonmonotonic logic programs. In Proceedings of the international conference on inductive logic programming (ILP). Moyle, S. (2003). An investigation into theory completion techniques in inductive logic. PhD thesis, University of Oxford. RichardsBMooneyRAutomated refinement of first-order horn clause domain theoriesMachine Learning199519295131 Biba, M., Basile, T. M. A., Ferilli, S., & Esposito, F. (2006). Improving scalability in ILP incremental systems. In Proceedings of CILC 2006-Italian conference on computational logic, Bari, Italy, pp. 26–27. LiH-FLeeS-YMining frequent itemsets over data streams using efficient window sliding techniquesExpert Systems with Applications20093621466147710.1016/j.eswa.2007.11.061 Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2013). Learning through hypothesis refinement using answer set programming. In Proceedings of the 23rd international conference of inductive logic programming (ILP). MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning20149412549314440610.1007/s10994-013-5358-3 SakamaCInduction from answer sets in nonmonotonic logic programsACM Transactions on Computational Logic200562203231212605510.1145/1055686.1055687 Kakas, A., & Mancarella, P. (1990). Generalised stable models: A semantics for abduction. In Ninth European conference on artificial intelligence (ECAI-90), pp. 385–391. Ray, O. (2006). Using abduction for induction of normal logic programs. In ECAI’06 workshop on abduction and induction in articial intelligence and scientic modelling. SlomanMLupuEEngineering policy-based ubiquitous systemsThe Computer Journal20105351113112710.1093/comjnl/bxp102 CattafiMLammaERiguzziFStorariSIncremental declarative process miningSmart Information and Knowledge Management201026010312710.1007/978-3-642-04584-4_5 MuggletonSDe RaedtLPooleDBratkoIFlachPInoueKSrinivasanAILP turns 20Machine Learning2012861323289066210.1007/s10994-011-5259-21243.68014 AlrajehDKramerJRussoAUchitelSDeriving non-zeno behaviour models from goal models using ILPFormal Aspects of Computing2010223–421724110.1007/s00165-009-0128-51213.68360 EtzionONiblettPEvent processing in action2010GreenwichManning Publications Co List, T., Bins, J., Vazquez, J., & Fisher, R. B. (2005). Performance evaluating the evaluator. In 2nd joint IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance (pp. 129–136). IEEE. RayONonmonotonic abductive inductive learningJournal of Applied Logic200973329340252893010.1016/j.jal.2008.10.0071179.68125 Muggleton, S., & Bryant, C. (2000). Theory completion using inverse entailment. In International conference on inductive logic programming, pp. 130–146. LavračNDžeroskiSInductive logic programming: Techniques and applications1993LondonRoutledge Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. A. (2004). A backtracking strategy for order-independent incremental learning. In Proceedings of the European conference on artificial intelligence (ECAI). Li, H.-F., Lee, S.-Y., & Shan, M.-K. (2004). An efficient algorithm for mining frequent itemsets over the entire history of data streams. In Proceedings of first international workshop on knowledge discovery in data streams. Sakama, C. (2001). Nonmonotomic inductive logic programming. In Logic programming and nonmotonic reasoning (pp. 62–80). Springer. Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.), Advances in inductive logicprogramming (pp. 14–33). Citeseer. OteroRPInduction of stable modelsInductive Logic Programming20012157193205190696310.1007/3-540-44797-0_16 ChaudetHExtending the event calculus for tracking epidemic spreadArtificial Intelligence in Medicine200638213715610.1016/j.artmed.2005.06.001 Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. In Proceedings of the international workshop on temporal representation and reasoning (TIME). IEEE. LangleyPLearning in humans and machines: Towards an interdisciplinary science, chapter order effects in incremental learning1995AmsterdamElsevier Corapi, D., Russo, A., & Lupu, E. (2012). Inductive logic programming in answer set programming. In Proceedings of international conference on inductive logic programming (ILP). Springer. DietterichTGDomingosPGetoorLMuggletonSTadepalliPStructured machine learning: The next ten yearsMachine Learning20087332310.1007/s10994-008-5079-1 LloydJFoundations of logic programming1987BerlinSpringer10.1007/978-3-642-83189-80668.68004 EspositoFFerilliSFanizziNBasileTMADi MauroNIncremental learning and concept drift in inthelexIntelligent Data Analysis2004832132371168.03318 R Kowalski (5512_CR34) 1986; 4 TG Dietterich (5512_CR23) 2008; 73 J Lloyd (5512_CR41) 1987 5512_CR57 5512_CR12 5512_CR56 A Artikis (5512_CR7) 2012; 27 5512_CR11 5512_CR10 5512_CR50 O Kuzelka (5512_CR35) 2008; 89 M Sloman (5512_CR65) 2010; 53 5512_CR19 5512_CR18 5512_CR17 5512_CR16 N Lavrač (5512_CR37) 1993 5512_CR59 D Alrajeh (5512_CR3) 2010; 22 5512_CR14 E Mueller (5512_CR47) 2006 S Muggleton (5512_CR49) 1995; 13 S Muggleton (5512_CR52) 2012; 86 RP Otero (5512_CR54) 2001; 2157 H-F Li (5512_CR38) 2009; 36 O Etzion (5512_CR28) 2010 5512_CR22 5512_CR66 5512_CR21 B Richards (5512_CR60) 1995; 19 5512_CR20 5512_CR64 H Chaudet (5512_CR15) 2006; 38 5512_CR62 5512_CR61 D Luckham (5512_CR42) 2001 O Ray (5512_CR58) 2009; 7 5512_CR25 M Gebser (5512_CR29) 2012; 6 5512_CR33 5512_CR31 5512_CR30 A Artikis (5512_CR8) 2015; 27 M Cattafi (5512_CR13) 2010; 260 D Luckham (5512_CR43) 2008 5512_CR39 AL Duboc (5512_CR24) 2009; 76 F Esposito (5512_CR26) 2000; 28 SH Muggleton (5512_CR53) 2014; 94 C Sakama (5512_CR63) 2005; 6 J Maloberti (5512_CR44) 2004; 55 A Artikis (5512_CR6) 2010; 19 RP Otero (5512_CR55) 2003; 2835 5512_CR46 5512_CR45 P Langley (5512_CR36) 1995 5512_CR40 F Esposito (5512_CR27) 2004; 8 A Kakas (5512_CR32) 1993; 2 5512_CR4 5512_CR1 5512_CR2 ET Mueller (5512_CR48) 2008; 3 5512_CR5 5512_CR9 S Muggleton (5512_CR51) 1994; 19 |
| References_xml | – reference: Bragaglia, S. & Ray, O. (2014). Nonmonotonic learning in large biological networks. In Proceedings of the international conference on inductive logic programming (ILP). – reference: ArtikisASergotMPaliourasGAn event calculus for event recognitionIEEE Transactions on Knowledge and Data Engineering (TKDE)201527489590810.1109/TKDE.2014.2356476 – reference: ArtikisASkarlatidisAPortetFPaliourasGLogic-based event recognitionKnowledge Engineering Review2012270446950610.1017/S0269888912000264 – reference: KakasAKowalskiRToniFAbductive logic programmingJournal of Logic and Computation19932719770121897410.1093/logcom/2.6.719 – reference: CattafiMLammaERiguzziFStorariSIncremental declarative process miningSmart Information and Knowledge Management201026010312710.1007/978-3-642-04584-4_5 – reference: Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2009). Learning operational requirements from goal models. In Proceedings of the 31st international conference on software engineering (pp. 265–275). IEEE Computer Society. – reference: RayONonmonotonic abductive inductive learningJournal of Applied Logic200973329340252893010.1016/j.jal.2008.10.0071179.68125 – reference: Ray, O. (2006). Using abduction for induction of normal logic programs. In ECAI’06 workshop on abduction and induction in articial intelligence and scientic modelling. – reference: Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. (2005). Avoiding order effects in incremental learning. In AIIA 2005: Advances in artificial intelligence, pp. 110–121. – reference: Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2011). An inductive approach for modal transition system refinement. In Technical communications of the international conference of logic programming ICLP (pp. 106–116). Citeseer. – reference: DietterichTGDomingosPGetoorLMuggletonSTadepalliPStructured machine learning: The next ten yearsMachine Learning20087332310.1007/s10994-008-5079-1 – reference: MuellerETEvent calculusFoundations of Artificial Intelligence2008367170810.1016/S1574-6526(07)03017-9 – reference: MalobertiJSebagMFast theta-subsumption with constraint satisfaction algorithmsMachine Learning200455213717410.1023/B:MACH.0000023150.80092.401089.68103 – reference: De Raedt, L., & Bruynooghe, M. (1994). Interactive theory revision. In Machine learning: A multistrategy approach, pp. 239–263. – reference: MuggletonSDe RaedtLPooleDBratkoIFlachPInoueKSrinivasanAILP turns 20Machine Learning2012861323289066210.1007/s10994-011-5259-21243.68014 – reference: EspositoFFerilliSFanizziNBasileTMADi MauroNIncremental learning and concept drift in inthelexIntelligent Data Analysis2004832132371168.03318 – reference: MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming19941962967910.1016/0743-1066(94)90035-3 – reference: SlomanMLupuEEngineering policy-based ubiquitous systemsThe Computer Journal20105351113112710.1093/comjnl/bxp102 – reference: OteroRPInduction of stable modelsInductive Logic Programming20012157193205190696310.1007/3-540-44797-0_16 – reference: Corapi, D., Russo, A., & Lupu, E. (2012). Inductive logic programming in answer set programming. In Proceedings of international conference on inductive logic programming (ILP). Springer. – reference: LuckhamDThe power of events: An introduction to complex event processing in distributed enterprise systems2001BostonAddison-Wesley Longman Publishing Co., Inc – reference: Ade, H., & Denecker, M. (1995). AILP: Abductive inductive logic programming. In Proceedings of the international joint conference on artificial intelligence (IJCAI). – reference: Li, H.-F., Lee, S.-Y., & Shan, M.-K. (2004). An efficient algorithm for mining frequent itemsets over the entire history of data streams. In Proceedings of first international workshop on knowledge discovery in data streams. – reference: Mitchell, T. (1979). Version spaces: An approach to concept learning. PhD thesis, AAI7917262. – reference: Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International conference on logic programming, pp. 1070–1080. – reference: Sakama, C. (2000). Inverse entailment in nonmonotonic logic programs. In Proceedings of the international conference on inductive logic programming (ILP). – reference: Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. A. (2004). A backtracking strategy for order-independent incremental learning. In Proceedings of the European conference on artificial intelligence (ECAI). – reference: Eshghi, K., & Kowalski, R. (1989). Abduction compared with negation by failure. In Proceedings of the 6th international conference on logic programming. – reference: Denecker, M., & Kakas, A. (2002). Abduction in logic programming. In Computational logic: Logic programming and beyond, pp. 402–436. – reference: EspositoFSemeraroGFanizziNFerilliSMultistrategy theory revision: Induction and abduction in inthelexMachine Learning2000281–213315610.1023/A:1007638124237 – reference: Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: A generalisation of progol. In Proceedings of the international conference in inductive logic programming (ILP). – reference: KowalskiRSergotMA logic-based calculus of eventsNew Generation Computing198641679610.1007/BF03037383 – reference: KuzelkaOZeleznyFA restarted strategy for efficient subsumption testingFundamenta Informaticae200889195109 – reference: Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. In Proceedings of the international workshop on temporal representation and reasoning (TIME). IEEE. – reference: Moyle, S. (2003). An investigation into theory completion techniques in inductive logic. PhD thesis, University of Oxford. – reference: List, T., Bins, J., Vazquez, J., & Fisher, R. B. (2005). Performance evaluating the evaluator. In 2nd joint IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance (pp. 129–136). IEEE. – reference: Biba, M., Basile, T. M. A., Ferilli, S., & Esposito, F. (2006). Improving scalability in ILP incremental systems. In Proceedings of CILC 2006-Italian conference on computational logic, Bari, Italy, pp. 26–27. – reference: LloydJFoundations of logic programming1987BerlinSpringer10.1007/978-3-642-83189-80668.68004 – reference: MuellerECommonsense reasoning2006BurlingtonMorgan Kaufmann – reference: OteroRPInduction of the effects of actions by monotonic methodsInductive Logic Programming200328352993102079473 – reference: RichardsBMooneyRAutomated refinement of first-order horn clause domain theoriesMachine Learning199519295131 – reference: LuckhamDSchulteREvent processing glossary, version 1.12008TrentoEvent Processing Technical Society – reference: Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event logics and transactional update logics. Technical report, Technische Universitat Munchen. – reference: Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.), Advances in inductive logicprogramming (pp. 14–33). Citeseer. – reference: Kimber, T., Broda, K., & Russo, A. (2009). Induction on failure: Learning connected horn theories. In Logic programming and nonmonotonic reasoning, pp. 169–181. – reference: LiH-FLeeS-YMining frequent itemsets over data streams using efficient window sliding techniquesExpert Systems with Applications20093621466147710.1016/j.eswa.2007.11.061 – reference: LavračNDžeroskiSInductive logic programming: Techniques and applications1993LondonRoutledge – reference: ArtikisASkarlatidisAPaliourasGBehaviour recognition from video content: A logic programming approachInternational Journal on Artificial Intelligence Tools201019219320910.1142/S021821301000011X – reference: Kakas, A., & Mancarella, P. (1990). Generalised stable models: A semantics for abduction. In Ninth European conference on artificial intelligence (ECAI-90), pp. 385–391. – reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning20149412549314440610.1007/s10994-013-5358-3 – reference: Santos, J., & Muggleton, S. (2010). Subsumer: A prolog theta-subsumption engine. In Technical communications of the 26th international conference on logic programming. – reference: GebserMKaminskiRKaufmannBSchaubTAnswer set solving in practiceSynthesis Lectures on Artificial Intelligence and Machine Learning201263123810.2200/S00457ED1V01Y201211AIM019 – reference: ChaudetHExtending the event calculus for tracking epidemic spreadArtificial Intelligence in Medicine200638213715610.1016/j.artmed.2005.06.001 – reference: DubocALPaesAZaveruchaGUsing the bottom clause and mode declarations in FOL theory revision from examplesMachine Learning20097617310710.1007/s10994-009-5116-8 – reference: Muggleton, S., & Bryant, C. (2000). Theory completion using inverse entailment. In International conference on inductive logic programming, pp. 130–146. – reference: Badea, L. (2001). A refinement operator for theories. In Proceedings of the international conference on inductive logic programming (ILP). – reference: Corapi, D., Ray, O., Russo, A., Bandara, A., & Lupu, E. (2008). Learning rules from user behaviour. In Second international workshop on the induction of process models. – reference: LangleyPLearning in humans and machines: Towards an interdisciplinary science, chapter order effects in incremental learning1995AmsterdamElsevier – reference: Sakama, C. (2001). Nonmonotomic inductive logic programming. In Logic programming and nonmotonic reasoning (pp. 62–80). Springer. – reference: Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2012). Learning from vacuously satisfiable scenario-based specifications. In Proceedings of the international conference on fundamental approaches to software engineering (FASE). – reference: EtzionONiblettPEvent processing in action2010GreenwichManning Publications Co – reference: AlrajehDKramerJRussoAUchitelSDeriving non-zeno behaviour models from goal models using ILPFormal Aspects of Computing2010223–421724110.1007/s00165-009-0128-51213.68360 – reference: Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical communications of the international conference on logic programming (ICLP). – reference: MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227 – reference: SakamaCInduction from answer sets in nonmonotonic logic programsACM Transactions on Computational Logic200562203231212605510.1145/1055686.1055687 – reference: Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2013). Learning through hypothesis refinement using answer set programming. In Proceedings of the 23rd international conference of inductive logic programming (ILP). – ident: 5512_CR45 – volume: 2835 start-page: 299 year: 2003 ident: 5512_CR55 publication-title: Inductive Logic Programming doi: 10.1007/978-3-540-39917-9_20 – ident: 5512_CR64 – volume: 53 start-page: 1113 issue: 5 year: 2010 ident: 5512_CR65 publication-title: The Computer Journal doi: 10.1093/comjnl/bxp102 – volume: 73 start-page: 3 year: 2008 ident: 5512_CR23 publication-title: Machine Learning doi: 10.1007/s10994-008-5079-1 – volume: 38 start-page: 137 issue: 2 year: 2006 ident: 5512_CR15 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2005.06.001 – volume: 8 start-page: 213 issue: 3 year: 2004 ident: 5512_CR27 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2004-8302 – volume: 13 start-page: 245 issue: 3&4 year: 1995 ident: 5512_CR49 publication-title: New Generation Computing doi: 10.1007/BF03037227 – ident: 5512_CR17 – ident: 5512_CR2 doi: 10.1109/ICSE.2009.5070527 – ident: 5512_CR50 doi: 10.1007/3-540-44960-4_8 – volume: 7 start-page: 329 issue: 3 year: 2009 ident: 5512_CR58 publication-title: Journal of Applied Logic doi: 10.1016/j.jal.2008.10.007 – ident: 5512_CR61 doi: 10.1007/3-540-44960-4_13 – volume: 260 start-page: 103 year: 2010 ident: 5512_CR13 publication-title: Smart Information and Knowledge Management doi: 10.1007/978-3-642-04584-4_5 – volume-title: Event processing in action year: 2010 ident: 5512_CR28 – volume: 89 start-page: 95 issue: 1 year: 2008 ident: 5512_CR35 publication-title: Fundamenta Informaticae – volume: 4 start-page: 6796 issue: 1 year: 1986 ident: 5512_CR34 publication-title: New Generation Computing doi: 10.1007/BF03037383 – ident: 5512_CR10 doi: 10.1007/3-540-44797-0_1 – volume: 55 start-page: 137 issue: 2 year: 2004 ident: 5512_CR44 publication-title: Machine Learning doi: 10.1023/B:MACH.0000023150.80092.40 – volume-title: Commonsense reasoning year: 2006 ident: 5512_CR47 – ident: 5512_CR16 – volume: 76 start-page: 73 issue: 1 year: 2009 ident: 5512_CR24 publication-title: Machine Learning doi: 10.1007/s10994-009-5116-8 – ident: 5512_CR12 – ident: 5512_CR14 doi: 10.1109/TIME.2000.856584 – ident: 5512_CR1 – volume: 36 start-page: 1466 issue: 2 year: 2009 ident: 5512_CR38 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.11.061 – volume-title: The power of events: An introduction to complex event processing in distributed enterprise systems year: 2001 ident: 5512_CR42 – volume: 19 start-page: 95 issue: 2 year: 1995 ident: 5512_CR60 publication-title: Machine Learning – volume-title: Learning in humans and machines: Towards an interdisciplinary science, chapter order effects in incremental learning year: 1995 ident: 5512_CR36 – ident: 5512_CR66 – volume: 94 start-page: 25 issue: 1 year: 2014 ident: 5512_CR53 publication-title: Machine Learning doi: 10.1007/s10994-013-5358-3 – ident: 5512_CR33 doi: 10.1007/978-3-642-04238-6_16 – ident: 5512_CR9 – volume: 28 start-page: 133 issue: 1–2 year: 2000 ident: 5512_CR26 publication-title: Machine Learning doi: 10.1023/A:1007638124237 – ident: 5512_CR11 – ident: 5512_CR57 – ident: 5512_CR59 doi: 10.1007/978-3-540-39917-9_21 – volume: 6 start-page: 203231 issue: 2 year: 2005 ident: 5512_CR63 publication-title: ACM Transactions on Computational Logic doi: 10.1145/1055686.1055687 – volume: 27 start-page: 895 issue: 4 year: 2015 ident: 5512_CR8 publication-title: IEEE Transactions on Knowledge and Data Engineering (TKDE) doi: 10.1109/TKDE.2014.2356476 – volume: 19 start-page: 193 issue: 2 year: 2010 ident: 5512_CR6 publication-title: International Journal on Artificial Intelligence Tools doi: 10.1142/S021821301000011X – ident: 5512_CR22 doi: 10.1007/11558590_12 – ident: 5512_CR19 – ident: 5512_CR30 – volume-title: Inductive logic programming: Techniques and applications year: 1993 ident: 5512_CR37 – ident: 5512_CR46 – volume: 86 start-page: 3 issue: 1 year: 2012 ident: 5512_CR52 publication-title: Machine Learning doi: 10.1007/s10994-011-5259-2 – volume: 19 start-page: 629 year: 1994 ident: 5512_CR51 publication-title: The Journal of Logic Programming doi: 10.1016/0743-1066(94)90035-3 – ident: 5512_CR62 doi: 10.1007/3-540-45402-0_5 – volume: 2157 start-page: 193 year: 2001 ident: 5512_CR54 publication-title: Inductive Logic Programming doi: 10.1007/3-540-44797-0_16 – volume: 27 start-page: 469 issue: 04 year: 2012 ident: 5512_CR7 publication-title: Knowledge Engineering Review doi: 10.1017/S0269888912000264 – ident: 5512_CR4 – ident: 5512_CR25 – volume-title: Event processing glossary, version 1.1 year: 2008 ident: 5512_CR43 – volume: 3 start-page: 671 year: 2008 ident: 5512_CR48 publication-title: Foundations of Artificial Intelligence doi: 10.1016/S1574-6526(07)03017-9 – ident: 5512_CR21 – volume: 22 start-page: 217 issue: 3–4 year: 2010 ident: 5512_CR3 publication-title: Formal Aspects of Computing doi: 10.1007/s00165-009-0128-5 – volume-title: Foundations of logic programming year: 1987 ident: 5512_CR41 doi: 10.1007/978-3-642-83189-8 – ident: 5512_CR56 – ident: 5512_CR5 doi: 10.1007/978-3-642-28872-2_26 – volume: 2 start-page: 719 year: 1993 ident: 5512_CR32 publication-title: Journal of Logic and Computation doi: 10.1093/logcom/2.6.719 – volume: 6 start-page: 1 issue: 3 year: 2012 ident: 5512_CR29 publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning doi: 10.2200/S00457ED1V01Y201211AIM019 – ident: 5512_CR39 – ident: 5512_CR18 doi: 10.1007/978-3-642-31951-8_12 – ident: 5512_CR40 doi: 10.1109/VSPETS.2005.1570907 – ident: 5512_CR20 doi: 10.1007/3-540-45628-7_16 – ident: 5512_CR31 |
| SSID | ssj0002686 |
| Score | 2.433609 |
| Snippet | Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and... Issue Title: Special Issue of the ECMLPKDD 2015 Journal Track; Guest Editors: Concha Bielza * João Gama * Alípio Jorge * Indr liobait Event recognition systems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 555 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Control Learning Logic programming Machine learning Manuals Mechatronics Natural Language Processing (NLP) Recognition Robotics Simulation and Modeling Tasks Temporal logic |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS8Mw8JDpgy_OT5xOieCTEmi6tE0eRRwiMoZf7K2kaSID7WQf_n4vabtNUUGfc0nLfV_ucgdwKkNmpcgCDHKMoFzGiiqMhKjOlNARs2iRfBPX26TXE4OB7FfvuCd1tXudkvSaeumxm29jyyKKVj6kGPKsorUTbl7D3f3TXP2GsR_viNITUWe-61Tmd0d8NkYLD_NLUtTbmm7zX3-5CRuVa0kuSl7YghVTbEOzHttAKinegRvUCeWtIEJXUyOeycgS38yJ5MYOi7KQi7hbWuKme3itSNxgZk36ZUnXK-7ahcfu1cPlNa1GKlDN43BK0RuwPNASSccTxWzGMyQPyrjKY6VE3nG9eSIrAyMFN4kSNrNWG5YwJm0ss84eNIpRYfaB8EipxOQY78SShzwRpsNNFCkUcG60DVsQ1LhNddVv3I29eEkXnZIdrlLEVepwlbIWnM23vJXNNn4DbtcESyu5m6QsQaWEHCBx-WS-jBLj0iCqMKOZg8EQ2Pm1nRac10RcOuKnDx78CfoQ1kPHBb4crQ2N6XhmjmBNv0-Hk_GxZ9kPqCvksA priority: 102 providerName: Springer Nature |
| Title | Incremental learning of event definitions with Inductive Logic Programming |
| URI | https://link.springer.com/article/10.1007/s10994-015-5512-1 https://www.proquest.com/docview/1704026891 https://www.proquest.com/docview/1744692313 |
| Volume | 100 |
| WOSCitedRecordID | wos000359747100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6o48GLuzguQwRPSnDSSdvkJCqKuAzFDfFS0jQRQTvqzPj7fWnTGRX04qWXJk3p25e-D2BbBsxKkbUxyDGCchkpqjASojpTQofMokUqh7hexN2uuL-XiU-49X1bZa0TS0Wd97TLke-xGNktiIRk-69v1KFGueqqh9CYhAZ6Nsy1dF0GyUgT4_Ko8iJD6ix5XdWsfp0rh-KykKLPEFD23S6Nnc0f9dHS7JzM_feF52HWO5zkoOKQBZgwxSLM1WAOxMv2EpyhpqhyhbjaY0k8kp4l5Ygnkhv7VFTtXcTlbonD_Ch1JXFwzZokVaPXC-5ahtuT45ujU-qBFqjmUTCg6CNY3tYSCcpjxWzGMyQaSr7KI6VE3nETe0Ir20YKbmIlbGatNixmTNpIZp0VmCp6hVkFwkOlYpNjFBRJHvBYmA43YahQ7LnRNmhCu_7MqfZTyB0YxnM6np_sKJMiZVJHmZQ1YWe05bUawfHX4o2aGqmXxn46JkUTtka3UY5ccUQVpjd0azAwdt5upwm7Nc2_POK3A9f-PnAdZgLHZGVX2gZMDd6HZhOm9cfgqf_egsbhcTe5asHkeUxbJfPiNQkf8Hp1ffcJu3LzwA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRaKX0hZQt4XWleACslh7ncQ-IITaIijLag8gcQuOYyMkyAK7gPqn-I3M5GO3RYIbh57j2E7m-c2MPZ4BWDVSBKOzNjo5XnNlYsstekLcZVa7SATUSGUS127S6-mTE9OfgofmLgyFVTacWBJ1PnC0R74pEoSbjLUR21fXnKpG0elqU0KjgsWB_3OPLttwa_8nyndNyt1fRz_2eF1VgDsVyxFHhRhU2xmcvUqsCJnKcIYIc5vH1uq8Q-lpomDa3mjlE6tDFoLzIhHChNhkHex3Gt4oyixGoYKyP2Z-nF5cWa0RJ8uhOUWtruqVSXhFxNFGkVz8qwcnxu2T89hSze3O_28_6D28qw1qtlOtgA8w5YuPMN8Uq2A1dy3Ab2TCai8UW9e1Ms7YILAyhRXLfTgvqvA1RnvTjGqalLqAUTlqx_pVINslvrUIx6_yRUswUwwK_wmYiqxNfI5eXmyUVIn2HeWjyCKtKe-CbEG7EWvq6izrVOzjIp3khyYkpIiElJCQihasj1-5qlKMvNR4uZF-WrPNMJ2IvgXfx4-RJ-jwxxZ-cEtt0PEna77Tgo0GY3918dyAn18e8BvM7R0ddtPufu_gC7yVBPAyAm8ZZkY3t34FZt3d6Hx487VcKgxOXxt6j-oKTag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT-MwFH6CMkJzAYZFdNiMBBeQRe06iX1ACAHVsKjqYZAQl-A4NkJiUoa2IP4av47nLC0gwY0D53iNP7_Ffn4fwIbizCmZNNDJsZIKFWqq0ROiJtHSBMyhRsqTuJ5F7ba8uFCdMXiu3sL4sMpKJuaCOu0af0a-wyKEGw-lYjuuDIvoHLb27v5TzyDlb1orOo0CIqf26RHdt97u8SGu9SbnraO_B39oyTBAjQh5n6JydKJhFM5ERJq5RCQ4WoS8TkOtZdr0qWoCpxpWSWEjLV3inLEsYky5UCVNbHccJiL0MX04YSe4HGoBHGpYWLAB9VZEdaNaPNvLE_KygKK9wil7qxNHhu67u9lc5bWmv_PPmoGp0tAm-8XO-AVjNpuF6YrEgpQybQ5OUEIWZ6RYuuTQuCZdR_LUViS17iYrwtqIP7Mmnusk1xHE01Qb0ikC3P5hrXk4_5IZLUAt62Z2EYgItI5sit5fqAQXkbRNYYNAo7gT1jheh0a1xLEps697EpDbeJQ32qMiRlTEHhUxq8PWsMpdkXrks8LLFRLiUgr14hEM6rA-_Izyw18K6cx2B76MQPSild-sw3aFt1dNfNTh7887XINJRFx8dtw-XYKf3GM9D8xbhlr_fmBX4Id56N_07lfzXUPg6quR9wIOBFaU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+learning+of+event+definitions+with+Inductive+Logic+Programming&rft.jtitle=Machine+learning&rft.au=Katzouris%2C+Nikos&rft.au=Artikis%2C+Alexander&rft.au=Paliouras%2C+Georgios&rft.date=2015-09-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=100&rft.issue=2-3&rft.spage=555&rft.epage=585&rft_id=info:doi/10.1007%2Fs10994-015-5512-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_015_5512_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |