Survey on Computer Vision for UAVs: Current Developments and Trends

During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial platforms. The major challenge today is the development of autonomously operating aerial agents capable of completing missions independently of hum...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems Vol. 87; no. 1; pp. 141 - 168
Main Authors: Kanellakis, Christoforos, Nikolakopoulos, George
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.07.2017
Springer Nature B.V
Subjects:
ISSN:0921-0296, 1573-0409, 1573-0409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial platforms. The major challenge today is the development of autonomously operating aerial agents capable of completing missions independently of human interaction. To this extent, visual sensing techniques have been integrated in the control pipeline of the UAVs in order to enhance their navigation and guidance skills. The aim of this article is to present a comprehensive literature review on vision based applications for UAVs focusing mainly on current developments and trends. These applications are sorted in different categories according to the research topics among various research groups. More specifically vision based position-attitude control, pose estimation and mapping, obstacle detection as well as target tracking are the identified components towards autonomous agents. Aerial platforms could reach greater level of autonomy by integrating all these technologies onboard. Additionally, throughout this article the concept of fusion multiple sensors is highlighted, while an overview on the challenges addressed and future trends in autonomous agent development will be also provided.
AbstractList During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial platforms. The major challenge today is the development of autonomously operating aerial agents capable of completing missions independently of human interaction. To this extent, visual sensing techniques have been integrated in the control pipeline of the UAVs in order to enhance their navigation and guidance skills. The aim of this article is to present a comprehensive literature review on vision based applications for UAVs focusing mainly on current developments and trends. These applications are sorted in different categories according to the research topics among various research groups. More specifically vision based position-attitude control, pose estimation and mapping, obstacle detection as well as target tracking are the identified components towards autonomous agents. Aerial platforms could reach greater level of autonomy by integrating all these technologies onboard. Additionally, throughout this article the concept of fusion multiple sensors is highlighted, while an overview on the challenges addressed and future trends in autonomous agent development will be also provided.
Author Nikolakopoulos, George
Kanellakis, Christoforos
Author_xml – sequence: 1
  givenname: Christoforos
  surname: Kanellakis
  fullname: Kanellakis, Christoforos
  email: christoforos.kanellakis@ltu.se
  organization: Luleå University of Technology
– sequence: 2
  givenname: George
  surname: Nikolakopoulos
  fullname: Nikolakopoulos, George
  organization: Luleå University of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61786$$DView record from Swedish Publication Index
BookMark eNp9kFtLwzAYhoNMcJv-AO8C3lrNoU0a70bnCQZeuO02pG06OramJulk-_VmdIIIepV84XnD-z0jMGhMowG4xugOI8TvHUZpzCKEeYTilEaHMzDECadhQmIAhkgQHCEi2AUYObdGCIk0EUOQvXd2p_fQNDAz27bz2sJl7eowV8bCxWTpHmDWWasbD6d6pzem3Ya7g6op4Tw8l-4SnFdq4_TV6RyDxdPjPHuJZm_Pr9lkFhUxIz7CuUAlwVRTlpclp5RWvBC0IgljpSKcViJULxQvRZnEHMcVo2lRsALlIqapomNw2__rPnXb5bK19VbZvTSqltN6OZHGruTGd5JhnrKA3_R4a81Hp52Xa9PZJjSUWCCSEkp5HCjeU4U1zlldyaL2ygcB3qp6IzGSR8GyFyyDYHkULA8hiX8lvwv9lyGnFQLbrLT90enP0BfMho89
CitedBy_id crossref_primary_10_1016_j_procs_2018_07_280
crossref_primary_10_3390_drones8060264
crossref_primary_10_1016_j_engappai_2022_105036
crossref_primary_10_1016_j_micpro_2022_104469
crossref_primary_10_1016_j_techfore_2022_121487
crossref_primary_10_1080_02286203_2021_1952386
crossref_primary_10_1109_ACCESS_2018_2876762
crossref_primary_10_3390_electronics10172125
crossref_primary_10_1007_s00500_019_04574_3
crossref_primary_10_1109_JSYST_2019_2941452
crossref_primary_10_1155_are_6096671
crossref_primary_10_3390_s20082241
crossref_primary_10_1109_ACCESS_2025_3529754
crossref_primary_10_1016_j_jprocont_2020_01_012
crossref_primary_10_3390_drones9090614
crossref_primary_10_1109_ACCESS_2022_3181377
crossref_primary_10_1007_s10489_022_03727_6
crossref_primary_10_1109_ACCESS_2024_3379142
crossref_primary_10_1016_j_ast_2019_105306
crossref_primary_10_1007_s43154_023_00097_w
crossref_primary_10_1109_ACCESS_2021_3077591
crossref_primary_10_1016_j_ast_2021_106891
crossref_primary_10_1016_j_inffus_2024_102369
crossref_primary_10_1109_LRA_2023_3339064
crossref_primary_10_1007_s13272_020_00475_6
crossref_primary_10_1007_s10462_020_09943_1
crossref_primary_10_1109_LRA_2019_2930496
crossref_primary_10_1109_ACCESS_2018_2831911
crossref_primary_10_1016_j_adhoc_2022_102844
crossref_primary_10_1109_ACCESS_2020_2980359
crossref_primary_10_1155_2021_7826845
crossref_primary_10_3390_s21041115
crossref_primary_10_3390_s21041079
crossref_primary_10_1007_s10846_019_01042_w
crossref_primary_10_1007_s10846_021_01540_w
crossref_primary_10_1109_ACCESS_2019_2945545
crossref_primary_10_1109_TAES_2023_3328853
crossref_primary_10_1109_TII_2020_2974485
crossref_primary_10_1109_ACCESS_2021_3097945
crossref_primary_10_3390_s21093175
crossref_primary_10_1007_s10686_019_09635_x
crossref_primary_10_1177_1351010X20917856
crossref_primary_10_3390_agronomy11061069
crossref_primary_10_1109_ACCESS_2019_2918578
crossref_primary_10_1007_s42044_020_00060_4
crossref_primary_10_1016_j_ymssp_2022_109958
crossref_primary_10_3390_drones7120704
crossref_primary_10_1109_SR_2025_3597582
crossref_primary_10_3390_s18093010
crossref_primary_10_1109_ACCESS_2020_3048194
crossref_primary_10_3390_app8112169
crossref_primary_10_1177_01423312211037618
crossref_primary_10_1002_rob_22189
crossref_primary_10_1007_s11370_022_00452_4
crossref_primary_10_1016_j_isatra_2021_02_043
crossref_primary_10_3390_s19092165
crossref_primary_10_3390_ijgi10100673
crossref_primary_10_1007_s12555_020_2049_4
crossref_primary_10_20965_jrm_2021_p0263
crossref_primary_10_3390_drones8080389
crossref_primary_10_1155_2020_7362952
crossref_primary_10_3390_asi6040068
crossref_primary_10_1016_j_vehcom_2022_100552
crossref_primary_10_3390_app9214552
crossref_primary_10_1007_s10846_022_01657_6
crossref_primary_10_1007_s11042_023_16195_y
crossref_primary_10_1016_j_mechatronics_2023_103033
crossref_primary_10_1109_MPOT_2018_2850386
crossref_primary_10_1007_s10846_023_01824_3
crossref_primary_10_1007_s40435_020_00737_5
crossref_primary_10_1016_j_actaastro_2018_09_022
crossref_primary_10_1109_ACCESS_2020_3028195
crossref_primary_10_3390_app9153196
crossref_primary_10_1080_23311916_2022_2050020
crossref_primary_10_7717_peerj_cs_2052
crossref_primary_10_1080_10106049_2025_2519915
crossref_primary_10_1016_j_ijleo_2020_164923
crossref_primary_10_1016_j_robot_2019_01_006
crossref_primary_10_1016_j_trpro_2025_03_113
crossref_primary_10_1109_TAES_2020_2967851
crossref_primary_10_1016_j_heliyon_2024_e41055
crossref_primary_10_3390_drones7040243
crossref_primary_10_1109_TSE_2020_3032986
crossref_primary_10_3390_drones7040245
crossref_primary_10_3390_fi13080200
crossref_primary_10_3390_s24102980
crossref_primary_10_3390_rs14174355
crossref_primary_10_3390_s20072129
crossref_primary_10_1088_1757_899X_995_1_012019
crossref_primary_10_1016_j_robot_2018_05_011
crossref_primary_10_1177_0954406220983864
crossref_primary_10_3390_fi11090197
crossref_primary_10_1007_s10846_021_01432_z
crossref_primary_10_3390_s22010175
crossref_primary_10_1093_aob_mcaa097
crossref_primary_10_1109_LRA_2021_3101869
crossref_primary_10_1007_s10586_025_05418_6
crossref_primary_10_1007_s40031_022_00747_1
crossref_primary_10_1109_LGRS_2024_3419925
crossref_primary_10_1109_TIM_2024_3481530
crossref_primary_10_1007_s12555_020_0329_5
crossref_primary_10_1109_ACCESS_2022_3141544
crossref_primary_10_1016_j_ifacol_2022_07_320
crossref_primary_10_1155_2018_6931020
crossref_primary_10_1109_ACCESS_2024_3357148
crossref_primary_10_1007_s11071_018_4700_5
crossref_primary_10_1016_j_ifacol_2023_10_1812
crossref_primary_10_1016_j_matpr_2019_07_313
crossref_primary_10_1016_j_geits_2023_100140
crossref_primary_10_1155_2021_3997648
crossref_primary_10_3390_w17030401
crossref_primary_10_1016_j_trpro_2018_12_003
crossref_primary_10_3390_rs15215087
crossref_primary_10_1038_s41598_022_26613_0
crossref_primary_10_3390_drones7020089
crossref_primary_10_1007_s11042_020_09364_w
crossref_primary_10_3390_rs13050965
crossref_primary_10_1080_14484846_2021_2023266
crossref_primary_10_1007_s42979_023_02592_5
crossref_primary_10_1007_s10846_018_0933_2
crossref_primary_10_1016_j_ast_2024_109336
crossref_primary_10_1007_s10766_019_00645_y
crossref_primary_10_1007_s42452_020_2236_z
crossref_primary_10_3390_rs12203318
crossref_primary_10_1007_s10846_020_01208_x
crossref_primary_10_1109_ACCESS_2020_2985032
crossref_primary_10_3390_app12073627
crossref_primary_10_1016_j_isatra_2019_10_012
crossref_primary_10_1007_s11554_021_01111_0
crossref_primary_10_3390_aerospace12070590
crossref_primary_10_1088_1742_6596_2649_1_012001
crossref_primary_10_1109_TIE_2018_2807401
crossref_primary_10_3390_aerospace10020183
crossref_primary_10_3390_drones8040116
crossref_primary_10_1016_j_ymssp_2019_106513
crossref_primary_10_1117_1_JEI_32_2_023011
crossref_primary_10_1007_s10846_020_01284_z
crossref_primary_10_1016_j_enggeo_2023_107024
crossref_primary_10_1109_TETC_2021_3104555
crossref_primary_10_1109_ACCESS_2021_3133533
crossref_primary_10_1080_01691864_2019_1596834
crossref_primary_10_3390_rs17111948
crossref_primary_10_1007_s10846_018_0896_3
crossref_primary_10_3390_s20113262
crossref_primary_10_3390_drones6060146
crossref_primary_10_3390_drones7040263
crossref_primary_10_3390_s21082754
crossref_primary_10_1016_j_robot_2020_103666
crossref_primary_10_1016_j_imavis_2020_104046
crossref_primary_10_3390_drones6060147
crossref_primary_10_1109_TAES_2022_3192220
crossref_primary_10_1007_s10043_024_00872_w
crossref_primary_10_1016_j_ast_2021_107164
crossref_primary_10_1007_s10846_018_0921_6
crossref_primary_10_3390_s18103391
crossref_primary_10_1088_1742_6596_1800_1_012002
crossref_primary_10_3390_drones6050107
crossref_primary_10_1109_ACCESS_2020_3043414
crossref_primary_10_1109_ACCESS_2022_3181989
crossref_primary_10_1007_s10846_021_01544_6
crossref_primary_10_3390_sym11010118
crossref_primary_10_1007_s10846_019_01006_0
crossref_primary_10_1016_j_pmcj_2023_101820
crossref_primary_10_3390_jimaging6080078
crossref_primary_10_1016_j_jfranklin_2024_107411
Cites_doi 10.1007/s10514-012-9286-z
10.1109/ROBOT.2009.5152680
10.1002/rob.21596
10.1109/CDC.2006.376767
10.1016/j.robot.2006.06.006
10.1109/ROBOT.2006.1642134
10.1007/978-3-642-40409-2_23
10.1023/B:VISI.0000029664.99615.94
10.1109/PIC.2014.6972318
10.1117/12.876663
10.2514/6.2012-5033
10.1109/IROS.2013.6696917
10.1109/ICRA.2015.7138988
10.1109/TIE.2015.2420036
10.1109/ICRA.2016.7487292
10.1007/s10846-009-9382-2
10.3182/20120905-3-HR-2030.00036
10.2514/6.2009-5678
10.1109/CVPR.1994.323794
10.1109/ICRA.2016.7487251
10.1007/978-3-642-20144-8
10.1109/IROS.2010.5650725
10.1109/ICRA.2012.6224828
10.1007/s10846-014-0085-y
10.3390/s16091406
10.1109/TIT.1967.1053964
10.1007/s11633-013-0735-8
10.1080/15599610802303314
10.1109/MED.2014.6961576
10.1109/CISP.2011.6100621
10.1109/AVSS.2006.23
10.1109/IROS.2015.7353389
10.6028/NIST.SP.1011-I-2.0
10.1109/ICUAS.2014.6842242
10.1109/IROS.2015.7353622
10.1007/s10846-013-9918-3
10.2514/6.2013-5246
10.1109/ICUAS.2014.6842282
10.1016/j.phpro.2012.05.157
10.1109/IROS.2012.6385934
10.1007/s10846-008-9305-7
10.1007/s10846-010-9494-8
10.1109/MRA.2012.2206473
10.1109/ROBOT.2006.1642080
10.1108/00022661111173270
10.1016/j.dsp.2011.08.003
10.1007/s10846-012-9705-6
10.1109/ICCAS.2013.6704242
10.1109/CYBER.2013.6705439
10.1109/ICUAS.2014.6842355
10.1109/ACC.2006.1657288
10.1007/s10514-016-9564-2
10.3182/20080706-5-KR-1001.00966
10.1016/j.autcon.2006.12.010
10.1109/CARPI.2010.5624435
10.1007/s10846-010-9480-1
10.1109/ACC.2014.6858995
10.1109/ACC.2011.5991109
10.1109/TCST.2013.2284790
10.1002/rob.21454
10.1109/ICINFA.2009.5204904
10.1109/ICRA.2016.7487281
10.5772/52764
10.1109/TIE.2014.2345348
10.2514/1.40185
10.1007/s10846-008-9301-y
10.1109/ICEEE.2009.5393423
10.1016/j.robot.2014.08.006
10.1002/rob.21506
10.1109/IROS.2013.6696805
10.1109/IROS.2009.5354361
10.1155/2011/413074
10.1177/0954410013517804
10.1007/978-1-4020-6114-1
10.1109/ROBOT.2006.1642130
10.1109/IROS.2010.5652556
10.1109/70.538972
10.3390/s151127783
10.1109/IROS.2013.6696412
10.1108/IJPCC-01-2014-0010
10.1007/s10846-013-9914-7
10.1007/s10846-013-9967-7
10.2316/Journal.206.2014.1.206-3942
10.1007/s10846-010-9504-x
10.1109/MED.2014.6961575
10.1016/j.robot.2009.02.001
10.5139/IJASS.2014.15.3.258
10.1109/ICAL.2007.4338800
10.1007/s00138-007-0102-2
10.1016/j.robot.2014.03.012
10.1109/ICSESS.2014.6933728
10.1007/s10846-011-9646-5
10.1109/TPAMI.1986.4767851
10.1109/IROS.2013.6696922
10.1007/978-3-642-37374-9_46
10.1002/rob.20178
10.1109/IROS.2011.6094404
10.1109/ICDMA.2012.240
10.1109/ICUAS.2013.6564708
10.1108/IR-07-2013-378
10.1109/ICCAS.2014.6987736
10.1007/s10846-011-9571-7
10.5244/C.2.23
10.1109/ICECC.2011.6066586
10.1109/ICRA.2011.5980095
10.1109/ICRA.2013.6630808
10.1007/s10846-008-9304-8
10.1109/IROS.2015.7353442
10.1109/ROBOT.2007.363883
10.1109/IROS.2014.6943247
10.1007/s10846-013-9865-z
10.1117/12.818717
10.1109/ICRA.2011.5979645
10.1109/ACC.2014.6858831
10.3182/20080706-5-KR-1001.00137
10.1002/rob.21581
10.1007/978-1-84882-935-0
10.1109/TRO.2008.916666
10.1109/ICRA.2014.6907233
10.1016/j.automatica.2007.03.030
10.1109/IROS.2005.1544998
10.1109/WISP.2007.4447629
10.1002/rob.20414
10.2514/6.2007-6749
10.1109/IROS.2013.6696331
10.1109/IROS.2014.6943040
10.1109/ICRA.2014.6906584
10.1109/ICRA.2015.7139761
10.1109/UKRICIS.2010.5898125
10.5772/56660
10.1142/9789814417747_0199
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Springer Nature B.V. Jul 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Springer Nature B.V. Jul 2017
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1007/s10846-017-0483-z
DatabaseName Springer Nature OA Free Journals (ODIN)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
EndPage 168
ExternalDocumentID oai_DiVA_org_ltu_61786
10_1007_s10846_017_0483_z
GrantInformation_xml – fundername: Horizon 2020
  grantid: 644128
  funderid: http://dx.doi.org/10.13039/501100007601
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c462t-1b90d213e36bdd7333f7c93f2566da273f9048ca7d9d54714f638cc6c0b9438a3
IEDL.DBID M7S
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
1573-0409
IngestDate Tue Nov 04 15:31:29 EST 2025
Sat Oct 18 22:43:24 EDT 2025
Sat Nov 29 07:45:57 EST 2025
Tue Nov 18 20:40:31 EST 2025
Fri Feb 21 02:35:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Target tracking
Visual servoing
SLAM
Obstacle avoidance
UAVs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-1b90d213e36bdd7333f7c93f2566da273f9048ca7d9d54714f638cc6c0b9438a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10846-017-0483-z
PQID 1902823374
PQPubID 326251
PageCount 28
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_61786
proquest_journals_1902823374
crossref_citationtrail_10_1007_s10846_017_0483_z
crossref_primary_10_1007_s10846_017_0483_z
springer_journals_10_1007_s10846_017_0483_z
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Olivares-Mendez, M.A., Mejias, L., Campoy, P., Mellado-Bataller, I.: Quadcopter see and avoid using a fuzzy controller. In: Proceedings of the 10th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making (FLINS 2012). World Scientific (2012)
WangTWangCLiangJZhangYRao-blackwellized visual slam for small uavs with vehicle model partitionIndus. Robot: Int. J.201441326627410.1108/IR-07-2013-378
Araar, O., Aouf, N.: A new hybrid approach for the visual servoing of vtol uavs from unknown geometries. In: IEEE 22nd Mediterranean Conference of Control and Automation (MED), pp. 1425–1432. IEEE (2014)
Valavanis, K.P.: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, vol. 33. Springer Science & Business Media (2008)
LeishmanRCMcLainTWBeardRWRelative navigation approach for vision-based aerial gps-denied navigationJ. Intell. Robot. Syst.2014741–29711110.1007/s10846-013-9914-7
Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular multi-sensor fusion approach applied to mav navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929. IEEE (2013)
Huh, S., Shim, D.H., Kim, J.: Integrated navigation system using camera and gimbaled laser scanner for indoor and outdoor autonomous flight of uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3158–3163. IEEE (2013)
Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct ekf-based approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 298–304. IEEE (2015)
Loianno, G., Watterson, M., Kumar, V.: Visual inertial odometry for quadrotors on se (3). In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1544–1551. IEEE (2016)
Association Unmanned Aerial Vehicle Systems: Civil and Commercial UAS Applications. https://www.uavs.org/commercial
Huang, H.-M.: Autonomy levels for unmanned systems (ALFUS) framework, volume I: Terminology, Version 2.0 (2008)
Watanabe, Y., Fabiani, P., Le Besnerais, G.: Towards a uav visual air-to-ground target tracking in an urban environment
NuskeSChoudhurySJainSChambersAYoderLSchererSChamberlainLCoverHSinghSAutonomous exploration and motion planning for an unmanned aerial vehicle navigating riversJ. Field Robot.20153281141116210.1002/rob.21596
Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Obstacle detection and navigation planning for autonomous micro aerial vehicles. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1040–1047. IEEE (2014)
Li, Z., Ding, J.: Ground moving target tracking control system design for uav surveillance. In: IEEE International Conference on Automation and Logistics, pp. 1458–1463. IEEE (2007)
Araar, O., Aouf, N.: Visual servoing of a quadrotor uav for autonomous power lines inspection. In: 22nd Mediterranean Conference of Control and Automation (MED), pp. 1418–1424. IEEE (2014)
AvellarGSPereiraGAPimentaLCIscoldPMulti-uav routing for area coverage and remote sensing with minimum timeSensors2015151127,78327,80310.3390/s151127783
CannyJA computational approach to edge detectionTrans. Pattern Anal. Mach. Intell.1986667969810.1109/TPAMI.1986.4767851
Le Bras, F., Mahony, R., Hamel, T., Binetti, P.: Adaptive filtering and image based visual servo control of a ducted fan flying robot. In: 45th IEEE Conference on Decision and Control, pp. 1751–1757. IEEE (2006)
MajidiBBab-HadiasharAAerial tracking of elongated objects in rural environmentsMach. Vis. Appl.2009201233410.1007/s00138-007-0102-2
TroianiCMartinelliALaugierCScaramuzzaDLow computational-complexity algorithms for vision-aided inertial navigation of micro aerial vehiclesRobot. Autonom. Syst.201569809710.1016/j.robot.2014.08.006
Lin, S., Garratt, M.A., Lambert, A.J.: Monocular vision-based real-time target recognition and tracking for autonomously landing an uav in a cluttered shipboard environment. Autonom Robots, 1–21 (2016)
ZhaoYPeiHAn improved vision-based algorithm for unmanned aerial vehicles autonomous landingPhys. Proced.20123393594110.1016/j.phpro.2012.05.157
Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4929–4934. IEEE (2011)
HuhSShimDHA vision-based automatic landing method for fixed-wing uavsJ. Intell. Robot. Syst.2010571–421723110.1007/s10846-009-9382-2
Yuan, C., Recktenwald, F., Mallot, H.A.: Visual steering of uav in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3906–3911. IEEE (2009)
TippettsBJLeeDJFowersSGArchibaldJKReal-time vision sensor for an autonomous hovering micro unmanned aerial vehicleJ. Aeros. Comput. Inf. Commun.200961057058410.2514/1.40185
Sa, I., Hrabar, S., Corke, P.: Inspection of pole-like structures using a vision-controlled vtol uav and shared autonomy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4819–4826. IEEE (2014)
MetniNHamelTA uav for bridge inspection: Visual servoing control law with orientation limitsAutom. Construct.200717131010.1016/j.autcon.2006.12.010
Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., Scaramuzza, D.: Autonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial vehicle. J. Field Robot. (2015)
Watanabe, Y., Fabiani, P., Le Besnerais, G.: Simultaneous visual target tracking and navigation in a gps-denied environment. In: International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2009)
FuCOlivares-MendezMASuarez-FernandezRCampoyPMonocular visual-inertial slam-based collision avoidance strategy for fail-safe uav using fuzzy logic controllersJ. Intell. Robot. Syst.2014731–451353310.1007/s10846-013-9918-3
LiuXLinZActonSTA grid-based bayesian approach to robust visual trackingDigit. Signal Process.20122215465291392510.1016/j.dsp.2011.08.003
KimJSukkariehSReal-time implementation of airborne inertial-slamRobot. Autonom. Syst.2007551627110.1016/j.robot.2006.06.006
Jian, L., Xiao-min, L.: Vision-based navigation and obstacle detection for uav. In: International Conference on Electronics, Communications and Control (ICECC), pp. 1771–1774. IEEE (2011)
Chriette, A.: An analysis of the zero-dynamics for visual servo control of a ducted fan uav. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2515–2520. IEEE (2006)
Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: Fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)
Schmid, K., Tomic, T., Ruess, F., Hirschmuller, H., Suppa, M.: Stereo vision based indoor/outdoor navigation for flying robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3955–3962. IEEE (2013)
WangCLWangTMLiangJHZhangYCZhouYBearing-only visual slam for small unmanned aerial vehicles in gps-denied environmentsInt. J. Autom. Comput.201310538739610.1007/s11633-013-0735-8
CarrilloLRGLópezAEDLozanoRPégardCCombining stereo vision and inertial navigation system for a quad-rotor uavJ. Intelli. Robot. Syst.2012651-437338710.1007/s10846-011-9571-7
SchmidKLutzPTomićTMairEHirschmüllerHAutonomous vision-based micro air vehicle for indoor and outdoor navigationJ. Field Robot.201431453757010.1002/rob.21506
Price, A., Pyke, J., Ashiri, D., Cornall, T.: Real time object detection for an unmanned aerial vehicle using an fpga based vision system. In: International Conference on Robotics and Automation (ICRA), pp. 2854–2859. IEEE (2006)
Rodriguez, J., Castiblanco, C., Mondragon, I., Colorado, J.: Low-cost quadrotor applied for visual detection of landmine-like objects. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 83–88. IEEE (2014)
Cichella, V., Kaminer, I., Dobrokhodov, V., Hovakimyan, N.: Coordinated vision-based tracking for multiple uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 656–661. IEEE (2015)
Xiaoyi, D., Qinhua, Z.: Research on laser-assisted odometry of indoor uav with monocular vision. In: 3rd Annual International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), pp. 165–169. IEEE (2013)
Fahimi, F., Thakur, K.: An alternative closed-loop vision-based control approach for unmanned aircraft systems with application to a quadrotor. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 353–358. IEEE (2013)
KendoulFFantoniINonamiKOptic flow-based vision system for autonomous 3d localization and control of small aerial vehiclesRobot. Autonom. Syst.200957659160210.1016/j.robot.2009.02.001
Byrne, J., Cosgrove, M., Mehra, R.: Stereo based obstacle detection for an unmanned air vehicle. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2830–2835. IEEE (2006)
TomicTSchmidKLutzPDomelAKasseckerMMairEGrixaILRuessFSuppaMBurschkaDToward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescueIEEE Robot. Autom. Mag.2012193465610.1109/MRA.2012.2206473
Lange, S., Sunderhauf, N., Protzel, P.: A vision based onboard approach for landing and position control of an autonomous multirotor uav in gps-denied environments. In: International Conference on Advanced Robotics, 2009. ICAR 2009, pp. 1–6. IEEE (2009)
Zhang, R., Liu, H.H.: Vision-based relative altitude estimation of small unmanned aerial vehicles in target localization. In: American Control Conference (ACC), 2011, pp. 4622–4627. IEEE (2011)
Watanabe, Y., Lesire, C., Piquereau, A., Fabiani, P., Sanfourche, M., Le Besnerais, G.: The onera ressac unmanned autonomous helicopter: Visual air-to-ground target tracking in an urban environment. In: American Helicopter Society 66th Annual Forum (AHS 2010) (2010)
Alkowatly, M.T., Becerra, V.M., Holderbaum, W.: Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J
483_CR61
LRG Carrillo (483_CR12) 2012; 65
483_CR66
483_CR64
Y Kim (483_CR113) 2014; 15
483_CR63
T Tomic (483_CR137) 2012; 19
GS Avellar (483_CR151) 2015; 15
V Ghadiok (483_CR45) 2012; 33
A Harmat (483_CR84) 2015; 78
483_CR57
483_CR56
T Wang (483_CR59) 2014; 41
X Zhang (483_CR83) 2015; 62
Y Zhao (483_CR47) 2012; 33
483_CR50
M Bryson (483_CR72) 2007; 24
SJ Mills (483_CR26) 2011; 61
483_CR55
483_CR54
483_CR52
J Maier (483_CR125) 2013; 10
DG Lowe (483_CR60) 2004; 60
BJ Tippetts (483_CR146) 2009; 6
J Kim (483_CR73) 2007; 55
483_CR46
C Fu (483_CR58) 2014; 73
D Törnqvist (483_CR69) 2009; 55
S Nuske (483_CR150) 2015; 32
483_CR49
DRM Liming Luke Chen (483_CR74) 2014; 10
M Boṡnak (483_CR147) 2012; 67
483_CR44
483_CR43
483_CR42
N Metni (483_CR29) 2007; 17
D Magree (483_CR94) 2014; 74
J Engel (483_CR81) 2014; 62
483_CR152
483_CR36
K Schmid (483_CR51) 2014; 31
483_CR35
483_CR34
F Caballero (483_CR79) 2009; 55
N Guenard (483_CR28) 2008; 24
483_CR39
483_CR38
483_CR33
483_CR32
483_CR31
483_CR143
G Chowdhary (483_CR82) 2013; 30
483_CR144
JO Lee (483_CR99) 2011; 83
D Lee (483_CR142) 2014; 228
483_CR148
483_CR149
483_CR140
483_CR25
483_CR23
483_CR27
483_CR139
J Canny (483_CR78) 1986; 6
483_CR22
M Tarhan (483_CR126) 2011; 61
483_CR21
483_CR20
D Eberli (483_CR41) 2011; 61
483_CR132
483_CR133
483_CR134
483_CR135
483_CR138
JR Azinheira (483_CR24) 2008; 2
CL Wang (483_CR65) 2013; 10
T Hamel (483_CR30) 2007; 43
483_CR130
483_CR15
483_CR14
483_CR13
S Huh (483_CR37) 2010; 57
X Liu (483_CR128) 2012; 22
483_CR17
483_CR16
483_CR95
483_CR129
483_CR93
483_CR92
483_CR11
483_CR10
483_CR98
C Fu (483_CR136) 2016; 16
483_CR97
483_CR96
483_CR120
J Artieda (483_CR48) 2009; 55
483_CR121
483_CR122
A Qadir (483_CR131) 2014; 74
483_CR123
483_CR91
483_CR124
483_CR90
B Majidi (483_CR127) 2009; 20
C Troiani (483_CR87) 2015; 69
T Cover (483_CR62) 1967; 13
G Sanahuja (483_CR145) 2013; 69
483_CR89
483_CR117
483_CR118
483_CR119
483_CR88
483_CR86
483_CR85
483_CR110
RC Leishman (483_CR53) 2014; 74
483_CR111
483_CR112
483_CR80
483_CR114
483_CR115
483_CR116
483_CR9
483_CR7
483_CR8
483_CR5
483_CR6
483_CR3
483_CR4
483_CR1
483_CR2
LRG Carrillo (483_CR141) 2014; 22
483_CR106
483_CR107
483_CR71
483_CR108
483_CR70
483_CR109
S Hutchinson (483_CR19) 1996; 12
483_CR77
483_CR76
483_CR75
483_CR100
483_CR101
483_CR102
483_CR103
483_CR104
483_CR105
F Kendoul (483_CR40) 2009; 57
483_CR68
F Kendoul (483_CR18) 2012; 29
483_CR67
References_xml – reference: SkyBotix AG: VI sensor. http://www.skybotix.com/
– reference: Price, A., Pyke, J., Ashiri, D., Cornall, T.: Real time object detection for an unmanned aerial vehicle using an fpga based vision system. In: International Conference on Robotics and Automation (ICRA), pp. 2854–2859. IEEE (2006)
– reference: Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor mav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4557–4564. IEEE (2012)
– reference: Yol, A., Delabarre, B., Dame, A., Dartois, J.E., Marchand, E.: Vision-based absolute localization for unmanned aerial vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3429–3434. IEEE (2014)
– reference: Frew, E.W., Langelaan, J., Stachura, M.: Adaptive planning horizon based on information velocity for vision-based navigation. In: AIAA Guidance, Navigation and Controls Conference (2007)
– reference: Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., Scaramuzza, D.: Autonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial vehicle. J. Field Robot. (2015)
– reference: KimJSukkariehSReal-time implementation of airborne inertial-slamRobot. Autonom. Syst.2007551627110.1016/j.robot.2006.06.006
– reference: Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4929–4934. IEEE (2011)
– reference: GhadiokVGoldinJRenWOn the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotorAutonom. Robots2012331–2416810.1007/s10514-012-9286-z
– reference: Zhao, S., Hu, Z., Yin, M., Ang, K.Z., Liu, P., Wang, F., Dong, X., Lin, F., Chen, B.M., Lee, T.H.: A robust real-time vision system for autonomous cargo transfer by an unmanned helicopter. IEEE Trans. Ind. Electron. 62(2) (2015)
– reference: Kim, S., Choi, S., Lee, H., Kim, H.J.: Vision-based collaborative lifting using quadrotor uavs. In: 14th International Conference on Control, Automation and Systems (ICCAS), pp. 1169–1174. IEEE (2014)
– reference: Araar, O., Aouf, N.: Visual servoing of a quadrotor uav for autonomous power lines inspection. In: 22nd Mediterranean Conference of Control and Automation (MED), pp. 1418–1424. IEEE (2014)
– reference: LiuXLinZActonSTA grid-based bayesian approach to robust visual trackingDigit. Signal Process.20122215465291392510.1016/j.dsp.2011.08.003
– reference: TroianiCMartinelliALaugierCScaramuzzaDLow computational-complexity algorithms for vision-aided inertial navigation of micro aerial vehiclesRobot. Autonom. Syst.201569809710.1016/j.robot.2014.08.006
– reference: Watanabe, Y., Lesire, C., Piquereau, A., Fabiani, P., Sanfourche, M., Le Besnerais, G.: The onera ressac unmanned autonomous helicopter: Visual air-to-ground target tracking in an urban environment. In: American Helicopter Society 66th Annual Forum (AHS 2010) (2010)
– reference: QadirASemkeWNeubertJVision based neuro-fuzzy controller for a two axes gimbal system with small uavJ. Intell. Robot. Syst.2014743–41029104710.1007/s10846-013-9865-z
– reference: Zhou, J.: Ekf based object detect and tracking for uav by using visual-attention-model. In: International Conference on Progress in Informatics and Computing (PIC), pp. 168–172. IEEE (2014)
– reference: TarhanMAltuġEA catadioptric and pan-tilt-zoom camera pair object tracking system for uavsJ. Intell. Robot. Syst.2011611–411913410.1007/s10846-010-9504-x
– reference: Shi, J., Tomasi, C.: Good features to track. In: Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600. IEEE (1994)
– reference: EberliDScaramuzzaDWeissSSiegwartRVision based position control for mavs using one single circular landmarkJ. Intell. Robot. Syst.2011611–449551210.1007/s10846-010-9494-8
– reference: Yang, J., Dani, A., Chung, S.J., Hutchinson, S.: Inertial-aided vision-based localization and mapping in a riverine environment with reflection measurements. In: AIAA Guidance, Navigation, and Control Conference. Boston (2013)
– reference: Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 15, p. 50. Manchester (1988)
– reference: Candamo, J., Kasturi, R., Goldgof, D.: Using color profiles for street detection in low-altitude uav video. In: SPIE Defense, Security, and Sensing, pp. 73,070O–73,070O. International Society for Optics and Photonics (2009)
– reference: Olivares-Mendez, M.A., Mejias, L., Campoy, P., Mellado-Bataller, I.: Quadcopter see and avoid using a fuzzy controller. In: Proceedings of the 10th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making (FLINS 2012). World Scientific (2012)
– reference: KendoulFFantoniINonamiKOptic flow-based vision system for autonomous 3d localization and control of small aerial vehiclesRobot. Autonom. Syst.200957659160210.1016/j.robot.2009.02.001
– reference: ZhaoYPeiHAn improved vision-based algorithm for unmanned aerial vehicles autonomous landingPhys. Proced.20123393594110.1016/j.phpro.2012.05.157
– reference: Nemra, A., Aouf, N.: Robust cooperative uav visual slam. In: IEEE 9th International Conference on Cybernetic Intelligent Systems (CIS), pp. 1–6. IEEE (2010)
– reference: Jeon, B., Baek, K., Kim, C., Bang, H.: Mode changing tracker for ground target tracking on aerial images from unmanned aerial vehicles (iccas 2013). In: 13th International Conference on Control, Automation and Systems (ICCAS), pp. 1849–1853. IEEE (2013)
– reference: U.S Department of Transportation: Federal Aviation Administration. https://www.faa.gov/uas/faqs/
– reference: HamelTMahonyRImage based visual servo control for a class of aerial robotic systemsAutomatica2007431119751983257292410.1016/j.automatica.2007.03.0301129.93459
– reference: Pestana, J., Sanchez-Lopez, J.L., Saripalli, S., Campoy, P.: Computer vision based general object following for gps-denied multirotor unmanned vehicles. In: American Control Conference (ACC), pp. 1886–1891. IEEE (2014)
– reference: YAMAHA: RMAX. http://rmax.yamaha-motor.com.au/features/
– reference: KimYJungWBangHVisual target tracking and relative navigation for unmanned aerial vehicles in a gps-denied environmentInt. J. Aeronaut. Space Sci.2014153258266
– reference: CannyJA computational approach to edge detectionTrans. Pattern Anal. Mach. Intell.1986667969810.1109/TPAMI.1986.4767851
– reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon next-best-view??? planner for 3d exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468. IEEE (2016)
– reference: Liming Luke ChenDRMDr Matthias SteinbauerPMosselALeichtfriedMKaltenrinerCKaufmannHSmartcopter: Enabling autonomous flight in indoor environments with a smartphone as on-board processing unitInt. J. Pervas. Comput. Commun.20141019211410.1108/IJPCC-01-2014-0010
– reference: Barajas, M., Dávalos-Viveros, J.P., Garcia-Lumbreras, S., Gordillo, J.L.: Visual servoing of uav using cuboid model with simultaneous tracking of multiple planar faces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 596–601. IEEE (2013)
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Mcfadyen, A., Mejias, L., Corke, P., Pradalier, C.: Aircraft collision avoidance using spherical visual predictive control and single point features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 50–56. IEEE (2013)
– reference: ArtiedaJSebastianJMCampoyPCorreaJFMondragónIFMartínezCOlivaresMVisual 3-d slam from uavsJ. Intell. Robot. Syst.2009554–529932110.1007/s10846-008-9304-81203.68295
– reference: HuhSShimDHA vision-based automatic landing method for fixed-wing uavsJ. Intell. Robot. Syst.2010571–421723110.1007/s10846-009-9382-2
– reference: Mahalanobis, P.C.: On the generalised distance in statistics 2(1), 49–55 (1936)
– reference: TomicTSchmidKLutzPDomelAKasseckerMMairEGrixaILRuessFSuppaMBurschkaDToward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescueIEEE Robot. Autom. Mag.2012193465610.1109/MRA.2012.2206473
– reference: Mohammed, A.D., Morris, T.: An improved camshift algorithm for object detection and extraction
– reference: Lee, D., Ryan, T., Kim, H.J.: Autonomous landing of a vtol uav on a moving platform using image-based visual servoing. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 971–976. IEEE (2012)
– reference: Watanabe, Y., Fabiani, P., Le Besnerais, G.: Towards a uav visual air-to-ground target tracking in an urban environment
– reference: Mondragon, I.F., Campoy, P., Correa, J.F., Mejias, L.: Visual model feature tracking for uav control. In: IEEE International Symposium on Intelligent Signal Processing (WISP), pp. 1–6. IEEE (2007)
– reference: NuskeSChoudhurySJainSChambersAYoderLSchererSChamberlainLCoverHSinghSAutonomous exploration and motion planning for an unmanned aerial vehicle navigating riversJ. Field Robot.20153281141116210.1002/rob.21596
– reference: Dib, A., Zaidi, N., Siguerdidjane, H.: Robust control and visual servoing of an uav. In: 17th IFAC World Congress 2008, pp. CD–ROM (2008)
– reference: Srinivasan, M.V., Thurrowgood, S., Soccol, D.: An optical system for guidance of terrain following in uavs. In: International Conference on Video and Signal Based Surveillance (AVSS), pp. 51–51. IEEE (2006)
– reference: Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-based state estimation for autonomous rotorcraft mavs in complex environments. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1758–1764. IEEE (2013)
– reference: Salazar, S., Romero, H., Gomez, J., Lozano, R.: Real-time stereo visual servoing control of an uav having eight-rotors. In: 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–11. IEEE (2009)
– reference: Gu, A., Xu, J.: Vision based ground marker fast detection for small robotic uav. In: 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 975–978. IEEE (2014)
– reference: CaballeroFMerinoLFerruzJOlleroAUnmanned aerial vehicle localization based on monocular vision and online mosaickingJ. Intell. Robot. Syst.2009554–532334310.1007/s10846-008-9305-71203.68216
– reference: Xiaoyi, D., Qinhua, Z.: Research on laser-assisted odometry of indoor uav with monocular vision. In: 3rd Annual International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), pp. 165–169. IEEE (2013)
– reference: Ahrens, S., Levine, D., Andrews, G., How, J.P.: Vision-based guidance and control of a hovering vehicle in unknown, gps-denied environments. In: International Conference on Robotics and Automation (ICRA), pp. 2643–2648. IEEE (2009)
– reference: GuenardNHamelTMahonyRA practical visual servo control for an unmanned aerial vehicleIEEE Trans. Robot.200824233134010.1109/TRO.2008.916666
– reference: Kendoul, F., Fantoni, I., Lozano, R.: Adaptive vision-based controller for small rotorcraft uavs control and guidance. In: Proceedings of the 17th IFAC world congress, pp. 6–11 (2008)
– reference: LeeJOLeeKHParkSHImSGParkJObstacle avoidance for small uavs using monocular visionAircraft Eng. Aeros. Technol.201183639740610.1108/00022661111173270
– reference: Rodriguez, J., Castiblanco, C., Mondragon, I., Colorado, J.: Low-cost quadrotor applied for visual detection of landmine-like objects. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 83–88. IEEE (2014)
– reference: TörnqvistDSchönTBKarlssonRGustafssonFParticle filter slam with high dimensional vehicle modelJ. Intell. Robot. Syst2009554–524926610.1007/s10846-008-9301-y1203.68276
– reference: LeeDKimYBangHVision-aided terrain referenced navigation for unmanned aerial vehicles using ground featuresProc. Inst. Mech. Eng. Part G: J. Aeros. Eng.2014228132399241310.1177/0954410013517804
– reference: U.S. Department of Defense: Standard practice for system safety. MIL-STD-882D (2000)
– reference: Harmat, A., Trentini, M., Sharf, I.: Multi-camera tracking and mapping for unmanned aerial vehicles in unstructured environments. J. Intell. Robot. Syst., 1–27 (2014)
– reference: Shah, S.I.A., Johnson, E.N.: 3d obstacle detection using a single camera. In: AIAA guidance, navigation, and control conference (AIAA), vol. 5678 (2009)
– reference: Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Obstacle detection and navigation planning for autonomous micro aerial vehicles. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1040–1047. IEEE (2014)
– reference: Lin, S., Garratt, M.A., Lambert, A.J.: Monocular vision-based real-time target recognition and tracking for autonomously landing an uav in a cluttered shipboard environment. Autonom Robots, 1–21 (2016)
– reference: WangCLWangTMLiangJHZhangYCZhouYBearing-only visual slam for small unmanned aerial vehicles in gps-denied environmentsInt. J. Autom. Comput.201310538739610.1007/s11633-013-0735-8
– reference: FuCOlivares-MendezMASuarez-FernandezRCampoyPMonocular visual-inertial slam-based collision avoidance strategy for fail-safe uav using fuzzy logic controllersJ. Intell. Robot. Syst.2014731–451353310.1007/s10846-013-9918-3
– reference: LeishmanRCMcLainTWBeardRWRelative navigation approach for vision-based aerial gps-denied navigationJ. Intell. Robot. Syst.2014741–29711110.1007/s10846-013-9914-7
– reference: Hrabar, S., Sukhatme, G., Corke, P., Usher, K., Roberts, J.: Combined optic-flow and stereo-based navigation of urban canyons for a uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3309–3316. IEEE (2005)
– reference: Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: IJCAI, vol. 81, pp. 674–679 (1981)
– reference: EngelJSturmJCremersDScale-aware navigation of a low-cost quadrocopter with a monocular cameraRobot. Autonom. Syst.201462111646165610.1016/j.robot.2014.03.012
– reference: MetniNHamelTA uav for bridge inspection: Visual servoing control law with orientation limitsAutom. Construct.200717131010.1016/j.autcon.2006.12.010
– reference: Jian, L., Xiao-min, L.: Vision-based navigation and obstacle detection for uav. In: International Conference on Electronics, Communications and Control (ICECC), pp. 1771–1774. IEEE (2011)
– reference: Zhang, R., Liu, H.H.: Vision-based relative altitude estimation of small unmanned aerial vehicles in target localization. In: American Control Conference (ACC), 2011, pp. 4622–4627. IEEE (2011)
– reference: SanahujaGCastilloPEmbedded laser vision system for indoor aerial autonomous navigationJ. Int. Robot. Syst.2013691–444745710.1007/s10846-012-9705-6
– reference: Pizzoli, M., Forster, C., Scaramuzza, D.: Remode: Probabilistic, monocular dense reconstruction in real time. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2609–2616. IEEE (2014)
– reference: Min, J., Jeong, Y., Kweon, I.S.: Robust visual lock-on and simultaneous localization for an unmanned aerial vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 93–100. IEEE (2010)
– reference: Cocchioni, F., Mancini, A., Longhi, S.: Autonomous navigation, landing and recharge of a quadrotor using artificial vision. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 418–429. IEEE (2014)
– reference: CarrilloLRGFlores ColungaGSanahujaGLozanoRQuad rotorcraft switching control: An application for the task of path followingIEEE Trans. Control Syst. Technol.20142241255126710.1109/TCST.2013.2284790
– reference: Asl, H.J., Oriolo, G., Bolandi, H.: An adaptive scheme for image-based visual servoing of an underactuated uav. IEEE Trans. Robot. Autom. 29(1) (2014)
– reference: Lange, S., Sunderhauf, N., Protzel, P.: A vision based onboard approach for landing and position control of an autonomous multirotor uav in gps-denied environments. In: International Conference on Advanced Robotics, 2009. ICAR 2009, pp. 1–6. IEEE (2009)
– reference: Nourani-Vatani, N., Pradalier, C.: Scene change detection for vision-based topological mapping and localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3792–3797. IEEE (2010)
– reference: Tardif, J.P., George, M., Laverne, M., Kelly, A., Stentz, A.: Vision-aided inertial navigation for power line inspection. In: 1st International Conference on Applied Robotics for the Power Industry (CARPI), pp. 1–6 (2010)
– reference: Gosiewski, Z., Ciesluk, J., Ambroziak, L.: Vision-based obstacle avoidance for unmanned aerial vehicles. In: 4th International Congress on Image and Signal Processing (CISP), vol. 4, pp. 2020–2025. IEEE (2011)
– reference: Chriette, A.: An analysis of the zero-dynamics for visual servo control of a ducted fan uav. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2515–2520. IEEE (2006)
– reference: Magree, D., Johnson, E.N.: Combined laser and vision-aided inertial navigation for an indoor unmanned aerial vehicle. In: American Control Conference (ACC), pp. 1900–1905. IEEE (2014)
– reference: Yadav, V., Wang, X., Balakrishnan, S.: Neural network approach for obstacle avoidance in 3-d environments for uavs. In: American Control Conference, pp. 6–pp. IEEE (2006)
– reference: Matrix Vision: mvBlueFOX3 Camera. https://www.matrix-vision.com/USB3-vision-camera-mvbluefox3.html
– reference: Peliti, P., Rosa, L., Oriolo, G., Vendittelli, M.: Vision-based loitering over a target for a fixed-wing uav. In: Proceedings of the 10th International IFAC Symposium on Robot Control (2012)
– reference: ZhangXXianBZhaoBZhangYAutonomous flight control of a nano quadrotor helicopter in a gps-denied environment using on-board visionIEEE Trans. Ind. Electron.201562106392640310.1109/TIE.2015.2420036
– reference: Piasco, N., Marzat, J., Sanfourche, M.: Collaborative localization and formation flying using distributed stereo-vision. In: IEEE International Conference on Robotics and Automation. Stockholm (2016)
– reference: AvellarGSPereiraGAPimentaLCIscoldPMulti-uav routing for area coverage and remote sensing with minimum timeSensors2015151127,78327,80310.3390/s151127783
– reference: Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Autonomous obstacle avoidance and maneuvering on a vision-guided mav using on-board processing. In: IEEE international conference on Robotics and automation (ICRA), pp. 2472–2477. IEEE (2011)
– reference: WangTWangCLiangJZhangYRao-blackwellized visual slam for small uavs with vehicle model partitionIndus. Robot: Int. J.201441326627410.1108/IR-07-2013-378
– reference: Zhao, S., Lin, F., Peng, K., Chen, B.M., Lee, T.H.: Homography-based vision-aided inertial navigation of uavs in unknown environments. In: AIAA Guidance, Navigation, and Control Conference (2012)
– reference: AzinheiraJRRivesPImage-based visual servoing for vanishing features and ground lines tracking: Application to a uav automatic landingInt. J. Optomechatron.20082327529510.1080/15599610802303314
– reference: Schmid, K., Tomic, T., Ruess, F., Hirschmuller, H., Suppa, M.: Stereo vision based indoor/outdoor navigation for flying robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3955–3962. IEEE (2013)
– reference: FuCDuanRKircaliDKayacanEOnboard robust visual tracking for uavs using a reliable global-local object modelSensors2016169140610.3390/s16091406
– reference: Huh, S., Shim, D.H., Kim, J.: Integrated navigation system using camera and gimbaled laser scanner for indoor and outdoor autonomous flight of uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3158–3163. IEEE (2013)
– reference: Loianno, G., Thomas, J., Kumar, V.: Cooperative localization and mapping of mavs using rgb-d sensors. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4021–4028. IEEE (2015)
– reference: Gaszczak, A., Breckon, T.P., Han, J.: Real-time people and vehicle detection from uav imagery. In: IS&T/SPIE Electronic Imaging, pp. 78,780B–78,780B. International Society for Optics and Photonics (2011)
– reference: KendoulFSurvey of advances in guidance, navigation, and control of unmanned rotorcraft systemsJ. Field Robot.201229231537810.1002/rob.20414
– reference: Yuan, C., Recktenwald, F., Mallot, H.A.: Visual steering of uav in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3906–3911. IEEE (2009)
– reference: Max Botix: XL-MaxSonar-EZ4 Ultrasonic Sensor. http://www.maxbotix.com
– reference: Huang, H.-M.: Autonomy levels for unmanned systems (ALFUS) framework, volume I: Terminology, Version 2.0 (2008)
– reference: TippettsBJLeeDJFowersSGArchibaldJKReal-time vision sensor for an autonomous hovering micro unmanned aerial vehicleJ. Aeros. Comput. Inf. Commun.200961057058410.2514/1.40185
– reference: Loianno, G., Watterson, M., Kumar, V.: Visual inertial odometry for quadrotors on se (3). In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1544–1551. IEEE (2016)
– reference: Jama, M., Schinstock, D.: Parallel tracking and mapping for controlling vtol airframe. J. Control Sci. Eng. 2011, 26 (2011)
– reference: Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol. 73. Springer Science & Business Media (2011)
– reference: Lee, S.J., Kim, J.H.: Development of a quadrocoptor robot with vision and ultrasonic sensors for distance sensing and mapping. In: Robot Intelligence Technology and Applications 2012, pp. 477–484. Springer (2013)
– reference: Valavanis, K.P.: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, vol. 33. Springer Science & Business Media (2008)
– reference: Byrne, J., Cosgrove, M., Mehra, R.: Stereo based obstacle detection for an unmanned air vehicle. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2830–2835. IEEE (2006)
– reference: Forster, C., Faessler, M., Fontana, F., Werlberger, M., Scaramuzza, D.: Continuous on-board monocular-vision-based elevation mapping applied to autonomous landing of micro aerial vehicles. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 111–118. IEEE (2015)
– reference: CoverTHartPNearest neighbor pattern classificationIEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.10539640154.44505
– reference: Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: AAAI/IAAI, pp. 593–598 (2002)
– reference: Wang, T., Wang, C., Liang, J., Chen, Y., Zhang, Y.: Vision-aided inertial navigation for small unmanned aerial vehicles in gps-denied environments. Int. J. Adv. Robot. Syst. (2013)
– reference: Araar, O., Aouf, N.: A new hybrid approach for the visual servoing of vtol uavs from unknown geometries. In: IEEE 22nd Mediterranean Conference of Control and Automation (MED), pp. 1425–1432. IEEE (2014)
– reference: Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: Fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)
– reference: Watanabe, Y., Fabiani, P., Le Besnerais, G.: Simultaneous visual target tracking and navigation in a gps-denied environment. In: International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2009)
– reference: Fahimi, F., Thakur, K.: An alternative closed-loop vision-based control approach for unmanned aircraft systems with application to a quadrotor. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 353–358. IEEE (2013)
– reference: Saif, A.S., Prabuwono, A.S., Mahayuddin, Z.R.: Real time vision based object detection from uav aerial images: A conceptual framework. In: Intelligent Robotics Systems: Inspiring the NEXT, pp. 265–274. Springer (2013)
– reference: MagreeDMooneyJGJohnsonENMonocular visual mapping for obstacle avoidance on uavsJ. Intell. Robot. Syst.2014741–2172610.1007/s10846-013-9967-7
– reference: Cichella, V., Kaminer, I., Dobrokhodov, V., Hovakimyan, N.: Coordinated vision-based tracking for multiple uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 656–661. IEEE (2015)
– reference: ShadowAir: Super Bat ShadowAir. http://www.shadowair.com
– reference: Li, Z., Ding, J.: Ground moving target tracking control system design for uav surveillance. In: IEEE International Conference on Automation and Logistics, pp. 1458–1463. IEEE (2007)
– reference: Association Unmanned Aerial Vehicle Systems: Civil and Commercial UAS Applications. https://www.uavs.org/commercial
– reference: CarrilloLRGLópezAEDLozanoRPégardCCombining stereo vision and inertial navigation system for a quad-rotor uavJ. Intelli. Robot. Syst.2012651-437338710.1007/s10846-011-9571-7
– reference: Burri, M., Oleynikova, H., Achtelik, M.W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 1872–1878. IEEE (2015)
– reference: Le Bras, F., Mahony, R., Hamel, T., Binetti, P.: Adaptive filtering and image based visual servo control of a ducted fan flying robot. In: 45th IEEE Conference on Decision and Control, pp. 1751–1757. IEEE (2006)
– reference: MaierJHumenbergerMMovement detection based on dense optical flow for unmanned aerial vehiclesInt. J. Adv. Robot. Syst.20131011110.5772/52764
– reference: MajidiBBab-HadiasharAAerial tracking of elongated objects in rural environmentsMach. Vis. Appl.2009201233410.1007/s00138-007-0102-2
– reference: ChowdharyGJohnsonENMagreeDWuASheinAGps-denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraftJ. Field Robot.201330341543810.1002/rob.21454
– reference: TeraRanger: TeraRanger Rotating Lidar. http://www.teraranger.com/products/teraranger-lidar/
– reference: U.K Ministry of Defence: Unmanned Aircraft Systems: Terminology, Definitions and Classification
– reference: HarmatATrentiniMSharfIMulti-camera tracking and mapping for unmanned aerial vehicles in unstructured environmentsJ. Intell. Robot. Syst.201578229131710.1007/s10846-014-0085-y
– reference: Fucen, Z., Haiqing, S., Hong, W.: The object recognition and adaptive threshold selection in the vision system for landing an unmanned aerial vehicle. In: International Conference on Information and Automation (ICIA), pp. 117–122. IEEE (2009)
– reference: HutchinsonSHagerGDCorkePIA tutorial on visual servo controlIEEE Trans. Robot. Autom.199612565167010.1109/70.538972
– reference: Zou, J.T., Tseng, Y.C.: Visual track system applied in quadrotor aerial robot. In: 2012 Third International Conference on Digital Manufacturing and Automation (ICDMA), pp. 1025–1028. IEEE (2012)
– reference: Sa, I., Hrabar, S., Corke, P.: Inspection of pole-like structures using a vision-controlled vtol uav and shared autonomy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4819–4826. IEEE (2014)
– reference: Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct ekf-based approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 298–304. IEEE (2015)
– reference: Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for a quadrotor using a virtual spring approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5670–5676. IEEE (2011)
– reference: Mejias, L., Correa, J.F., Mondragón, I., Campoy, P.: Colibri: A vision-guided uav for surveillance and visual inspection (2007)
– reference: SchmidKLutzPTomićTMairEHirschmüllerHAutonomous vision-based micro air vehicle for indoor and outdoor navigationJ. Field Robot.201431453757010.1002/rob.21506
– reference: Alkowatly, M.T., Becerra, V.M., Holderbaum, W.: Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J. Guid. Control Dyn., 1–14 (2014)
– reference: Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media (2010)
– reference: BrysonMSukkariehSBuilding a robust implementation of bearing-only inertial slam for a uavJ. Field Robot.2007241–211314310.1002/rob.20178
– reference: Ascending Technologies: AscTec NEO. http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/
– reference: Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular multi-sensor fusion approach applied to mav navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929. IEEE (2013)
– reference: BoṡnakMMatkoDBlaŻiċSQuadrocopter hovering using position-estimation information from inertial sensors and a high-delay video systemJ. Intell. Robot. Syst.2012671436010.1007/s10846-011-9646-5
– reference: MillsSJFordJJMejíasLVision based control for fixed wing uavs inspecting locally linear infrastructure using skid-to-turn maneuversJ. Intell. Robot. Syst.2011611–4294210.1007/s10846-010-9480-1
– volume: 33
  start-page: 41
  issue: 1–2
  year: 2012
  ident: 483_CR45
  publication-title: Autonom. Robots
  doi: 10.1007/s10514-012-9286-z
– ident: 483_CR109
  doi: 10.1109/ROBOT.2009.5152680
– volume: 32
  start-page: 1141
  issue: 8
  year: 2015
  ident: 483_CR150
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21596
– ident: 483_CR32
  doi: 10.1109/CDC.2006.376767
– ident: 483_CR2
– volume: 55
  start-page: 62
  issue: 1
  year: 2007
  ident: 483_CR73
  publication-title: Robot. Autonom. Syst.
  doi: 10.1016/j.robot.2006.06.006
– ident: 483_CR114
  doi: 10.1109/ROBOT.2006.1642134
– ident: 483_CR122
  doi: 10.1007/978-3-642-40409-2_23
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 483_CR60
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 483_CR15
– ident: 483_CR120
  doi: 10.1109/PIC.2014.6972318
– ident: 483_CR123
  doi: 10.1117/12.876663
– ident: 483_CR139
  doi: 10.2514/6.2012-5033
– ident: 483_CR56
  doi: 10.1109/IROS.2013.6696917
– ident: 483_CR55
  doi: 10.1109/ICRA.2015.7138988
– volume: 62
  start-page: 6392
  issue: 10
  year: 2015
  ident: 483_CR83
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2420036
– ident: 483_CR88
  doi: 10.1109/ICRA.2016.7487292
– volume: 57
  start-page: 217
  issue: 1–4
  year: 2010
  ident: 483_CR37
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-009-9382-2
– ident: 483_CR27
  doi: 10.3182/20120905-3-HR-2030.00036
– ident: 483_CR44
– ident: 483_CR101
– ident: 483_CR98
  doi: 10.2514/6.2009-5678
– ident: 483_CR110
  doi: 10.1109/CVPR.1994.323794
– ident: 483_CR90
  doi: 10.1109/ICRA.2016.7487251
– ident: 483_CR20
  doi: 10.1007/978-3-642-20144-8
– ident: 483_CR67
  doi: 10.1109/IROS.2010.5650725
– ident: 483_CR36
  doi: 10.1109/ICRA.2012.6224828
– ident: 483_CR52
  doi: 10.1007/s10846-014-0085-y
– volume: 16
  start-page: 1406
  issue: 9
  year: 2016
  ident: 483_CR136
  publication-title: Sensors
  doi: 10.3390/s16091406
– ident: 483_CR8
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 483_CR62
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: 483_CR71
– volume: 10
  start-page: 387
  issue: 5
  year: 2013
  ident: 483_CR65
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-013-0735-8
– volume: 2
  start-page: 275
  issue: 3
  year: 2008
  ident: 483_CR24
  publication-title: Int. J. Optomechatron.
  doi: 10.1080/15599610802303314
– ident: 483_CR11
  doi: 10.1109/MED.2014.6961576
– ident: 483_CR96
  doi: 10.1109/CISP.2011.6100621
– ident: 483_CR105
  doi: 10.1109/AVSS.2006.23
– ident: 483_CR85
  doi: 10.1109/IROS.2015.7353389
– ident: 483_CR4
  doi: 10.6028/NIST.SP.1011-I-2.0
– ident: 483_CR116
  doi: 10.1109/ICUAS.2014.6842242
– ident: 483_CR152
  doi: 10.1109/IROS.2015.7353622
– ident: 483_CR121
– volume: 73
  start-page: 513
  issue: 1–4
  year: 2014
  ident: 483_CR58
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9918-3
– ident: 483_CR75
  doi: 10.2514/6.2013-5246
– ident: 483_CR140
  doi: 10.1109/ICUAS.2014.6842282
– volume: 33
  start-page: 935
  year: 2012
  ident: 483_CR47
  publication-title: Phys. Proced.
  doi: 10.1016/j.phpro.2012.05.157
– volume: 78
  start-page: 291
  issue: 2
  year: 2015
  ident: 483_CR84
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-014-0085-y
– ident: 483_CR50
  doi: 10.1109/IROS.2012.6385934
– volume: 55
  start-page: 323
  issue: 4–5
  year: 2009
  ident: 483_CR79
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-008-9305-7
– volume: 61
  start-page: 495
  issue: 1–4
  year: 2011
  ident: 483_CR41
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-010-9494-8
– volume: 19
  start-page: 46
  issue: 3
  year: 2012
  ident: 483_CR137
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2012.2206473
– ident: 483_CR3
– ident: 483_CR31
  doi: 10.1109/ROBOT.2006.1642080
– volume: 83
  start-page: 397
  issue: 6
  year: 2011
  ident: 483_CR99
  publication-title: Aircraft Eng. Aeros. Technol.
  doi: 10.1108/00022661111173270
– volume: 22
  start-page: 54
  issue: 1
  year: 2012
  ident: 483_CR128
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2011.08.003
– volume: 69
  start-page: 447
  issue: 1–4
  year: 2013
  ident: 483_CR145
  publication-title: J. Int. Robot. Syst.
  doi: 10.1007/s10846-012-9705-6
– ident: 483_CR115
  doi: 10.1109/ICCAS.2013.6704242
– ident: 483_CR95
  doi: 10.1109/CYBER.2013.6705439
– ident: 483_CR91
  doi: 10.1109/ICUAS.2014.6842355
– ident: 483_CR104
  doi: 10.1109/ACC.2006.1657288
– ident: 483_CR135
  doi: 10.1007/s10514-016-9564-2
– ident: 483_CR14
– ident: 483_CR39
  doi: 10.3182/20080706-5-KR-1001.00966
– volume: 17
  start-page: 3
  issue: 1
  year: 2007
  ident: 483_CR29
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2006.12.010
– ident: 483_CR144
  doi: 10.1109/CARPI.2010.5624435
– volume: 61
  start-page: 29
  issue: 1–4
  year: 2011
  ident: 483_CR26
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-010-9480-1
– ident: 483_CR61
  doi: 10.1109/ACC.2014.6858995
– ident: 483_CR76
  doi: 10.1109/ACC.2011.5991109
– volume: 22
  start-page: 1255
  issue: 4
  year: 2014
  ident: 483_CR141
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2284790
– ident: 483_CR6
– volume: 30
  start-page: 415
  issue: 3
  year: 2013
  ident: 483_CR82
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21454
– ident: 483_CR46
  doi: 10.1109/ICINFA.2009.5204904
– ident: 483_CR149
  doi: 10.1109/ICRA.2016.7487281
– volume: 10
  start-page: 1
  year: 2013
  ident: 483_CR125
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/52764
– ident: 483_CR133
  doi: 10.1109/TIE.2014.2345348
– volume: 6
  start-page: 570
  issue: 10
  year: 2009
  ident: 483_CR146
  publication-title: J. Aeros. Comput. Inf. Commun.
  doi: 10.2514/1.40185
– volume: 55
  start-page: 249
  issue: 4–5
  year: 2009
  ident: 483_CR69
  publication-title: J. Intell. Robot. Syst
  doi: 10.1007/s10846-008-9301-y
– ident: 483_CR38
  doi: 10.1109/ICEEE.2009.5393423
– volume: 69
  start-page: 80
  year: 2015
  ident: 483_CR87
  publication-title: Robot. Autonom. Syst.
  doi: 10.1016/j.robot.2014.08.006
– ident: 483_CR43
– volume: 31
  start-page: 537
  issue: 4
  year: 2014
  ident: 483_CR51
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21506
– ident: 483_CR64
  doi: 10.1109/IROS.2013.6696805
– ident: 483_CR100
– ident: 483_CR97
  doi: 10.1109/IROS.2009.5354361
– ident: 483_CR68
  doi: 10.1155/2011/413074
– volume: 228
  start-page: 2399
  issue: 13
  year: 2014
  ident: 483_CR142
  publication-title: Proc. Inst. Mech. Eng. Part G: J. Aeros. Eng.
  doi: 10.1177/0954410013517804
– ident: 483_CR5
  doi: 10.1007/978-1-4020-6114-1
– ident: 483_CR103
  doi: 10.1109/ROBOT.2006.1642130
– ident: 483_CR9
– ident: 483_CR1
– ident: 483_CR77
  doi: 10.1109/IROS.2010.5652556
– volume: 12
  start-page: 651
  issue: 5
  year: 1996
  ident: 483_CR19
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.538972
– volume: 15
  start-page: 27,783
  issue: 11
  year: 2015
  ident: 483_CR151
  publication-title: Sensors
  doi: 10.3390/s151127783
– ident: 483_CR108
– ident: 483_CR34
  doi: 10.1109/IROS.2013.6696412
– volume: 10
  start-page: 92
  issue: 1
  year: 2014
  ident: 483_CR74
  publication-title: Int. J. Pervas. Comput. Commun.
  doi: 10.1108/IJPCC-01-2014-0010
– volume: 74
  start-page: 97
  issue: 1–2
  year: 2014
  ident: 483_CR53
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9914-7
– volume: 74
  start-page: 17
  issue: 1–2
  year: 2014
  ident: 483_CR94
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9967-7
– ident: 483_CR21
  doi: 10.2316/Journal.206.2014.1.206-3942
– volume: 61
  start-page: 119
  issue: 1–4
  year: 2011
  ident: 483_CR126
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-010-9504-x
– ident: 483_CR23
  doi: 10.1109/MED.2014.6961575
– volume: 57
  start-page: 591
  issue: 6
  year: 2009
  ident: 483_CR40
  publication-title: Robot. Autonom. Syst.
  doi: 10.1016/j.robot.2009.02.001
– volume: 15
  start-page: 258
  issue: 3
  year: 2014
  ident: 483_CR113
  publication-title: Int. J. Aeronaut. Space Sci.
  doi: 10.5139/IJASS.2014.15.3.258
– ident: 483_CR124
  doi: 10.1109/ICAL.2007.4338800
– ident: 483_CR16
– volume: 20
  start-page: 23
  issue: 1
  year: 2009
  ident: 483_CR127
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-007-0102-2
– volume: 62
  start-page: 1646
  issue: 11
  year: 2014
  ident: 483_CR81
  publication-title: Robot. Autonom. Syst.
  doi: 10.1016/j.robot.2014.03.012
– ident: 483_CR117
  doi: 10.1109/ICSESS.2014.6933728
– volume: 67
  start-page: 43
  issue: 1
  year: 2012
  ident: 483_CR147
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-011-9646-5
– volume: 6
  start-page: 679
  year: 1986
  ident: 483_CR78
  publication-title: Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– ident: 483_CR92
  doi: 10.1109/IROS.2013.6696922
– ident: 483_CR80
  doi: 10.1007/978-3-642-37374-9_46
– ident: 483_CR111
– volume: 24
  start-page: 113
  issue: 1–2
  year: 2007
  ident: 483_CR72
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20178
– ident: 483_CR119
  doi: 10.1109/IROS.2011.6094404
– ident: 483_CR118
  doi: 10.1109/ICDMA.2012.240
– ident: 483_CR35
  doi: 10.1109/ICUAS.2013.6564708
– volume: 41
  start-page: 266
  issue: 3
  year: 2014
  ident: 483_CR59
  publication-title: Indus. Robot: Int. J.
  doi: 10.1108/IR-07-2013-378
– ident: 483_CR33
  doi: 10.1109/ICCAS.2014.6987736
– volume: 65
  start-page: 373
  issue: 1-4
  year: 2012
  ident: 483_CR12
  publication-title: J. Intelli. Robot. Syst.
  doi: 10.1007/s10846-011-9571-7
– ident: 483_CR70
  doi: 10.5244/C.2.23
– ident: 483_CR102
  doi: 10.1109/ICECC.2011.6066586
– ident: 483_CR93
  doi: 10.1109/ICRA.2011.5980095
– ident: 483_CR86
  doi: 10.1109/ICRA.2013.6630808
– volume: 55
  start-page: 299
  issue: 4–5
  year: 2009
  ident: 483_CR48
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-008-9304-8
– ident: 483_CR134
  doi: 10.1109/IROS.2015.7353442
– ident: 483_CR10
  doi: 10.1109/ROBOT.2007.363883
– ident: 483_CR25
  doi: 10.1109/IROS.2014.6943247
– volume: 74
  start-page: 1029
  issue: 3–4
  year: 2014
  ident: 483_CR131
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9865-z
– ident: 483_CR13
– ident: 483_CR129
  doi: 10.1117/12.818717
– ident: 483_CR22
  doi: 10.1109/ICRA.2011.5979645
– ident: 483_CR130
  doi: 10.1109/ACC.2014.6858831
– ident: 483_CR7
– ident: 483_CR42
  doi: 10.3182/20080706-5-KR-1001.00137
– ident: 483_CR49
  doi: 10.1002/rob.21581
– ident: 483_CR17
  doi: 10.1007/978-1-84882-935-0
– volume: 24
  start-page: 331
  issue: 2
  year: 2008
  ident: 483_CR28
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2008.916666
– ident: 483_CR57
  doi: 10.1109/ICRA.2014.6907233
– volume: 43
  start-page: 1975
  issue: 11
  year: 2007
  ident: 483_CR30
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.03.030
– ident: 483_CR106
  doi: 10.1109/IROS.2005.1544998
– ident: 483_CR132
  doi: 10.1109/WISP.2007.4447629
– volume: 29
  start-page: 315
  issue: 2
  year: 2012
  ident: 483_CR18
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20414
– ident: 483_CR148
  doi: 10.2514/6.2007-6749
– ident: 483_CR112
  doi: 10.1109/IROS.2013.6696331
– ident: 483_CR63
– ident: 483_CR143
  doi: 10.1109/IROS.2014.6943040
– ident: 483_CR54
  doi: 10.1109/ICRA.2014.6906584
– ident: 483_CR89
  doi: 10.1109/ICRA.2015.7139761
– ident: 483_CR66
  doi: 10.1109/UKRICIS.2010.5898125
– ident: 483_CR138
  doi: 10.5772/56660
– ident: 483_CR107
  doi: 10.1142/9789814417747_0199
SSID ssj0009859
Score 2.5806606
Snippet During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141
SubjectTerms Artificial Intelligence
Attitude control
Autonomy
Computer vision
Control
Control Engineering
Electrical Engineering
Engineering
Literature reviews
Mechanical Engineering
Mechatronics
Obstacle avoidance
Platforms
Pose estimation
Reglerteknik
Robotics
Target detection
Tracking
Trends
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoe9EUpbEmXNr6N6fBBhjhX9hbSpJXB6GTtBu6vN-nHVkUFfSs0vYb7yF17d78DuPRdQU0DpuUz3LZsO9DnIHOkvqIuFm0WZjjb3qPT77ujEXvK-7jjotq9SEmmJ3Wp2U37SsucqgYG3Vpuwpb2dq6Z1_A88NZIu247A9jD-jsZM1qkMr8j8dkZrSPMVVL0C4Bo6nR61X9tdx_28hgTdTKlOICNIKpBtZjfgHJzrsFuCYzwELqD-WwRvKNphFZLvbTzHOnAFg07XnyLcjgnVKo1ipGIFMpqa49g2Lt_6T5Y-YgFS9oUJ1bLZ02FzZ9Q6ivlEEJCRzIS6kCIKqFDm5Dp3UvhKKba2o_ZobZXKals-swmriDHUImmUXACiClfMp8REdiOHTZDn7YUxo5gbmBSi6QOzYLXXOb442YMxoSvkZMNy7hmGTcs48s6XK8eecvAN35b3CgEyHM7jHnLgNNgQhy7DjeFnEq3fyZ2lcl99V4Dw3039jp8Onvlk2TOTW8lPf0T1TPYwalCmGrfBlSS2Tw4h225SMbx7CJV4w-GXuua
  priority: 102
  providerName: Springer Nature
Title Survey on Computer Vision for UAVs: Current Developments and Trends
URI https://link.springer.com/article/10.1007/s10846-017-0483-z
https://www.proquest.com/docview/1902823374
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61786
Volume 87
WOSCitedRecordID wos000402236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1wfSw56UYK7SZs0XmR9ISjL4moRL6FNWhGkq9tdQX-9SZvuroJevIRC06ZkJjPTeXwDsBcHEbMFmDgWxMeelxg5KLgyVywgkS_SEmc7vOHtdvDwIDrO4Za7tMpKJhaCWveU9ZEfNS3MCKGUeyevb9h2jbLRVddCYxpmLUpCs0jd645BdwO_xNoj5peZCFZFNcvSOaN5sZXRFlQdf37XS2NjcxQf_YElWuify6X_fvkyLDrLE7VKVlmBqSRbhaWqqwNyh3wVFiYgCtfgrDvsvycfqJeh0dSwqEdHxtxF960wP0YO5AlNZCDlKMo0KjNu1-H-8uLu7Aq7xgtYeYwMcDMWDU2sf5TFWnNKacqVoKkxj5iOjMGTCrNpKuJaaN9oNy81p1gpphqx8GgQ0Q2YyXpZsglI6FiJWNAo8biXNtKYNTUhPBJBYgOOtAaNatulcqjktjnGixzjKVtKSUMpaSklP2twMHrktYTk-GvyTkUU6U5nLscUqcFhRd-J27-_bL9kgdG6Fpz7_DlsyV7_Sb4MhtJWXLKtvxfdhnlSMJ5N-t2BmUF_mOzCnHofPOf9OsyeXrQ7t3WYvua4XjC0GTv-oxlvu-EXa-753A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xgLS7B14L2vJYfIALK4vWTu0YCaEKFoFaKiSg4mYSO0FIKGWbFgQ_it-IJ4-2IMGNAzdLcWwl_mbG9sx8A7AR-oHABEwaKlannhc5PaikcS3hs6Cu4pxnu9OS7bZ_ealOJ-C5zIXBsMpSJ2aK2nYN3pFv15BmhHEuvb27_xSrRqF3tSyhkcOiGT0-uCNbunt84NZ3k7HDf-f7R7SoKkCNJ1if1kJVtQwv_0RoreScx9IoHjvbL2zgrHmsHKpNIK2ydae6vdhB1BhhqqHyuB9wN-43mHJNiXLVlHRE8uvXc24_5o7oTInSi5qn6jlLT9EmIIk7fXptB0eb26E_9g13aWbvDme_2p-ag5liZ00auSjMw0SULMBsWbWCFEpsAX6OUTD-gv2zQe8-eiTdhAy7drJ8e-K28-Si0Ul3SEFiRcYirFISJJbkEcWLcPEpH7YEk0k3iX4DUTY0KlQ8iDzpxdU4FDXLmAyUH6FDlVegWi6zNgXrOhb_uNUjvmhEhnbI0IgM_VSBreErdznlyEedV0sQ6EL7pHqEgAr8LfE09vj9wTZzyA3nRfLxg5tOQ3d71_q2P9CYUSqWP550Hb4fnZ-0dOu43VyBHywDPQY4r8JkvzeI1mDa3Pdv0t6fTHwIXH02Cl8A_aRQwQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xsEJwgOUlymt9gMuiiNZO7BgJoYpSgUBVpYUKcTGJnSAklELTguCn8evw5NEWpOXGYW-R4tiK_Xlm7Jn5BmA79AOOCZhOKKnnuG5k5aAU2j5xnwaejHOe7c65aLX8qyvZnoC3MhcGwypLmZgJatPVeEe-V0OaEcqYcPfiIiyi3WgePjw6WEEKPa1lOY0cImfRy7M9vqUHpw271juUNo8vjk6cosKAo11O-04tlFVD8SKQh8YIxlgstGSxtQO4Caxmj6VFuA6EkcazYtyNLVy15roaSpf5AbP9_oApYc-YGE7Y9q5HhL--l_P8UXtcp5KXHtU8bc9qfQf1AxK6O68fdeLI0B36Zj_xmGa6rzn_P8_aL5grLG5Sz7fIAkxEySLMl9UsSCHcFmF2jJpxCY7-DnpP0QvpJmTYtJPl4RNr5pPLeifdJwW5FRmLvEpJkBiSRxovw-W3_NgKTCbdJFoFIk2oZShZELnCjatxyGuGUhFIP0JHK6tAtVxypQs2diwKcq9GPNKIEmVRohAl6rUCf4afPORUJF813igBoQqplKoRGiqwW2Jr7PW_O9vJ4TccF0nJG3eduur2btV9f6Aw05SvfT3ob5i24FPnp62zdZihGf4x7nkDJvu9QbQJP_VT_y7tbWU7icDNd4PwHR4JWeU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+Computer+Vision+for+UAVs%3A+Current+Developments+and+Trends&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.date=2017-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=87&rft.issue=1&rft.spage=141&rft.epage=168&rft_id=info:doi/10.1007%2Fs10846-017-0483-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon