Incremental learning of event definitions with Inductive Logic Programming

Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tediou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 100; H. 2-3; S. 555 - 585
Hauptverfasser: Katzouris, Nikos, Artikis, Alexander, Paliouras, Georgios
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2015
Springer Nature B.V
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge construction. However, learning temporal logical formalisms, which are typically utilized by logic-based event recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive–inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications.
AbstractList Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge construction. However, learning temporal logical formalisms, which are typically utilized by logic-based event recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive-inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications.
Issue Title: Special Issue of the ECMLPKDD 2015 Journal Track; Guest Editors: Concha Bielza * João Gama * Alípio Jorge * Indr liobait Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and reasoning about events offers direct connections to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid the tedious and error-prone task of manual knowledge construction. However, learning temporal logical formalisms, which are typically utilized by logic-based event recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive-inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications.
Author Katzouris, Nikos
Paliouras, Georgios
Artikis, Alexander
Author_xml – sequence: 1
  givenname: Nikos
  surname: Katzouris
  fullname: Katzouris, Nikos
  email: nkatz@iit.demokritos.gr
  organization: Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens
– sequence: 2
  givenname: Alexander
  surname: Artikis
  fullname: Artikis, Alexander
  organization: Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Department of Informatics, University of Piraeus
– sequence: 3
  givenname: Georgios
  surname: Paliouras
  fullname: Paliouras, Georgios
  organization: Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”
BookMark eNp9kE1LxDAQQIMouH78AG8FL16qmTRJm6OIHysLetBzSLOTNUubaNJV_Pe2rAcR9DQQ3gsz74DshhiQkBOg50BpfZGBKsVLCqIUAlgJO2QGoq5KKqTYJTPaNKKUwMQ-Och5TSllspEzcj8PNmGPYTBd0aFJwYdVEV2B7-NbsUTngx98DLn48MNLMQ_LjR38OxaLuPK2eExxlUzfj9YR2XOmy3j8PQ_J883109VduXi4nV9dLkrLJRtKxpjj1CpskdcGXMtbJQ0FMEtpTLOsBOdCOEVRNRxr07jWOYtQAygnVVsdkrPtv68pvm0wD7r32WLXmYBxkzXUnEvFKqhG9PQXuo6bFMbtRoryqYGCkaq3lE0x54ROWz-Y6eghGd9poHpqrLeN9dhYT431ZMIv8zX53qTPfx22dfLIhhWmHzv9KX0BDNSQSA
CitedBy_id crossref_primary_10_1016_j_eswa_2017_06_013
crossref_primary_10_1007_s10994_021_06105_4
crossref_primary_10_1016_j_artint_2020_103438
crossref_primary_10_1016_j_artint_2018_03_005
crossref_primary_10_1017_S1471068418000248
crossref_primary_10_32604_cmc_2024_047586
crossref_primary_10_1007_s10707_016_0266_x
crossref_primary_10_1007_s10994_018_5708_2
crossref_primary_10_1007_s10994_021_06013_7
crossref_primary_10_1007_s10994_021_06038_y
crossref_primary_10_1007_s10472_019_09663_5
crossref_primary_10_1109_MTS_2019_2913071
crossref_primary_10_1016_j_procs_2020_08_046
crossref_primary_10_1017_S1471068421000107
crossref_primary_10_1017_S1471068422000011
crossref_primary_10_1016_j_conb_2019_02_004
crossref_primary_10_1017_S1471068416000260
crossref_primary_10_1109_TKDE_2019_2941685
crossref_primary_10_1017_S1471068416000351
crossref_primary_10_1145_3299887_3299899
crossref_primary_10_1007_s10994_021_06089_1
Cites_doi 10.1007/978-3-540-39917-9_20
10.1093/comjnl/bxp102
10.1007/s10994-008-5079-1
10.1016/j.artmed.2005.06.001
10.3233/IDA-2004-8302
10.1007/BF03037227
10.1109/ICSE.2009.5070527
10.1007/3-540-44960-4_8
10.1016/j.jal.2008.10.007
10.1007/3-540-44960-4_13
10.1007/978-3-642-04584-4_5
10.1007/BF03037383
10.1007/3-540-44797-0_1
10.1023/B:MACH.0000023150.80092.40
10.1007/s10994-009-5116-8
10.1109/TIME.2000.856584
10.1016/j.eswa.2007.11.061
10.1007/s10994-013-5358-3
10.1007/978-3-642-04238-6_16
10.1023/A:1007638124237
10.1007/978-3-540-39917-9_21
10.1145/1055686.1055687
10.1109/TKDE.2014.2356476
10.1142/S021821301000011X
10.1007/11558590_12
10.1007/s10994-011-5259-2
10.1016/0743-1066(94)90035-3
10.1007/3-540-45402-0_5
10.1007/3-540-44797-0_16
10.1017/S0269888912000264
10.1016/S1574-6526(07)03017-9
10.1007/s00165-009-0128-5
10.1007/978-3-642-83189-8
10.1007/978-3-642-28872-2_26
10.1093/logcom/2.6.719
10.2200/S00457ED1V01Y201211AIM019
10.1007/978-3-642-31951-8_12
10.1109/VSPETS.2005.1570907
10.1007/3-540-45628-7_16
ContentType Journal Article
Copyright The Author(s) 2015
Copyright_xml – notice: The Author(s) 2015
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-015-5512-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database (NC LIVE)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 585
ExternalDocumentID 3778122241
10_1007_s10994_015_5512_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c462t-222f40c9ebe47a1fb4b96a011ad6aa8d354455f90e984e7a8fbffce17119f69b3
IEDL.DBID M2P
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359747100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Oct 01 15:07:09 EDT 2025
Tue Nov 04 19:52:00 EST 2025
Sat Nov 29 01:43:26 EST 2025
Tue Nov 18 22:22:56 EST 2025
Fri Feb 21 02:28:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2-3
Keywords Abductive–Inductive Logic Programming
Incremental learning
Event recognition
Event Calculus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-222f40c9ebe47a1fb4b96a011ad6aa8d354455f90e984e7a8fbffce17119f69b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-015-5512-1.pdf
PQID 1704026891
PQPubID 54194
PageCount 31
ParticipantIDs proquest_miscellaneous_1744692313
proquest_journals_1704026891
crossref_citationtrail_10_1007_s10994_015_5512_1
crossref_primary_10_1007_s10994_015_5512_1
springer_journals_10_1007_s10994_015_5512_1
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Denecker, M., & Kakas, A. (2002). Abduction in logic programming. In Computational logic: Logic programming and beyond, pp. 402–436.
OteroRPInduction of the effects of actions by monotonic methodsInductive Logic Programming200328352993102079473
MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming19941962967910.1016/0743-1066(94)90035-3
Bragaglia, S. & Ray, O. (2014). Nonmonotonic learning in large biological networks. In Proceedings of the international conference on inductive logic programming (ILP).
Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical communications of the international conference on logic programming (ICLP).
Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2012). Learning from vacuously satisfiable scenario-based specifications. In Proceedings of the international conference on fundamental approaches to software engineering (FASE).
MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227
LuckhamDSchulteREvent processing glossary, version 1.12008TrentoEvent Processing Technical Society
KuzelkaOZeleznyFA restarted strategy for efficient subsumption testingFundamenta Informaticae200889195109
MuellerECommonsense reasoning2006BurlingtonMorgan Kaufmann
Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: A generalisation of progol. In Proceedings of the international conference in inductive logic programming (ILP).
Ade, H., & Denecker, M. (1995). AILP: Abductive inductive logic programming. In Proceedings of the international joint conference on artificial intelligence (IJCAI).
Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. (2005). Avoiding order effects in incremental learning. In AIIA 2005: Advances in artificial intelligence, pp. 110–121.
Kimber, T., Broda, K., & Russo, A. (2009). Induction on failure: Learning connected horn theories. In Logic programming and nonmonotonic reasoning, pp. 169–181.
Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event logics and transactional update logics. Technical report, Technische Universitat Munchen.
Mitchell, T. (1979). Version spaces: An approach to concept learning. PhD thesis, AAI7917262.
De Raedt, L., & Bruynooghe, M. (1994). Interactive theory revision. In Machine learning: A multistrategy approach, pp. 239–263.
Santos, J., & Muggleton, S. (2010). Subsumer: A prolog theta-subsumption engine. In Technical communications of the 26th international conference on logic programming.
GebserMKaminskiRKaufmannBSchaubTAnswer set solving in practiceSynthesis Lectures on Artificial Intelligence and Machine Learning201263123810.2200/S00457ED1V01Y201211AIM019
Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2009). Learning operational requirements from goal models. In Proceedings of the 31st international conference on software engineering (pp. 265–275). IEEE Computer Society.
ArtikisASergotMPaliourasGAn event calculus for event recognitionIEEE Transactions on Knowledge and Data Engineering (TKDE)201527489590810.1109/TKDE.2014.2356476
Eshghi, K., & Kowalski, R. (1989). Abduction compared with negation by failure. In Proceedings of the 6th international conference on logic programming.
MuellerETEvent calculusFoundations of Artificial Intelligence2008367170810.1016/S1574-6526(07)03017-9
ArtikisASkarlatidisAPortetFPaliourasGLogic-based event recognitionKnowledge Engineering Review2012270446950610.1017/S0269888912000264
LuckhamDThe power of events: An introduction to complex event processing in distributed enterprise systems2001BostonAddison-Wesley Longman Publishing Co., Inc
MalobertiJSebagMFast theta-subsumption with constraint satisfaction algorithmsMachine Learning200455213717410.1023/B:MACH.0000023150.80092.401089.68103
Corapi, D., Ray, O., Russo, A., Bandara, A., & Lupu, E. (2008). Learning rules from user behaviour. In Second international workshop on the induction of process models.
ArtikisASkarlatidisAPaliourasGBehaviour recognition from video content: A logic programming approachInternational Journal on Artificial Intelligence Tools201019219320910.1142/S021821301000011X
Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International conference on logic programming, pp. 1070–1080.
DubocALPaesAZaveruchaGUsing the bottom clause and mode declarations in FOL theory revision from examplesMachine Learning20097617310710.1007/s10994-009-5116-8
EspositoFSemeraroGFanizziNFerilliSMultistrategy theory revision: Induction and abduction in inthelexMachine Learning2000281–213315610.1023/A:1007638124237
Badea, L. (2001). A refinement operator for theories. In Proceedings of the international conference on inductive logic programming (ILP).
Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2011). An inductive approach for modal transition system refinement. In Technical communications of the international conference of logic programming ICLP (pp. 106–116). Citeseer.
KakasAKowalskiRToniFAbductive logic programmingJournal of Logic and Computation19932719770121897410.1093/logcom/2.6.719
KowalskiRSergotMA logic-based calculus of eventsNew Generation Computing198641679610.1007/BF03037383
Sakama, C. (2000). Inverse entailment in nonmonotonic logic programs. In Proceedings of the international conference on inductive logic programming (ILP).
Moyle, S. (2003). An investigation into theory completion techniques in inductive logic. PhD thesis, University of Oxford.
RichardsBMooneyRAutomated refinement of first-order horn clause domain theoriesMachine Learning199519295131
Biba, M., Basile, T. M. A., Ferilli, S., & Esposito, F. (2006). Improving scalability in ILP incremental systems. In Proceedings of CILC 2006-Italian conference on computational logic, Bari, Italy, pp. 26–27.
LiH-FLeeS-YMining frequent itemsets over data streams using efficient window sliding techniquesExpert Systems with Applications20093621466147710.1016/j.eswa.2007.11.061
Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2013). Learning through hypothesis refinement using answer set programming. In Proceedings of the 23rd international conference of inductive logic programming (ILP).
MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning20149412549314440610.1007/s10994-013-5358-3
SakamaCInduction from answer sets in nonmonotonic logic programsACM Transactions on Computational Logic200562203231212605510.1145/1055686.1055687
Kakas, A., & Mancarella, P. (1990). Generalised stable models: A semantics for abduction. In Ninth European conference on artificial intelligence (ECAI-90), pp. 385–391.
Ray, O. (2006). Using abduction for induction of normal logic programs. In ECAI’06 workshop on abduction and induction in articial intelligence and scientic modelling.
SlomanMLupuEEngineering policy-based ubiquitous systemsThe Computer Journal20105351113112710.1093/comjnl/bxp102
CattafiMLammaERiguzziFStorariSIncremental declarative process miningSmart Information and Knowledge Management201026010312710.1007/978-3-642-04584-4_5
MuggletonSDe RaedtLPooleDBratkoIFlachPInoueKSrinivasanAILP turns 20Machine Learning2012861323289066210.1007/s10994-011-5259-21243.68014
AlrajehDKramerJRussoAUchitelSDeriving non-zeno behaviour models from goal models using ILPFormal Aspects of Computing2010223–421724110.1007/s00165-009-0128-51213.68360
EtzionONiblettPEvent processing in action2010GreenwichManning Publications Co
List, T., Bins, J., Vazquez, J., & Fisher, R. B. (2005). Performance evaluating the evaluator. In 2nd joint IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance (pp. 129–136). IEEE.
RayONonmonotonic abductive inductive learningJournal of Applied Logic200973329340252893010.1016/j.jal.2008.10.0071179.68125
Muggleton, S., & Bryant, C. (2000). Theory completion using inverse entailment. In International conference on inductive logic programming, pp. 130–146.
LavračNDžeroskiSInductive logic programming: Techniques and applications1993LondonRoutledge
Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. A. (2004). A backtracking strategy for order-independent incremental learning. In Proceedings of the European conference on artificial intelligence (ECAI).
Li, H.-F., Lee, S.-Y., & Shan, M.-K. (2004). An efficient algorithm for mining frequent itemsets over the entire history of data streams. In Proceedings of first international workshop on knowledge discovery in data streams.
Sakama, C. (2001). Nonmonotomic inductive logic programming. In Logic programming and nonmotonic reasoning (pp. 62–80). Springer.
Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.), Advances in inductive logicprogramming (pp. 14–33). Citeseer.
OteroRPInduction of stable modelsInductive Logic Programming20012157193205190696310.1007/3-540-44797-0_16
ChaudetHExtending the event calculus for tracking epidemic spreadArtificial Intelligence in Medicine200638213715610.1016/j.artmed.2005.06.001
Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. In Proceedings of the international workshop on temporal representation and reasoning (TIME). IEEE.
LangleyPLearning in humans and machines: Towards an interdisciplinary science, chapter order effects in incremental learning1995AmsterdamElsevier
Corapi, D., Russo, A., & Lupu, E. (2012). Inductive logic programming in answer set programming. In Proceedings of international conference on inductive logic programming (ILP). Springer.
DietterichTGDomingosPGetoorLMuggletonSTadepalliPStructured machine learning: The next ten yearsMachine Learning20087332310.1007/s10994-008-5079-1
LloydJFoundations of logic programming1987BerlinSpringer10.1007/978-3-642-83189-80668.68004
EspositoFFerilliSFanizziNBasileTMADi MauroNIncremental learning and concept drift in inthelexIntelligent Data Analysis2004832132371168.03318
R Kowalski (5512_CR34) 1986; 4
TG Dietterich (5512_CR23) 2008; 73
J Lloyd (5512_CR41) 1987
5512_CR57
5512_CR12
5512_CR56
A Artikis (5512_CR7) 2012; 27
5512_CR11
5512_CR10
5512_CR50
O Kuzelka (5512_CR35) 2008; 89
M Sloman (5512_CR65) 2010; 53
5512_CR19
5512_CR18
5512_CR17
5512_CR16
N Lavrač (5512_CR37) 1993
5512_CR59
D Alrajeh (5512_CR3) 2010; 22
5512_CR14
E Mueller (5512_CR47) 2006
S Muggleton (5512_CR49) 1995; 13
S Muggleton (5512_CR52) 2012; 86
RP Otero (5512_CR54) 2001; 2157
H-F Li (5512_CR38) 2009; 36
O Etzion (5512_CR28) 2010
5512_CR22
5512_CR66
5512_CR21
B Richards (5512_CR60) 1995; 19
5512_CR20
5512_CR64
H Chaudet (5512_CR15) 2006; 38
5512_CR62
5512_CR61
D Luckham (5512_CR42) 2001
O Ray (5512_CR58) 2009; 7
5512_CR25
M Gebser (5512_CR29) 2012; 6
5512_CR33
5512_CR31
5512_CR30
A Artikis (5512_CR8) 2015; 27
M Cattafi (5512_CR13) 2010; 260
D Luckham (5512_CR43) 2008
5512_CR39
AL Duboc (5512_CR24) 2009; 76
F Esposito (5512_CR26) 2000; 28
SH Muggleton (5512_CR53) 2014; 94
C Sakama (5512_CR63) 2005; 6
J Maloberti (5512_CR44) 2004; 55
A Artikis (5512_CR6) 2010; 19
RP Otero (5512_CR55) 2003; 2835
5512_CR46
5512_CR45
P Langley (5512_CR36) 1995
5512_CR40
F Esposito (5512_CR27) 2004; 8
A Kakas (5512_CR32) 1993; 2
5512_CR4
5512_CR1
5512_CR2
ET Mueller (5512_CR48) 2008; 3
5512_CR5
5512_CR9
S Muggleton (5512_CR51) 1994; 19
References_xml – reference: Bragaglia, S. & Ray, O. (2014). Nonmonotonic learning in large biological networks. In Proceedings of the international conference on inductive logic programming (ILP).
– reference: ArtikisASergotMPaliourasGAn event calculus for event recognitionIEEE Transactions on Knowledge and Data Engineering (TKDE)201527489590810.1109/TKDE.2014.2356476
– reference: ArtikisASkarlatidisAPortetFPaliourasGLogic-based event recognitionKnowledge Engineering Review2012270446950610.1017/S0269888912000264
– reference: KakasAKowalskiRToniFAbductive logic programmingJournal of Logic and Computation19932719770121897410.1093/logcom/2.6.719
– reference: CattafiMLammaERiguzziFStorariSIncremental declarative process miningSmart Information and Knowledge Management201026010312710.1007/978-3-642-04584-4_5
– reference: Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2009). Learning operational requirements from goal models. In Proceedings of the 31st international conference on software engineering (pp. 265–275). IEEE Computer Society.
– reference: RayONonmonotonic abductive inductive learningJournal of Applied Logic200973329340252893010.1016/j.jal.2008.10.0071179.68125
– reference: Ray, O. (2006). Using abduction for induction of normal logic programs. In ECAI’06 workshop on abduction and induction in articial intelligence and scientic modelling.
– reference: Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. (2005). Avoiding order effects in incremental learning. In AIIA 2005: Advances in artificial intelligence, pp. 110–121.
– reference: Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2011). An inductive approach for modal transition system refinement. In Technical communications of the international conference of logic programming ICLP (pp. 106–116). Citeseer.
– reference: DietterichTGDomingosPGetoorLMuggletonSTadepalliPStructured machine learning: The next ten yearsMachine Learning20087332310.1007/s10994-008-5079-1
– reference: MuellerETEvent calculusFoundations of Artificial Intelligence2008367170810.1016/S1574-6526(07)03017-9
– reference: MalobertiJSebagMFast theta-subsumption with constraint satisfaction algorithmsMachine Learning200455213717410.1023/B:MACH.0000023150.80092.401089.68103
– reference: De Raedt, L., & Bruynooghe, M. (1994). Interactive theory revision. In Machine learning: A multistrategy approach, pp. 239–263.
– reference: MuggletonSDe RaedtLPooleDBratkoIFlachPInoueKSrinivasanAILP turns 20Machine Learning2012861323289066210.1007/s10994-011-5259-21243.68014
– reference: EspositoFFerilliSFanizziNBasileTMADi MauroNIncremental learning and concept drift in inthelexIntelligent Data Analysis2004832132371168.03318
– reference: MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming19941962967910.1016/0743-1066(94)90035-3
– reference: SlomanMLupuEEngineering policy-based ubiquitous systemsThe Computer Journal20105351113112710.1093/comjnl/bxp102
– reference: OteroRPInduction of stable modelsInductive Logic Programming20012157193205190696310.1007/3-540-44797-0_16
– reference: Corapi, D., Russo, A., & Lupu, E. (2012). Inductive logic programming in answer set programming. In Proceedings of international conference on inductive logic programming (ILP). Springer.
– reference: LuckhamDThe power of events: An introduction to complex event processing in distributed enterprise systems2001BostonAddison-Wesley Longman Publishing Co., Inc
– reference: Ade, H., & Denecker, M. (1995). AILP: Abductive inductive logic programming. In Proceedings of the international joint conference on artificial intelligence (IJCAI).
– reference: Li, H.-F., Lee, S.-Y., & Shan, M.-K. (2004). An efficient algorithm for mining frequent itemsets over the entire history of data streams. In Proceedings of first international workshop on knowledge discovery in data streams.
– reference: Mitchell, T. (1979). Version spaces: An approach to concept learning. PhD thesis, AAI7917262.
– reference: Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International conference on logic programming, pp. 1070–1080.
– reference: Sakama, C. (2000). Inverse entailment in nonmonotonic logic programs. In Proceedings of the international conference on inductive logic programming (ILP).
– reference: Di Mauro, N., Esposito, F., Ferilli, S., & Basile, T. M. A. (2004). A backtracking strategy for order-independent incremental learning. In Proceedings of the European conference on artificial intelligence (ECAI).
– reference: Eshghi, K., & Kowalski, R. (1989). Abduction compared with negation by failure. In Proceedings of the 6th international conference on logic programming.
– reference: Denecker, M., & Kakas, A. (2002). Abduction in logic programming. In Computational logic: Logic programming and beyond, pp. 402–436.
– reference: EspositoFSemeraroGFanizziNFerilliSMultistrategy theory revision: Induction and abduction in inthelexMachine Learning2000281–213315610.1023/A:1007638124237
– reference: Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: A generalisation of progol. In Proceedings of the international conference in inductive logic programming (ILP).
– reference: KowalskiRSergotMA logic-based calculus of eventsNew Generation Computing198641679610.1007/BF03037383
– reference: KuzelkaOZeleznyFA restarted strategy for efficient subsumption testingFundamenta Informaticae200889195109
– reference: Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. In Proceedings of the international workshop on temporal representation and reasoning (TIME). IEEE.
– reference: Moyle, S. (2003). An investigation into theory completion techniques in inductive logic. PhD thesis, University of Oxford.
– reference: List, T., Bins, J., Vazquez, J., & Fisher, R. B. (2005). Performance evaluating the evaluator. In 2nd joint IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance (pp. 129–136). IEEE.
– reference: Biba, M., Basile, T. M. A., Ferilli, S., & Esposito, F. (2006). Improving scalability in ILP incremental systems. In Proceedings of CILC 2006-Italian conference on computational logic, Bari, Italy, pp. 26–27.
– reference: LloydJFoundations of logic programming1987BerlinSpringer10.1007/978-3-642-83189-80668.68004
– reference: MuellerECommonsense reasoning2006BurlingtonMorgan Kaufmann
– reference: OteroRPInduction of the effects of actions by monotonic methodsInductive Logic Programming200328352993102079473
– reference: RichardsBMooneyRAutomated refinement of first-order horn clause domain theoriesMachine Learning199519295131
– reference: LuckhamDSchulteREvent processing glossary, version 1.12008TrentoEvent Processing Technical Society
– reference: Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event logics and transactional update logics. Technical report, Technische Universitat Munchen.
– reference: Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.), Advances in inductive logicprogramming (pp. 14–33). Citeseer.
– reference: Kimber, T., Broda, K., & Russo, A. (2009). Induction on failure: Learning connected horn theories. In Logic programming and nonmonotonic reasoning, pp. 169–181.
– reference: LiH-FLeeS-YMining frequent itemsets over data streams using efficient window sliding techniquesExpert Systems with Applications20093621466147710.1016/j.eswa.2007.11.061
– reference: LavračNDžeroskiSInductive logic programming: Techniques and applications1993LondonRoutledge
– reference: ArtikisASkarlatidisAPaliourasGBehaviour recognition from video content: A logic programming approachInternational Journal on Artificial Intelligence Tools201019219320910.1142/S021821301000011X
– reference: Kakas, A., & Mancarella, P. (1990). Generalised stable models: A semantics for abduction. In Ninth European conference on artificial intelligence (ECAI-90), pp. 385–391.
– reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning20149412549314440610.1007/s10994-013-5358-3
– reference: Santos, J., & Muggleton, S. (2010). Subsumer: A prolog theta-subsumption engine. In Technical communications of the 26th international conference on logic programming.
– reference: GebserMKaminskiRKaufmannBSchaubTAnswer set solving in practiceSynthesis Lectures on Artificial Intelligence and Machine Learning201263123810.2200/S00457ED1V01Y201211AIM019
– reference: ChaudetHExtending the event calculus for tracking epidemic spreadArtificial Intelligence in Medicine200638213715610.1016/j.artmed.2005.06.001
– reference: DubocALPaesAZaveruchaGUsing the bottom clause and mode declarations in FOL theory revision from examplesMachine Learning20097617310710.1007/s10994-009-5116-8
– reference: Muggleton, S., & Bryant, C. (2000). Theory completion using inverse entailment. In International conference on inductive logic programming, pp. 130–146.
– reference: Badea, L. (2001). A refinement operator for theories. In Proceedings of the international conference on inductive logic programming (ILP).
– reference: Corapi, D., Ray, O., Russo, A., Bandara, A., & Lupu, E. (2008). Learning rules from user behaviour. In Second international workshop on the induction of process models.
– reference: LangleyPLearning in humans and machines: Towards an interdisciplinary science, chapter order effects in incremental learning1995AmsterdamElsevier
– reference: Sakama, C. (2001). Nonmonotomic inductive logic programming. In Logic programming and nonmotonic reasoning (pp. 62–80). Springer.
– reference: Alrajeh, D., Kramer, J., Russo, A., & Uchitel, S. (2012). Learning from vacuously satisfiable scenario-based specifications. In Proceedings of the international conference on fundamental approaches to software engineering (FASE).
– reference: EtzionONiblettPEvent processing in action2010GreenwichManning Publications Co
– reference: AlrajehDKramerJRussoAUchitelSDeriving non-zeno behaviour models from goal models using ILPFormal Aspects of Computing2010223–421724110.1007/s00165-009-0128-51213.68360
– reference: Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical communications of the international conference on logic programming (ICLP).
– reference: MuggletonSInverse entailment and ProgolNew Generation Computing1995133&424528610.1007/BF03037227
– reference: SakamaCInduction from answer sets in nonmonotonic logic programsACM Transactions on Computational Logic200562203231212605510.1145/1055686.1055687
– reference: Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2013). Learning through hypothesis refinement using answer set programming. In Proceedings of the 23rd international conference of inductive logic programming (ILP).
– ident: 5512_CR45
– volume: 2835
  start-page: 299
  year: 2003
  ident: 5512_CR55
  publication-title: Inductive Logic Programming
  doi: 10.1007/978-3-540-39917-9_20
– ident: 5512_CR64
– volume: 53
  start-page: 1113
  issue: 5
  year: 2010
  ident: 5512_CR65
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxp102
– volume: 73
  start-page: 3
  year: 2008
  ident: 5512_CR23
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5079-1
– volume: 38
  start-page: 137
  issue: 2
  year: 2006
  ident: 5512_CR15
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2005.06.001
– volume: 8
  start-page: 213
  issue: 3
  year: 2004
  ident: 5512_CR27
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2004-8302
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  ident: 5512_CR49
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– ident: 5512_CR17
– ident: 5512_CR2
  doi: 10.1109/ICSE.2009.5070527
– ident: 5512_CR50
  doi: 10.1007/3-540-44960-4_8
– volume: 7
  start-page: 329
  issue: 3
  year: 2009
  ident: 5512_CR58
  publication-title: Journal of Applied Logic
  doi: 10.1016/j.jal.2008.10.007
– ident: 5512_CR61
  doi: 10.1007/3-540-44960-4_13
– volume: 260
  start-page: 103
  year: 2010
  ident: 5512_CR13
  publication-title: Smart Information and Knowledge Management
  doi: 10.1007/978-3-642-04584-4_5
– volume-title: Event processing in action
  year: 2010
  ident: 5512_CR28
– volume: 89
  start-page: 95
  issue: 1
  year: 2008
  ident: 5512_CR35
  publication-title: Fundamenta Informaticae
– volume: 4
  start-page: 6796
  issue: 1
  year: 1986
  ident: 5512_CR34
  publication-title: New Generation Computing
  doi: 10.1007/BF03037383
– ident: 5512_CR10
  doi: 10.1007/3-540-44797-0_1
– volume: 55
  start-page: 137
  issue: 2
  year: 2004
  ident: 5512_CR44
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000023150.80092.40
– volume-title: Commonsense reasoning
  year: 2006
  ident: 5512_CR47
– ident: 5512_CR16
– volume: 76
  start-page: 73
  issue: 1
  year: 2009
  ident: 5512_CR24
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5116-8
– ident: 5512_CR12
– ident: 5512_CR14
  doi: 10.1109/TIME.2000.856584
– ident: 5512_CR1
– volume: 36
  start-page: 1466
  issue: 2
  year: 2009
  ident: 5512_CR38
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.11.061
– volume-title: The power of events: An introduction to complex event processing in distributed enterprise systems
  year: 2001
  ident: 5512_CR42
– volume: 19
  start-page: 95
  issue: 2
  year: 1995
  ident: 5512_CR60
  publication-title: Machine Learning
– volume-title: Learning in humans and machines: Towards an interdisciplinary science, chapter order effects in incremental learning
  year: 1995
  ident: 5512_CR36
– ident: 5512_CR66
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  ident: 5512_CR53
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: 5512_CR33
  doi: 10.1007/978-3-642-04238-6_16
– ident: 5512_CR9
– volume: 28
  start-page: 133
  issue: 1–2
  year: 2000
  ident: 5512_CR26
  publication-title: Machine Learning
  doi: 10.1023/A:1007638124237
– ident: 5512_CR11
– ident: 5512_CR57
– ident: 5512_CR59
  doi: 10.1007/978-3-540-39917-9_21
– volume: 6
  start-page: 203231
  issue: 2
  year: 2005
  ident: 5512_CR63
  publication-title: ACM Transactions on Computational Logic
  doi: 10.1145/1055686.1055687
– volume: 27
  start-page: 895
  issue: 4
  year: 2015
  ident: 5512_CR8
  publication-title: IEEE Transactions on Knowledge and Data Engineering (TKDE)
  doi: 10.1109/TKDE.2014.2356476
– volume: 19
  start-page: 193
  issue: 2
  year: 2010
  ident: 5512_CR6
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S021821301000011X
– ident: 5512_CR22
  doi: 10.1007/11558590_12
– ident: 5512_CR19
– ident: 5512_CR30
– volume-title: Inductive logic programming: Techniques and applications
  year: 1993
  ident: 5512_CR37
– ident: 5512_CR46
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  ident: 5512_CR52
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 19
  start-page: 629
  year: 1994
  ident: 5512_CR51
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– ident: 5512_CR62
  doi: 10.1007/3-540-45402-0_5
– volume: 2157
  start-page: 193
  year: 2001
  ident: 5512_CR54
  publication-title: Inductive Logic Programming
  doi: 10.1007/3-540-44797-0_16
– volume: 27
  start-page: 469
  issue: 04
  year: 2012
  ident: 5512_CR7
  publication-title: Knowledge Engineering Review
  doi: 10.1017/S0269888912000264
– ident: 5512_CR4
– ident: 5512_CR25
– volume-title: Event processing glossary, version 1.1
  year: 2008
  ident: 5512_CR43
– volume: 3
  start-page: 671
  year: 2008
  ident: 5512_CR48
  publication-title: Foundations of Artificial Intelligence
  doi: 10.1016/S1574-6526(07)03017-9
– ident: 5512_CR21
– volume: 22
  start-page: 217
  issue: 3–4
  year: 2010
  ident: 5512_CR3
  publication-title: Formal Aspects of Computing
  doi: 10.1007/s00165-009-0128-5
– volume-title: Foundations of logic programming
  year: 1987
  ident: 5512_CR41
  doi: 10.1007/978-3-642-83189-8
– ident: 5512_CR56
– ident: 5512_CR5
  doi: 10.1007/978-3-642-28872-2_26
– volume: 2
  start-page: 719
  year: 1993
  ident: 5512_CR32
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/2.6.719
– volume: 6
  start-page: 1
  issue: 3
  year: 2012
  ident: 5512_CR29
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.2200/S00457ED1V01Y201211AIM019
– ident: 5512_CR39
– ident: 5512_CR18
  doi: 10.1007/978-3-642-31951-8_12
– ident: 5512_CR40
  doi: 10.1109/VSPETS.2005.1570907
– ident: 5512_CR20
  doi: 10.1007/3-540-45628-7_16
– ident: 5512_CR31
SSID ssj0002686
Score 2.433609
Snippet Event recognition systems rely on knowledge bases of event definitions to infer occurrences of events in time. Using a logical framework for representing and...
Issue Title: Special Issue of the ECMLPKDD 2015 Journal Track; Guest Editors: Concha Bielza * João Gama * Alípio Jorge * Indr liobait Event recognition systems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 555
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Learning
Logic programming
Machine learning
Manuals
Mechatronics
Natural Language Processing (NLP)
Recognition
Robotics
Simulation and Modeling
Tasks
Temporal logic
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS8Mw8JDpgy_OT5xOieCTEmi6tE0eRRwiMoZf7K2kaSID7WQf_n4vabtNUUGfc0nLfV_ucgdwKkNmpcgCDHKMoFzGiiqMhKjOlNARs2iRfBPX26TXE4OB7FfvuCd1tXudkvSaeumxm29jyyKKVj6kGPKsorUTbl7D3f3TXP2GsR_viNITUWe-61Tmd0d8NkYLD_NLUtTbmm7zX3-5CRuVa0kuSl7YghVTbEOzHttAKinegRvUCeWtIEJXUyOeycgS38yJ5MYOi7KQi7hbWuKme3itSNxgZk36ZUnXK-7ahcfu1cPlNa1GKlDN43BK0RuwPNASSccTxWzGMyQPyrjKY6VE3nG9eSIrAyMFN4kSNrNWG5YwJm0ss84eNIpRYfaB8EipxOQY78SShzwRpsNNFCkUcG60DVsQ1LhNddVv3I29eEkXnZIdrlLEVepwlbIWnM23vJXNNn4DbtcESyu5m6QsQaWEHCBx-WS-jBLj0iCqMKOZg8EQ2Pm1nRac10RcOuKnDx78CfoQ1kPHBb4crQ2N6XhmjmBNv0-Hk_GxZ9kPqCvksA
  priority: 102
  providerName: Springer Nature
Title Incremental learning of event definitions with Inductive Logic Programming
URI https://link.springer.com/article/10.1007/s10994-015-5512-1
https://www.proquest.com/docview/1704026891
https://www.proquest.com/docview/1744692313
Volume 100
WOSCitedRecordID wos000359747100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6o48GLuzguQwRPSnDSSdvkJCqKuAzFDfFS0jQRQTvqzPj7fWnTGRX04qWXJk3p25e-D2BbBsxKkbUxyDGCchkpqjASojpTQofMokUqh7hexN2uuL-XiU-49X1bZa0TS0Wd97TLke-xGNktiIRk-69v1KFGueqqh9CYhAZ6Nsy1dF0GyUgT4_Ko8iJD6ix5XdWsfp0rh-KykKLPEFD23S6Nnc0f9dHS7JzM_feF52HWO5zkoOKQBZgwxSLM1WAOxMv2EpyhpqhyhbjaY0k8kp4l5Ygnkhv7VFTtXcTlbonD_Ch1JXFwzZokVaPXC-5ahtuT45ujU-qBFqjmUTCg6CNY3tYSCcpjxWzGMyQaSr7KI6VE3nETe0Ir20YKbmIlbGatNixmTNpIZp0VmCp6hVkFwkOlYpNjFBRJHvBYmA43YahQ7LnRNmhCu_7MqfZTyB0YxnM6np_sKJMiZVJHmZQ1YWe05bUawfHX4o2aGqmXxn46JkUTtka3UY5ccUQVpjd0azAwdt5upwm7Nc2_POK3A9f-PnAdZgLHZGVX2gZMDd6HZhOm9cfgqf_egsbhcTe5asHkeUxbJfPiNQkf8Hp1ffcJu3LzwA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRaKX0hZQt4XWleACslh7ncQ-IITaIijLag8gcQuOYyMkyAK7gPqn-I3M5GO3RYIbh57j2E7m-c2MPZ4BWDVSBKOzNjo5XnNlYsstekLcZVa7SATUSGUS127S6-mTE9OfgofmLgyFVTacWBJ1PnC0R74pEoSbjLUR21fXnKpG0elqU0KjgsWB_3OPLttwa_8nyndNyt1fRz_2eF1VgDsVyxFHhRhU2xmcvUqsCJnKcIYIc5vH1uq8Q-lpomDa3mjlE6tDFoLzIhHChNhkHex3Gt4oyixGoYKyP2Z-nF5cWa0RJ8uhOUWtruqVSXhFxNFGkVz8qwcnxu2T89hSze3O_28_6D28qw1qtlOtgA8w5YuPMN8Uq2A1dy3Ab2TCai8UW9e1Ms7YILAyhRXLfTgvqvA1RnvTjGqalLqAUTlqx_pVINslvrUIx6_yRUswUwwK_wmYiqxNfI5eXmyUVIn2HeWjyCKtKe-CbEG7EWvq6izrVOzjIp3khyYkpIiElJCQihasj1-5qlKMvNR4uZF-WrPNMJ2IvgXfx4-RJ-jwxxZ-cEtt0PEna77Tgo0GY3918dyAn18e8BvM7R0ddtPufu_gC7yVBPAyAm8ZZkY3t34FZt3d6Hx487VcKgxOXxt6j-oKTag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT-MwFH6CMkJzAYZFdNiMBBeQRe06iX1ACAHVsKjqYZAQl-A4NkJiUoa2IP4av47nLC0gwY0D53iNP7_Ffn4fwIbizCmZNNDJsZIKFWqq0ROiJtHSBMyhRsqTuJ5F7ba8uFCdMXiu3sL4sMpKJuaCOu0af0a-wyKEGw-lYjuuDIvoHLb27v5TzyDlb1orOo0CIqf26RHdt97u8SGu9SbnraO_B39oyTBAjQh5n6JydKJhFM5ERJq5RCQ4WoS8TkOtZdr0qWoCpxpWSWEjLV3inLEsYky5UCVNbHccJiL0MX04YSe4HGoBHGpYWLAB9VZEdaNaPNvLE_KygKK9wil7qxNHhu67u9lc5bWmv_PPmoGp0tAm-8XO-AVjNpuF6YrEgpQybQ5OUEIWZ6RYuuTQuCZdR_LUViS17iYrwtqIP7Mmnusk1xHE01Qb0ikC3P5hrXk4_5IZLUAt62Z2EYgItI5sit5fqAQXkbRNYYNAo7gT1jheh0a1xLEps697EpDbeJQ32qMiRlTEHhUxq8PWsMpdkXrks8LLFRLiUgr14hEM6rA-_Izyw18K6cx2B76MQPSild-sw3aFt1dNfNTh7887XINJRFx8dtw-XYKf3GM9D8xbhlr_fmBX4Id56N_07lfzXUPg6quR9wIOBFaU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+learning+of+event+definitions+with+Inductive+Logic+Programming&rft.jtitle=Machine+learning&rft.au=Katzouris%2C+Nikos&rft.au=Artikis%2C+Alexander&rft.au=Paliouras%2C+Georgios&rft.date=2015-09-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=100&rft.issue=2-3&rft.spage=555&rft.epage=585&rft_id=info:doi/10.1007%2Fs10994-015-5512-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_015_5512_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon