Survey on Computer Vision for UAVs: Current Developments and Trends
During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial platforms. The major challenge today is the development of autonomously operating aerial agents capable of completing missions independently of hum...
Saved in:
| Published in: | Journal of intelligent & robotic systems Vol. 87; no. 1; pp. 141 - 168 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.07.2017
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0921-0296, 1573-0409, 1573-0409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial platforms. The major challenge today is the development of autonomously operating aerial agents capable of completing missions independently of human interaction. To this extent, visual sensing techniques have been integrated in the control pipeline of the UAVs in order to enhance their navigation and guidance skills. The aim of this article is to present a comprehensive literature review on vision based applications for UAVs focusing mainly on current developments and trends. These applications are sorted in different categories according to the research topics among various research groups. More specifically vision based position-attitude control, pose estimation and mapping, obstacle detection as well as target tracking are the identified components towards autonomous agents. Aerial platforms could reach greater level of autonomy by integrating all these technologies onboard. Additionally, throughout this article the concept of fusion multiple sensors is highlighted, while an overview on the challenges addressed and future trends in autonomous agent development will be also provided. |
|---|---|
| AbstractList | During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial platforms. The major challenge today is the development of autonomously operating aerial agents capable of completing missions independently of human interaction. To this extent, visual sensing techniques have been integrated in the control pipeline of the UAVs in order to enhance their navigation and guidance skills. The aim of this article is to present a comprehensive literature review on vision based applications for UAVs focusing mainly on current developments and trends. These applications are sorted in different categories according to the research topics among various research groups. More specifically vision based position-attitude control, pose estimation and mapping, obstacle detection as well as target tracking are the identified components towards autonomous agents. Aerial platforms could reach greater level of autonomy by integrating all these technologies onboard. Additionally, throughout this article the concept of fusion multiple sensors is highlighted, while an overview on the challenges addressed and future trends in autonomous agent development will be also provided. |
| Author | Nikolakopoulos, George Kanellakis, Christoforos |
| Author_xml | – sequence: 1 givenname: Christoforos surname: Kanellakis fullname: Kanellakis, Christoforos email: christoforos.kanellakis@ltu.se organization: Luleå University of Technology – sequence: 2 givenname: George surname: Nikolakopoulos fullname: Nikolakopoulos, George organization: Luleå University of Technology |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61786$$DView record from Swedish Publication Index |
| BookMark | eNp9kFtLwzAYhoNMcJv-AO8C3lrNoU0a70bnCQZeuO02pG06OramJulk-_VmdIIIepV84XnD-z0jMGhMowG4xugOI8TvHUZpzCKEeYTilEaHMzDECadhQmIAhkgQHCEi2AUYObdGCIk0EUOQvXd2p_fQNDAz27bz2sJl7eowV8bCxWTpHmDWWasbD6d6pzem3Ya7g6op4Tw8l-4SnFdq4_TV6RyDxdPjPHuJZm_Pr9lkFhUxIz7CuUAlwVRTlpclp5RWvBC0IgljpSKcViJULxQvRZnEHMcVo2lRsALlIqapomNw2__rPnXb5bK19VbZvTSqltN6OZHGruTGd5JhnrKA3_R4a81Hp52Xa9PZJjSUWCCSEkp5HCjeU4U1zlldyaL2ygcB3qp6IzGSR8GyFyyDYHkULA8hiX8lvwv9lyGnFQLbrLT90enP0BfMho89 |
| CitedBy_id | crossref_primary_10_1016_j_procs_2018_07_280 crossref_primary_10_3390_drones8060264 crossref_primary_10_1016_j_engappai_2022_105036 crossref_primary_10_1016_j_micpro_2022_104469 crossref_primary_10_1016_j_techfore_2022_121487 crossref_primary_10_1080_02286203_2021_1952386 crossref_primary_10_1109_ACCESS_2018_2876762 crossref_primary_10_3390_electronics10172125 crossref_primary_10_1007_s00500_019_04574_3 crossref_primary_10_1109_JSYST_2019_2941452 crossref_primary_10_1155_are_6096671 crossref_primary_10_3390_s20082241 crossref_primary_10_1109_ACCESS_2025_3529754 crossref_primary_10_1016_j_jprocont_2020_01_012 crossref_primary_10_3390_drones9090614 crossref_primary_10_1109_ACCESS_2022_3181377 crossref_primary_10_1007_s10489_022_03727_6 crossref_primary_10_1109_ACCESS_2024_3379142 crossref_primary_10_1016_j_ast_2019_105306 crossref_primary_10_1007_s43154_023_00097_w crossref_primary_10_1109_ACCESS_2021_3077591 crossref_primary_10_1016_j_ast_2021_106891 crossref_primary_10_1016_j_inffus_2024_102369 crossref_primary_10_1109_LRA_2023_3339064 crossref_primary_10_1007_s13272_020_00475_6 crossref_primary_10_1007_s10462_020_09943_1 crossref_primary_10_1109_LRA_2019_2930496 crossref_primary_10_1109_ACCESS_2018_2831911 crossref_primary_10_1016_j_adhoc_2022_102844 crossref_primary_10_1109_ACCESS_2020_2980359 crossref_primary_10_1155_2021_7826845 crossref_primary_10_3390_s21041115 crossref_primary_10_3390_s21041079 crossref_primary_10_1007_s10846_019_01042_w crossref_primary_10_1007_s10846_021_01540_w crossref_primary_10_1109_ACCESS_2019_2945545 crossref_primary_10_1109_TAES_2023_3328853 crossref_primary_10_1109_TII_2020_2974485 crossref_primary_10_1109_ACCESS_2021_3097945 crossref_primary_10_3390_s21093175 crossref_primary_10_1007_s10686_019_09635_x crossref_primary_10_1177_1351010X20917856 crossref_primary_10_3390_agronomy11061069 crossref_primary_10_1109_ACCESS_2019_2918578 crossref_primary_10_1007_s42044_020_00060_4 crossref_primary_10_1016_j_ymssp_2022_109958 crossref_primary_10_3390_drones7120704 crossref_primary_10_1109_SR_2025_3597582 crossref_primary_10_3390_s18093010 crossref_primary_10_1109_ACCESS_2020_3048194 crossref_primary_10_3390_app8112169 crossref_primary_10_1177_01423312211037618 crossref_primary_10_1002_rob_22189 crossref_primary_10_1007_s11370_022_00452_4 crossref_primary_10_1016_j_isatra_2021_02_043 crossref_primary_10_3390_s19092165 crossref_primary_10_3390_ijgi10100673 crossref_primary_10_1007_s12555_020_2049_4 crossref_primary_10_20965_jrm_2021_p0263 crossref_primary_10_3390_drones8080389 crossref_primary_10_1155_2020_7362952 crossref_primary_10_3390_asi6040068 crossref_primary_10_1016_j_vehcom_2022_100552 crossref_primary_10_3390_app9214552 crossref_primary_10_1007_s10846_022_01657_6 crossref_primary_10_1007_s11042_023_16195_y crossref_primary_10_1016_j_mechatronics_2023_103033 crossref_primary_10_1109_MPOT_2018_2850386 crossref_primary_10_1007_s10846_023_01824_3 crossref_primary_10_1007_s40435_020_00737_5 crossref_primary_10_1016_j_actaastro_2018_09_022 crossref_primary_10_1109_ACCESS_2020_3028195 crossref_primary_10_3390_app9153196 crossref_primary_10_1080_23311916_2022_2050020 crossref_primary_10_7717_peerj_cs_2052 crossref_primary_10_1080_10106049_2025_2519915 crossref_primary_10_1016_j_ijleo_2020_164923 crossref_primary_10_1016_j_robot_2019_01_006 crossref_primary_10_1016_j_trpro_2025_03_113 crossref_primary_10_1109_TAES_2020_2967851 crossref_primary_10_1016_j_heliyon_2024_e41055 crossref_primary_10_3390_drones7040243 crossref_primary_10_1109_TSE_2020_3032986 crossref_primary_10_3390_drones7040245 crossref_primary_10_3390_fi13080200 crossref_primary_10_3390_s24102980 crossref_primary_10_3390_rs14174355 crossref_primary_10_3390_s20072129 crossref_primary_10_1088_1757_899X_995_1_012019 crossref_primary_10_1016_j_robot_2018_05_011 crossref_primary_10_1177_0954406220983864 crossref_primary_10_3390_fi11090197 crossref_primary_10_1007_s10846_021_01432_z crossref_primary_10_3390_s22010175 crossref_primary_10_1093_aob_mcaa097 crossref_primary_10_1109_LRA_2021_3101869 crossref_primary_10_1007_s10586_025_05418_6 crossref_primary_10_1007_s40031_022_00747_1 crossref_primary_10_1109_LGRS_2024_3419925 crossref_primary_10_1109_TIM_2024_3481530 crossref_primary_10_1007_s12555_020_0329_5 crossref_primary_10_1109_ACCESS_2022_3141544 crossref_primary_10_1016_j_ifacol_2022_07_320 crossref_primary_10_1155_2018_6931020 crossref_primary_10_1109_ACCESS_2024_3357148 crossref_primary_10_1007_s11071_018_4700_5 crossref_primary_10_1016_j_ifacol_2023_10_1812 crossref_primary_10_1016_j_matpr_2019_07_313 crossref_primary_10_1016_j_geits_2023_100140 crossref_primary_10_1155_2021_3997648 crossref_primary_10_3390_w17030401 crossref_primary_10_1016_j_trpro_2018_12_003 crossref_primary_10_3390_rs15215087 crossref_primary_10_1038_s41598_022_26613_0 crossref_primary_10_3390_drones7020089 crossref_primary_10_1007_s11042_020_09364_w crossref_primary_10_3390_rs13050965 crossref_primary_10_1080_14484846_2021_2023266 crossref_primary_10_1007_s42979_023_02592_5 crossref_primary_10_1007_s10846_018_0933_2 crossref_primary_10_1016_j_ast_2024_109336 crossref_primary_10_1007_s10766_019_00645_y crossref_primary_10_1007_s42452_020_2236_z crossref_primary_10_3390_rs12203318 crossref_primary_10_1007_s10846_020_01208_x crossref_primary_10_1109_ACCESS_2020_2985032 crossref_primary_10_3390_app12073627 crossref_primary_10_1016_j_isatra_2019_10_012 crossref_primary_10_1007_s11554_021_01111_0 crossref_primary_10_3390_aerospace12070590 crossref_primary_10_1088_1742_6596_2649_1_012001 crossref_primary_10_1109_TIE_2018_2807401 crossref_primary_10_3390_aerospace10020183 crossref_primary_10_3390_drones8040116 crossref_primary_10_1016_j_ymssp_2019_106513 crossref_primary_10_1117_1_JEI_32_2_023011 crossref_primary_10_1007_s10846_020_01284_z crossref_primary_10_1016_j_enggeo_2023_107024 crossref_primary_10_1109_TETC_2021_3104555 crossref_primary_10_1109_ACCESS_2021_3133533 crossref_primary_10_1080_01691864_2019_1596834 crossref_primary_10_3390_rs17111948 crossref_primary_10_1007_s10846_018_0896_3 crossref_primary_10_3390_s20113262 crossref_primary_10_3390_drones6060146 crossref_primary_10_3390_drones7040263 crossref_primary_10_3390_s21082754 crossref_primary_10_1016_j_robot_2020_103666 crossref_primary_10_1016_j_imavis_2020_104046 crossref_primary_10_3390_drones6060147 crossref_primary_10_1109_TAES_2022_3192220 crossref_primary_10_1007_s10043_024_00872_w crossref_primary_10_1016_j_ast_2021_107164 crossref_primary_10_1007_s10846_018_0921_6 crossref_primary_10_3390_s18103391 crossref_primary_10_1088_1742_6596_1800_1_012002 crossref_primary_10_3390_drones6050107 crossref_primary_10_1109_ACCESS_2020_3043414 crossref_primary_10_1109_ACCESS_2022_3181989 crossref_primary_10_1007_s10846_021_01544_6 crossref_primary_10_3390_sym11010118 crossref_primary_10_1007_s10846_019_01006_0 crossref_primary_10_1016_j_pmcj_2023_101820 crossref_primary_10_3390_jimaging6080078 crossref_primary_10_1016_j_jfranklin_2024_107411 |
| Cites_doi | 10.1007/s10514-012-9286-z 10.1109/ROBOT.2009.5152680 10.1002/rob.21596 10.1109/CDC.2006.376767 10.1016/j.robot.2006.06.006 10.1109/ROBOT.2006.1642134 10.1007/978-3-642-40409-2_23 10.1023/B:VISI.0000029664.99615.94 10.1109/PIC.2014.6972318 10.1117/12.876663 10.2514/6.2012-5033 10.1109/IROS.2013.6696917 10.1109/ICRA.2015.7138988 10.1109/TIE.2015.2420036 10.1109/ICRA.2016.7487292 10.1007/s10846-009-9382-2 10.3182/20120905-3-HR-2030.00036 10.2514/6.2009-5678 10.1109/CVPR.1994.323794 10.1109/ICRA.2016.7487251 10.1007/978-3-642-20144-8 10.1109/IROS.2010.5650725 10.1109/ICRA.2012.6224828 10.1007/s10846-014-0085-y 10.3390/s16091406 10.1109/TIT.1967.1053964 10.1007/s11633-013-0735-8 10.1080/15599610802303314 10.1109/MED.2014.6961576 10.1109/CISP.2011.6100621 10.1109/AVSS.2006.23 10.1109/IROS.2015.7353389 10.6028/NIST.SP.1011-I-2.0 10.1109/ICUAS.2014.6842242 10.1109/IROS.2015.7353622 10.1007/s10846-013-9918-3 10.2514/6.2013-5246 10.1109/ICUAS.2014.6842282 10.1016/j.phpro.2012.05.157 10.1109/IROS.2012.6385934 10.1007/s10846-008-9305-7 10.1007/s10846-010-9494-8 10.1109/MRA.2012.2206473 10.1109/ROBOT.2006.1642080 10.1108/00022661111173270 10.1016/j.dsp.2011.08.003 10.1007/s10846-012-9705-6 10.1109/ICCAS.2013.6704242 10.1109/CYBER.2013.6705439 10.1109/ICUAS.2014.6842355 10.1109/ACC.2006.1657288 10.1007/s10514-016-9564-2 10.3182/20080706-5-KR-1001.00966 10.1016/j.autcon.2006.12.010 10.1109/CARPI.2010.5624435 10.1007/s10846-010-9480-1 10.1109/ACC.2014.6858995 10.1109/ACC.2011.5991109 10.1109/TCST.2013.2284790 10.1002/rob.21454 10.1109/ICINFA.2009.5204904 10.1109/ICRA.2016.7487281 10.5772/52764 10.1109/TIE.2014.2345348 10.2514/1.40185 10.1007/s10846-008-9301-y 10.1109/ICEEE.2009.5393423 10.1016/j.robot.2014.08.006 10.1002/rob.21506 10.1109/IROS.2013.6696805 10.1109/IROS.2009.5354361 10.1155/2011/413074 10.1177/0954410013517804 10.1007/978-1-4020-6114-1 10.1109/ROBOT.2006.1642130 10.1109/IROS.2010.5652556 10.1109/70.538972 10.3390/s151127783 10.1109/IROS.2013.6696412 10.1108/IJPCC-01-2014-0010 10.1007/s10846-013-9914-7 10.1007/s10846-013-9967-7 10.2316/Journal.206.2014.1.206-3942 10.1007/s10846-010-9504-x 10.1109/MED.2014.6961575 10.1016/j.robot.2009.02.001 10.5139/IJASS.2014.15.3.258 10.1109/ICAL.2007.4338800 10.1007/s00138-007-0102-2 10.1016/j.robot.2014.03.012 10.1109/ICSESS.2014.6933728 10.1007/s10846-011-9646-5 10.1109/TPAMI.1986.4767851 10.1109/IROS.2013.6696922 10.1007/978-3-642-37374-9_46 10.1002/rob.20178 10.1109/IROS.2011.6094404 10.1109/ICDMA.2012.240 10.1109/ICUAS.2013.6564708 10.1108/IR-07-2013-378 10.1109/ICCAS.2014.6987736 10.1007/s10846-011-9571-7 10.5244/C.2.23 10.1109/ICECC.2011.6066586 10.1109/ICRA.2011.5980095 10.1109/ICRA.2013.6630808 10.1007/s10846-008-9304-8 10.1109/IROS.2015.7353442 10.1109/ROBOT.2007.363883 10.1109/IROS.2014.6943247 10.1007/s10846-013-9865-z 10.1117/12.818717 10.1109/ICRA.2011.5979645 10.1109/ACC.2014.6858831 10.3182/20080706-5-KR-1001.00137 10.1002/rob.21581 10.1007/978-1-84882-935-0 10.1109/TRO.2008.916666 10.1109/ICRA.2014.6907233 10.1016/j.automatica.2007.03.030 10.1109/IROS.2005.1544998 10.1109/WISP.2007.4447629 10.1002/rob.20414 10.2514/6.2007-6749 10.1109/IROS.2013.6696331 10.1109/IROS.2014.6943040 10.1109/ICRA.2014.6906584 10.1109/ICRA.2015.7139761 10.1109/UKRICIS.2010.5898125 10.5772/56660 10.1142/9789814417747_0199 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 Copyright Springer Nature B.V. Jul 2017 |
| Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Springer Nature B.V. Jul 2017 |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTPV AOWAS D8T ZZAVC |
| DOI | 10.1007/s10846-017-0483-z |
| DatabaseName | Springer Nature OA Free Journals (ODIN) CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| EndPage | 168 |
| ExternalDocumentID | oai_DiVA_org_ltu_61786 10_1007_s10846_017_0483_z |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 644128 funderid: http://dx.doi.org/10.13039/501100007601 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTPV AOWAS D8T ZZAVC |
| ID | FETCH-LOGICAL-c462t-1b90d213e36bdd7333f7c93f2566da273f9048ca7d9d54714f638cc6c0b9438a3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-0296 1573-0409 |
| IngestDate | Tue Nov 04 15:31:29 EST 2025 Sat Oct 18 22:43:24 EDT 2025 Sat Nov 29 07:45:57 EST 2025 Tue Nov 18 20:40:31 EST 2025 Fri Feb 21 02:35:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Target tracking Visual servoing SLAM Obstacle avoidance UAVs |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-1b90d213e36bdd7333f7c93f2566da273f9048ca7d9d54714f638cc6c0b9438a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10846-017-0483-z |
| PQID | 1902823374 |
| PQPubID | 326251 |
| PageCount | 28 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_61786 proquest_journals_1902823374 crossref_citationtrail_10_1007_s10846_017_0483_z crossref_primary_10_1007_s10846_017_0483_z springer_journals_10_1007_s10846_017_0483_z |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2017 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Olivares-Mendez, M.A., Mejias, L., Campoy, P., Mellado-Bataller, I.: Quadcopter see and avoid using a fuzzy controller. In: Proceedings of the 10th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making (FLINS 2012). World Scientific (2012) WangTWangCLiangJZhangYRao-blackwellized visual slam for small uavs with vehicle model partitionIndus. Robot: Int. J.201441326627410.1108/IR-07-2013-378 Araar, O., Aouf, N.: A new hybrid approach for the visual servoing of vtol uavs from unknown geometries. In: IEEE 22nd Mediterranean Conference of Control and Automation (MED), pp. 1425–1432. IEEE (2014) Valavanis, K.P.: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, vol. 33. Springer Science & Business Media (2008) LeishmanRCMcLainTWBeardRWRelative navigation approach for vision-based aerial gps-denied navigationJ. Intell. Robot. Syst.2014741–29711110.1007/s10846-013-9914-7 Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular multi-sensor fusion approach applied to mav navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929. IEEE (2013) Huh, S., Shim, D.H., Kim, J.: Integrated navigation system using camera and gimbaled laser scanner for indoor and outdoor autonomous flight of uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3158–3163. IEEE (2013) Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct ekf-based approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 298–304. IEEE (2015) Loianno, G., Watterson, M., Kumar, V.: Visual inertial odometry for quadrotors on se (3). In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1544–1551. IEEE (2016) Association Unmanned Aerial Vehicle Systems: Civil and Commercial UAS Applications. https://www.uavs.org/commercial Huang, H.-M.: Autonomy levels for unmanned systems (ALFUS) framework, volume I: Terminology, Version 2.0 (2008) Watanabe, Y., Fabiani, P., Le Besnerais, G.: Towards a uav visual air-to-ground target tracking in an urban environment NuskeSChoudhurySJainSChambersAYoderLSchererSChamberlainLCoverHSinghSAutonomous exploration and motion planning for an unmanned aerial vehicle navigating riversJ. Field Robot.20153281141116210.1002/rob.21596 Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Obstacle detection and navigation planning for autonomous micro aerial vehicles. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1040–1047. IEEE (2014) Li, Z., Ding, J.: Ground moving target tracking control system design for uav surveillance. In: IEEE International Conference on Automation and Logistics, pp. 1458–1463. IEEE (2007) Araar, O., Aouf, N.: Visual servoing of a quadrotor uav for autonomous power lines inspection. In: 22nd Mediterranean Conference of Control and Automation (MED), pp. 1418–1424. IEEE (2014) AvellarGSPereiraGAPimentaLCIscoldPMulti-uav routing for area coverage and remote sensing with minimum timeSensors2015151127,78327,80310.3390/s151127783 CannyJA computational approach to edge detectionTrans. Pattern Anal. Mach. Intell.1986667969810.1109/TPAMI.1986.4767851 Le Bras, F., Mahony, R., Hamel, T., Binetti, P.: Adaptive filtering and image based visual servo control of a ducted fan flying robot. In: 45th IEEE Conference on Decision and Control, pp. 1751–1757. IEEE (2006) MajidiBBab-HadiasharAAerial tracking of elongated objects in rural environmentsMach. Vis. Appl.2009201233410.1007/s00138-007-0102-2 TroianiCMartinelliALaugierCScaramuzzaDLow computational-complexity algorithms for vision-aided inertial navigation of micro aerial vehiclesRobot. Autonom. Syst.201569809710.1016/j.robot.2014.08.006 Lin, S., Garratt, M.A., Lambert, A.J.: Monocular vision-based real-time target recognition and tracking for autonomously landing an uav in a cluttered shipboard environment. Autonom Robots, 1–21 (2016) ZhaoYPeiHAn improved vision-based algorithm for unmanned aerial vehicles autonomous landingPhys. Proced.20123393594110.1016/j.phpro.2012.05.157 Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4929–4934. IEEE (2011) HuhSShimDHA vision-based automatic landing method for fixed-wing uavsJ. Intell. Robot. Syst.2010571–421723110.1007/s10846-009-9382-2 Yuan, C., Recktenwald, F., Mallot, H.A.: Visual steering of uav in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3906–3911. IEEE (2009) TippettsBJLeeDJFowersSGArchibaldJKReal-time vision sensor for an autonomous hovering micro unmanned aerial vehicleJ. Aeros. Comput. Inf. Commun.200961057058410.2514/1.40185 Sa, I., Hrabar, S., Corke, P.: Inspection of pole-like structures using a vision-controlled vtol uav and shared autonomy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4819–4826. IEEE (2014) MetniNHamelTA uav for bridge inspection: Visual servoing control law with orientation limitsAutom. Construct.200717131010.1016/j.autcon.2006.12.010 Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., Scaramuzza, D.: Autonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial vehicle. J. Field Robot. (2015) Watanabe, Y., Fabiani, P., Le Besnerais, G.: Simultaneous visual target tracking and navigation in a gps-denied environment. In: International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2009) FuCOlivares-MendezMASuarez-FernandezRCampoyPMonocular visual-inertial slam-based collision avoidance strategy for fail-safe uav using fuzzy logic controllersJ. Intell. Robot. Syst.2014731–451353310.1007/s10846-013-9918-3 LiuXLinZActonSTA grid-based bayesian approach to robust visual trackingDigit. Signal Process.20122215465291392510.1016/j.dsp.2011.08.003 KimJSukkariehSReal-time implementation of airborne inertial-slamRobot. Autonom. Syst.2007551627110.1016/j.robot.2006.06.006 Jian, L., Xiao-min, L.: Vision-based navigation and obstacle detection for uav. In: International Conference on Electronics, Communications and Control (ICECC), pp. 1771–1774. IEEE (2011) Chriette, A.: An analysis of the zero-dynamics for visual servo control of a ducted fan uav. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2515–2520. IEEE (2006) Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: Fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014) Schmid, K., Tomic, T., Ruess, F., Hirschmuller, H., Suppa, M.: Stereo vision based indoor/outdoor navigation for flying robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3955–3962. IEEE (2013) WangCLWangTMLiangJHZhangYCZhouYBearing-only visual slam for small unmanned aerial vehicles in gps-denied environmentsInt. J. Autom. Comput.201310538739610.1007/s11633-013-0735-8 CarrilloLRGLópezAEDLozanoRPégardCCombining stereo vision and inertial navigation system for a quad-rotor uavJ. Intelli. Robot. Syst.2012651-437338710.1007/s10846-011-9571-7 SchmidKLutzPTomićTMairEHirschmüllerHAutonomous vision-based micro air vehicle for indoor and outdoor navigationJ. Field Robot.201431453757010.1002/rob.21506 Price, A., Pyke, J., Ashiri, D., Cornall, T.: Real time object detection for an unmanned aerial vehicle using an fpga based vision system. In: International Conference on Robotics and Automation (ICRA), pp. 2854–2859. IEEE (2006) Rodriguez, J., Castiblanco, C., Mondragon, I., Colorado, J.: Low-cost quadrotor applied for visual detection of landmine-like objects. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 83–88. IEEE (2014) Cichella, V., Kaminer, I., Dobrokhodov, V., Hovakimyan, N.: Coordinated vision-based tracking for multiple uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 656–661. IEEE (2015) Xiaoyi, D., Qinhua, Z.: Research on laser-assisted odometry of indoor uav with monocular vision. In: 3rd Annual International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), pp. 165–169. IEEE (2013) Fahimi, F., Thakur, K.: An alternative closed-loop vision-based control approach for unmanned aircraft systems with application to a quadrotor. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 353–358. IEEE (2013) KendoulFFantoniINonamiKOptic flow-based vision system for autonomous 3d localization and control of small aerial vehiclesRobot. Autonom. Syst.200957659160210.1016/j.robot.2009.02.001 Byrne, J., Cosgrove, M., Mehra, R.: Stereo based obstacle detection for an unmanned air vehicle. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2830–2835. IEEE (2006) TomicTSchmidKLutzPDomelAKasseckerMMairEGrixaILRuessFSuppaMBurschkaDToward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescueIEEE Robot. Autom. Mag.2012193465610.1109/MRA.2012.2206473 Lange, S., Sunderhauf, N., Protzel, P.: A vision based onboard approach for landing and position control of an autonomous multirotor uav in gps-denied environments. In: International Conference on Advanced Robotics, 2009. ICAR 2009, pp. 1–6. IEEE (2009) Zhang, R., Liu, H.H.: Vision-based relative altitude estimation of small unmanned aerial vehicles in target localization. In: American Control Conference (ACC), 2011, pp. 4622–4627. IEEE (2011) Watanabe, Y., Lesire, C., Piquereau, A., Fabiani, P., Sanfourche, M., Le Besnerais, G.: The onera ressac unmanned autonomous helicopter: Visual air-to-ground target tracking in an urban environment. In: American Helicopter Society 66th Annual Forum (AHS 2010) (2010) Alkowatly, M.T., Becerra, V.M., Holderbaum, W.: Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J 483_CR61 LRG Carrillo (483_CR12) 2012; 65 483_CR66 483_CR64 Y Kim (483_CR113) 2014; 15 483_CR63 T Tomic (483_CR137) 2012; 19 GS Avellar (483_CR151) 2015; 15 V Ghadiok (483_CR45) 2012; 33 A Harmat (483_CR84) 2015; 78 483_CR57 483_CR56 T Wang (483_CR59) 2014; 41 X Zhang (483_CR83) 2015; 62 Y Zhao (483_CR47) 2012; 33 483_CR50 M Bryson (483_CR72) 2007; 24 SJ Mills (483_CR26) 2011; 61 483_CR55 483_CR54 483_CR52 J Maier (483_CR125) 2013; 10 DG Lowe (483_CR60) 2004; 60 BJ Tippetts (483_CR146) 2009; 6 J Kim (483_CR73) 2007; 55 483_CR46 C Fu (483_CR58) 2014; 73 D Törnqvist (483_CR69) 2009; 55 S Nuske (483_CR150) 2015; 32 483_CR49 DRM Liming Luke Chen (483_CR74) 2014; 10 M Boṡnak (483_CR147) 2012; 67 483_CR44 483_CR43 483_CR42 N Metni (483_CR29) 2007; 17 D Magree (483_CR94) 2014; 74 J Engel (483_CR81) 2014; 62 483_CR152 483_CR36 K Schmid (483_CR51) 2014; 31 483_CR35 483_CR34 F Caballero (483_CR79) 2009; 55 N Guenard (483_CR28) 2008; 24 483_CR39 483_CR38 483_CR33 483_CR32 483_CR31 483_CR143 G Chowdhary (483_CR82) 2013; 30 483_CR144 JO Lee (483_CR99) 2011; 83 D Lee (483_CR142) 2014; 228 483_CR148 483_CR149 483_CR140 483_CR25 483_CR23 483_CR27 483_CR139 J Canny (483_CR78) 1986; 6 483_CR22 M Tarhan (483_CR126) 2011; 61 483_CR21 483_CR20 D Eberli (483_CR41) 2011; 61 483_CR132 483_CR133 483_CR134 483_CR135 483_CR138 JR Azinheira (483_CR24) 2008; 2 CL Wang (483_CR65) 2013; 10 T Hamel (483_CR30) 2007; 43 483_CR130 483_CR15 483_CR14 483_CR13 S Huh (483_CR37) 2010; 57 X Liu (483_CR128) 2012; 22 483_CR17 483_CR16 483_CR95 483_CR129 483_CR93 483_CR92 483_CR11 483_CR10 483_CR98 C Fu (483_CR136) 2016; 16 483_CR97 483_CR96 483_CR120 J Artieda (483_CR48) 2009; 55 483_CR121 483_CR122 A Qadir (483_CR131) 2014; 74 483_CR123 483_CR91 483_CR124 483_CR90 B Majidi (483_CR127) 2009; 20 C Troiani (483_CR87) 2015; 69 T Cover (483_CR62) 1967; 13 G Sanahuja (483_CR145) 2013; 69 483_CR89 483_CR117 483_CR118 483_CR119 483_CR88 483_CR86 483_CR85 483_CR110 RC Leishman (483_CR53) 2014; 74 483_CR111 483_CR112 483_CR80 483_CR114 483_CR115 483_CR116 483_CR9 483_CR7 483_CR8 483_CR5 483_CR6 483_CR3 483_CR4 483_CR1 483_CR2 LRG Carrillo (483_CR141) 2014; 22 483_CR106 483_CR107 483_CR71 483_CR108 483_CR70 483_CR109 S Hutchinson (483_CR19) 1996; 12 483_CR77 483_CR76 483_CR75 483_CR100 483_CR101 483_CR102 483_CR103 483_CR104 483_CR105 F Kendoul (483_CR40) 2009; 57 483_CR68 F Kendoul (483_CR18) 2012; 29 483_CR67 |
| References_xml | – reference: SkyBotix AG: VI sensor. http://www.skybotix.com/ – reference: Price, A., Pyke, J., Ashiri, D., Cornall, T.: Real time object detection for an unmanned aerial vehicle using an fpga based vision system. In: International Conference on Robotics and Automation (ICRA), pp. 2854–2859. IEEE (2006) – reference: Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor mav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4557–4564. IEEE (2012) – reference: Yol, A., Delabarre, B., Dame, A., Dartois, J.E., Marchand, E.: Vision-based absolute localization for unmanned aerial vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3429–3434. IEEE (2014) – reference: Frew, E.W., Langelaan, J., Stachura, M.: Adaptive planning horizon based on information velocity for vision-based navigation. In: AIAA Guidance, Navigation and Controls Conference (2007) – reference: Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., Scaramuzza, D.: Autonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial vehicle. J. Field Robot. (2015) – reference: KimJSukkariehSReal-time implementation of airborne inertial-slamRobot. Autonom. Syst.2007551627110.1016/j.robot.2006.06.006 – reference: Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4929–4934. IEEE (2011) – reference: GhadiokVGoldinJRenWOn the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotorAutonom. Robots2012331–2416810.1007/s10514-012-9286-z – reference: Zhao, S., Hu, Z., Yin, M., Ang, K.Z., Liu, P., Wang, F., Dong, X., Lin, F., Chen, B.M., Lee, T.H.: A robust real-time vision system for autonomous cargo transfer by an unmanned helicopter. IEEE Trans. Ind. Electron. 62(2) (2015) – reference: Kim, S., Choi, S., Lee, H., Kim, H.J.: Vision-based collaborative lifting using quadrotor uavs. In: 14th International Conference on Control, Automation and Systems (ICCAS), pp. 1169–1174. IEEE (2014) – reference: Araar, O., Aouf, N.: Visual servoing of a quadrotor uav for autonomous power lines inspection. In: 22nd Mediterranean Conference of Control and Automation (MED), pp. 1418–1424. IEEE (2014) – reference: LiuXLinZActonSTA grid-based bayesian approach to robust visual trackingDigit. Signal Process.20122215465291392510.1016/j.dsp.2011.08.003 – reference: TroianiCMartinelliALaugierCScaramuzzaDLow computational-complexity algorithms for vision-aided inertial navigation of micro aerial vehiclesRobot. Autonom. Syst.201569809710.1016/j.robot.2014.08.006 – reference: Watanabe, Y., Lesire, C., Piquereau, A., Fabiani, P., Sanfourche, M., Le Besnerais, G.: The onera ressac unmanned autonomous helicopter: Visual air-to-ground target tracking in an urban environment. In: American Helicopter Society 66th Annual Forum (AHS 2010) (2010) – reference: QadirASemkeWNeubertJVision based neuro-fuzzy controller for a two axes gimbal system with small uavJ. Intell. Robot. Syst.2014743–41029104710.1007/s10846-013-9865-z – reference: Zhou, J.: Ekf based object detect and tracking for uav by using visual-attention-model. In: International Conference on Progress in Informatics and Computing (PIC), pp. 168–172. IEEE (2014) – reference: TarhanMAltuġEA catadioptric and pan-tilt-zoom camera pair object tracking system for uavsJ. Intell. Robot. Syst.2011611–411913410.1007/s10846-010-9504-x – reference: Shi, J., Tomasi, C.: Good features to track. In: Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600. IEEE (1994) – reference: EberliDScaramuzzaDWeissSSiegwartRVision based position control for mavs using one single circular landmarkJ. Intell. Robot. Syst.2011611–449551210.1007/s10846-010-9494-8 – reference: Yang, J., Dani, A., Chung, S.J., Hutchinson, S.: Inertial-aided vision-based localization and mapping in a riverine environment with reflection measurements. In: AIAA Guidance, Navigation, and Control Conference. Boston (2013) – reference: Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 15, p. 50. Manchester (1988) – reference: Candamo, J., Kasturi, R., Goldgof, D.: Using color profiles for street detection in low-altitude uav video. In: SPIE Defense, Security, and Sensing, pp. 73,070O–73,070O. International Society for Optics and Photonics (2009) – reference: Olivares-Mendez, M.A., Mejias, L., Campoy, P., Mellado-Bataller, I.: Quadcopter see and avoid using a fuzzy controller. In: Proceedings of the 10th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making (FLINS 2012). World Scientific (2012) – reference: KendoulFFantoniINonamiKOptic flow-based vision system for autonomous 3d localization and control of small aerial vehiclesRobot. Autonom. Syst.200957659160210.1016/j.robot.2009.02.001 – reference: ZhaoYPeiHAn improved vision-based algorithm for unmanned aerial vehicles autonomous landingPhys. Proced.20123393594110.1016/j.phpro.2012.05.157 – reference: Nemra, A., Aouf, N.: Robust cooperative uav visual slam. In: IEEE 9th International Conference on Cybernetic Intelligent Systems (CIS), pp. 1–6. IEEE (2010) – reference: Jeon, B., Baek, K., Kim, C., Bang, H.: Mode changing tracker for ground target tracking on aerial images from unmanned aerial vehicles (iccas 2013). In: 13th International Conference on Control, Automation and Systems (ICCAS), pp. 1849–1853. IEEE (2013) – reference: U.S Department of Transportation: Federal Aviation Administration. https://www.faa.gov/uas/faqs/ – reference: HamelTMahonyRImage based visual servo control for a class of aerial robotic systemsAutomatica2007431119751983257292410.1016/j.automatica.2007.03.0301129.93459 – reference: Pestana, J., Sanchez-Lopez, J.L., Saripalli, S., Campoy, P.: Computer vision based general object following for gps-denied multirotor unmanned vehicles. In: American Control Conference (ACC), pp. 1886–1891. IEEE (2014) – reference: YAMAHA: RMAX. http://rmax.yamaha-motor.com.au/features/ – reference: KimYJungWBangHVisual target tracking and relative navigation for unmanned aerial vehicles in a gps-denied environmentInt. J. Aeronaut. Space Sci.2014153258266 – reference: CannyJA computational approach to edge detectionTrans. Pattern Anal. Mach. Intell.1986667969810.1109/TPAMI.1986.4767851 – reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon next-best-view??? planner for 3d exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468. IEEE (2016) – reference: Liming Luke ChenDRMDr Matthias SteinbauerPMosselALeichtfriedMKaltenrinerCKaufmannHSmartcopter: Enabling autonomous flight in indoor environments with a smartphone as on-board processing unitInt. J. Pervas. Comput. Commun.20141019211410.1108/IJPCC-01-2014-0010 – reference: Barajas, M., Dávalos-Viveros, J.P., Garcia-Lumbreras, S., Gordillo, J.L.: Visual servoing of uav using cuboid model with simultaneous tracking of multiple planar faces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 596–601. IEEE (2013) – reference: LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Mcfadyen, A., Mejias, L., Corke, P., Pradalier, C.: Aircraft collision avoidance using spherical visual predictive control and single point features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 50–56. IEEE (2013) – reference: ArtiedaJSebastianJMCampoyPCorreaJFMondragónIFMartínezCOlivaresMVisual 3-d slam from uavsJ. Intell. Robot. Syst.2009554–529932110.1007/s10846-008-9304-81203.68295 – reference: HuhSShimDHA vision-based automatic landing method for fixed-wing uavsJ. Intell. Robot. Syst.2010571–421723110.1007/s10846-009-9382-2 – reference: Mahalanobis, P.C.: On the generalised distance in statistics 2(1), 49–55 (1936) – reference: TomicTSchmidKLutzPDomelAKasseckerMMairEGrixaILRuessFSuppaMBurschkaDToward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescueIEEE Robot. Autom. Mag.2012193465610.1109/MRA.2012.2206473 – reference: Mohammed, A.D., Morris, T.: An improved camshift algorithm for object detection and extraction – reference: Lee, D., Ryan, T., Kim, H.J.: Autonomous landing of a vtol uav on a moving platform using image-based visual servoing. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 971–976. IEEE (2012) – reference: Watanabe, Y., Fabiani, P., Le Besnerais, G.: Towards a uav visual air-to-ground target tracking in an urban environment – reference: Mondragon, I.F., Campoy, P., Correa, J.F., Mejias, L.: Visual model feature tracking for uav control. In: IEEE International Symposium on Intelligent Signal Processing (WISP), pp. 1–6. IEEE (2007) – reference: NuskeSChoudhurySJainSChambersAYoderLSchererSChamberlainLCoverHSinghSAutonomous exploration and motion planning for an unmanned aerial vehicle navigating riversJ. Field Robot.20153281141116210.1002/rob.21596 – reference: Dib, A., Zaidi, N., Siguerdidjane, H.: Robust control and visual servoing of an uav. In: 17th IFAC World Congress 2008, pp. CD–ROM (2008) – reference: Srinivasan, M.V., Thurrowgood, S., Soccol, D.: An optical system for guidance of terrain following in uavs. In: International Conference on Video and Signal Based Surveillance (AVSS), pp. 51–51. IEEE (2006) – reference: Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-based state estimation for autonomous rotorcraft mavs in complex environments. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1758–1764. IEEE (2013) – reference: Salazar, S., Romero, H., Gomez, J., Lozano, R.: Real-time stereo visual servoing control of an uav having eight-rotors. In: 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–11. IEEE (2009) – reference: Gu, A., Xu, J.: Vision based ground marker fast detection for small robotic uav. In: 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 975–978. IEEE (2014) – reference: CaballeroFMerinoLFerruzJOlleroAUnmanned aerial vehicle localization based on monocular vision and online mosaickingJ. Intell. Robot. Syst.2009554–532334310.1007/s10846-008-9305-71203.68216 – reference: Xiaoyi, D., Qinhua, Z.: Research on laser-assisted odometry of indoor uav with monocular vision. In: 3rd Annual International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), pp. 165–169. IEEE (2013) – reference: Ahrens, S., Levine, D., Andrews, G., How, J.P.: Vision-based guidance and control of a hovering vehicle in unknown, gps-denied environments. In: International Conference on Robotics and Automation (ICRA), pp. 2643–2648. IEEE (2009) – reference: GuenardNHamelTMahonyRA practical visual servo control for an unmanned aerial vehicleIEEE Trans. Robot.200824233134010.1109/TRO.2008.916666 – reference: Kendoul, F., Fantoni, I., Lozano, R.: Adaptive vision-based controller for small rotorcraft uavs control and guidance. In: Proceedings of the 17th IFAC world congress, pp. 6–11 (2008) – reference: LeeJOLeeKHParkSHImSGParkJObstacle avoidance for small uavs using monocular visionAircraft Eng. Aeros. Technol.201183639740610.1108/00022661111173270 – reference: Rodriguez, J., Castiblanco, C., Mondragon, I., Colorado, J.: Low-cost quadrotor applied for visual detection of landmine-like objects. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 83–88. IEEE (2014) – reference: TörnqvistDSchönTBKarlssonRGustafssonFParticle filter slam with high dimensional vehicle modelJ. Intell. Robot. Syst2009554–524926610.1007/s10846-008-9301-y1203.68276 – reference: LeeDKimYBangHVision-aided terrain referenced navigation for unmanned aerial vehicles using ground featuresProc. Inst. Mech. Eng. Part G: J. Aeros. Eng.2014228132399241310.1177/0954410013517804 – reference: U.S. Department of Defense: Standard practice for system safety. MIL-STD-882D (2000) – reference: Harmat, A., Trentini, M., Sharf, I.: Multi-camera tracking and mapping for unmanned aerial vehicles in unstructured environments. J. Intell. Robot. Syst., 1–27 (2014) – reference: Shah, S.I.A., Johnson, E.N.: 3d obstacle detection using a single camera. In: AIAA guidance, navigation, and control conference (AIAA), vol. 5678 (2009) – reference: Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Obstacle detection and navigation planning for autonomous micro aerial vehicles. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1040–1047. IEEE (2014) – reference: Lin, S., Garratt, M.A., Lambert, A.J.: Monocular vision-based real-time target recognition and tracking for autonomously landing an uav in a cluttered shipboard environment. Autonom Robots, 1–21 (2016) – reference: WangCLWangTMLiangJHZhangYCZhouYBearing-only visual slam for small unmanned aerial vehicles in gps-denied environmentsInt. J. Autom. Comput.201310538739610.1007/s11633-013-0735-8 – reference: FuCOlivares-MendezMASuarez-FernandezRCampoyPMonocular visual-inertial slam-based collision avoidance strategy for fail-safe uav using fuzzy logic controllersJ. Intell. Robot. Syst.2014731–451353310.1007/s10846-013-9918-3 – reference: LeishmanRCMcLainTWBeardRWRelative navigation approach for vision-based aerial gps-denied navigationJ. Intell. Robot. Syst.2014741–29711110.1007/s10846-013-9914-7 – reference: Hrabar, S., Sukhatme, G., Corke, P., Usher, K., Roberts, J.: Combined optic-flow and stereo-based navigation of urban canyons for a uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3309–3316. IEEE (2005) – reference: Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: IJCAI, vol. 81, pp. 674–679 (1981) – reference: EngelJSturmJCremersDScale-aware navigation of a low-cost quadrocopter with a monocular cameraRobot. Autonom. Syst.201462111646165610.1016/j.robot.2014.03.012 – reference: MetniNHamelTA uav for bridge inspection: Visual servoing control law with orientation limitsAutom. Construct.200717131010.1016/j.autcon.2006.12.010 – reference: Jian, L., Xiao-min, L.: Vision-based navigation and obstacle detection for uav. In: International Conference on Electronics, Communications and Control (ICECC), pp. 1771–1774. IEEE (2011) – reference: Zhang, R., Liu, H.H.: Vision-based relative altitude estimation of small unmanned aerial vehicles in target localization. In: American Control Conference (ACC), 2011, pp. 4622–4627. IEEE (2011) – reference: SanahujaGCastilloPEmbedded laser vision system for indoor aerial autonomous navigationJ. Int. Robot. Syst.2013691–444745710.1007/s10846-012-9705-6 – reference: Pizzoli, M., Forster, C., Scaramuzza, D.: Remode: Probabilistic, monocular dense reconstruction in real time. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2609–2616. IEEE (2014) – reference: Min, J., Jeong, Y., Kweon, I.S.: Robust visual lock-on and simultaneous localization for an unmanned aerial vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 93–100. IEEE (2010) – reference: Cocchioni, F., Mancini, A., Longhi, S.: Autonomous navigation, landing and recharge of a quadrotor using artificial vision. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 418–429. IEEE (2014) – reference: CarrilloLRGFlores ColungaGSanahujaGLozanoRQuad rotorcraft switching control: An application for the task of path followingIEEE Trans. Control Syst. Technol.20142241255126710.1109/TCST.2013.2284790 – reference: Asl, H.J., Oriolo, G., Bolandi, H.: An adaptive scheme for image-based visual servoing of an underactuated uav. IEEE Trans. Robot. Autom. 29(1) (2014) – reference: Lange, S., Sunderhauf, N., Protzel, P.: A vision based onboard approach for landing and position control of an autonomous multirotor uav in gps-denied environments. In: International Conference on Advanced Robotics, 2009. ICAR 2009, pp. 1–6. IEEE (2009) – reference: Nourani-Vatani, N., Pradalier, C.: Scene change detection for vision-based topological mapping and localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3792–3797. IEEE (2010) – reference: Tardif, J.P., George, M., Laverne, M., Kelly, A., Stentz, A.: Vision-aided inertial navigation for power line inspection. In: 1st International Conference on Applied Robotics for the Power Industry (CARPI), pp. 1–6 (2010) – reference: Gosiewski, Z., Ciesluk, J., Ambroziak, L.: Vision-based obstacle avoidance for unmanned aerial vehicles. In: 4th International Congress on Image and Signal Processing (CISP), vol. 4, pp. 2020–2025. IEEE (2011) – reference: Chriette, A.: An analysis of the zero-dynamics for visual servo control of a ducted fan uav. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2515–2520. IEEE (2006) – reference: Magree, D., Johnson, E.N.: Combined laser and vision-aided inertial navigation for an indoor unmanned aerial vehicle. In: American Control Conference (ACC), pp. 1900–1905. IEEE (2014) – reference: Yadav, V., Wang, X., Balakrishnan, S.: Neural network approach for obstacle avoidance in 3-d environments for uavs. In: American Control Conference, pp. 6–pp. IEEE (2006) – reference: Matrix Vision: mvBlueFOX3 Camera. https://www.matrix-vision.com/USB3-vision-camera-mvbluefox3.html – reference: Peliti, P., Rosa, L., Oriolo, G., Vendittelli, M.: Vision-based loitering over a target for a fixed-wing uav. In: Proceedings of the 10th International IFAC Symposium on Robot Control (2012) – reference: ZhangXXianBZhaoBZhangYAutonomous flight control of a nano quadrotor helicopter in a gps-denied environment using on-board visionIEEE Trans. Ind. Electron.201562106392640310.1109/TIE.2015.2420036 – reference: Piasco, N., Marzat, J., Sanfourche, M.: Collaborative localization and formation flying using distributed stereo-vision. In: IEEE International Conference on Robotics and Automation. Stockholm (2016) – reference: AvellarGSPereiraGAPimentaLCIscoldPMulti-uav routing for area coverage and remote sensing with minimum timeSensors2015151127,78327,80310.3390/s151127783 – reference: Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Autonomous obstacle avoidance and maneuvering on a vision-guided mav using on-board processing. In: IEEE international conference on Robotics and automation (ICRA), pp. 2472–2477. IEEE (2011) – reference: WangTWangCLiangJZhangYRao-blackwellized visual slam for small uavs with vehicle model partitionIndus. Robot: Int. J.201441326627410.1108/IR-07-2013-378 – reference: Zhao, S., Lin, F., Peng, K., Chen, B.M., Lee, T.H.: Homography-based vision-aided inertial navigation of uavs in unknown environments. In: AIAA Guidance, Navigation, and Control Conference (2012) – reference: AzinheiraJRRivesPImage-based visual servoing for vanishing features and ground lines tracking: Application to a uav automatic landingInt. J. Optomechatron.20082327529510.1080/15599610802303314 – reference: Schmid, K., Tomic, T., Ruess, F., Hirschmuller, H., Suppa, M.: Stereo vision based indoor/outdoor navigation for flying robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3955–3962. IEEE (2013) – reference: FuCDuanRKircaliDKayacanEOnboard robust visual tracking for uavs using a reliable global-local object modelSensors2016169140610.3390/s16091406 – reference: Huh, S., Shim, D.H., Kim, J.: Integrated navigation system using camera and gimbaled laser scanner for indoor and outdoor autonomous flight of uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3158–3163. IEEE (2013) – reference: Loianno, G., Thomas, J., Kumar, V.: Cooperative localization and mapping of mavs using rgb-d sensors. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4021–4028. IEEE (2015) – reference: Gaszczak, A., Breckon, T.P., Han, J.: Real-time people and vehicle detection from uav imagery. In: IS&T/SPIE Electronic Imaging, pp. 78,780B–78,780B. International Society for Optics and Photonics (2011) – reference: KendoulFSurvey of advances in guidance, navigation, and control of unmanned rotorcraft systemsJ. Field Robot.201229231537810.1002/rob.20414 – reference: Yuan, C., Recktenwald, F., Mallot, H.A.: Visual steering of uav in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3906–3911. IEEE (2009) – reference: Max Botix: XL-MaxSonar-EZ4 Ultrasonic Sensor. http://www.maxbotix.com – reference: Huang, H.-M.: Autonomy levels for unmanned systems (ALFUS) framework, volume I: Terminology, Version 2.0 (2008) – reference: TippettsBJLeeDJFowersSGArchibaldJKReal-time vision sensor for an autonomous hovering micro unmanned aerial vehicleJ. Aeros. Comput. Inf. Commun.200961057058410.2514/1.40185 – reference: Loianno, G., Watterson, M., Kumar, V.: Visual inertial odometry for quadrotors on se (3). In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1544–1551. IEEE (2016) – reference: Jama, M., Schinstock, D.: Parallel tracking and mapping for controlling vtol airframe. J. Control Sci. Eng. 2011, 26 (2011) – reference: Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol. 73. Springer Science & Business Media (2011) – reference: Lee, S.J., Kim, J.H.: Development of a quadrocoptor robot with vision and ultrasonic sensors for distance sensing and mapping. In: Robot Intelligence Technology and Applications 2012, pp. 477–484. Springer (2013) – reference: Valavanis, K.P.: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, vol. 33. Springer Science & Business Media (2008) – reference: Byrne, J., Cosgrove, M., Mehra, R.: Stereo based obstacle detection for an unmanned air vehicle. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2830–2835. IEEE (2006) – reference: Forster, C., Faessler, M., Fontana, F., Werlberger, M., Scaramuzza, D.: Continuous on-board monocular-vision-based elevation mapping applied to autonomous landing of micro aerial vehicles. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 111–118. IEEE (2015) – reference: CoverTHartPNearest neighbor pattern classificationIEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.10539640154.44505 – reference: Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: AAAI/IAAI, pp. 593–598 (2002) – reference: Wang, T., Wang, C., Liang, J., Chen, Y., Zhang, Y.: Vision-aided inertial navigation for small unmanned aerial vehicles in gps-denied environments. Int. J. Adv. Robot. Syst. (2013) – reference: Araar, O., Aouf, N.: A new hybrid approach for the visual servoing of vtol uavs from unknown geometries. In: IEEE 22nd Mediterranean Conference of Control and Automation (MED), pp. 1425–1432. IEEE (2014) – reference: Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: Fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014) – reference: Watanabe, Y., Fabiani, P., Le Besnerais, G.: Simultaneous visual target tracking and navigation in a gps-denied environment. In: International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2009) – reference: Fahimi, F., Thakur, K.: An alternative closed-loop vision-based control approach for unmanned aircraft systems with application to a quadrotor. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 353–358. IEEE (2013) – reference: Saif, A.S., Prabuwono, A.S., Mahayuddin, Z.R.: Real time vision based object detection from uav aerial images: A conceptual framework. In: Intelligent Robotics Systems: Inspiring the NEXT, pp. 265–274. Springer (2013) – reference: MagreeDMooneyJGJohnsonENMonocular visual mapping for obstacle avoidance on uavsJ. Intell. Robot. Syst.2014741–2172610.1007/s10846-013-9967-7 – reference: Cichella, V., Kaminer, I., Dobrokhodov, V., Hovakimyan, N.: Coordinated vision-based tracking for multiple uavs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 656–661. IEEE (2015) – reference: ShadowAir: Super Bat ShadowAir. http://www.shadowair.com – reference: Li, Z., Ding, J.: Ground moving target tracking control system design for uav surveillance. In: IEEE International Conference on Automation and Logistics, pp. 1458–1463. IEEE (2007) – reference: Association Unmanned Aerial Vehicle Systems: Civil and Commercial UAS Applications. https://www.uavs.org/commercial – reference: CarrilloLRGLópezAEDLozanoRPégardCCombining stereo vision and inertial navigation system for a quad-rotor uavJ. Intelli. Robot. Syst.2012651-437338710.1007/s10846-011-9571-7 – reference: Burri, M., Oleynikova, H., Achtelik, M.W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 1872–1878. IEEE (2015) – reference: Le Bras, F., Mahony, R., Hamel, T., Binetti, P.: Adaptive filtering and image based visual servo control of a ducted fan flying robot. In: 45th IEEE Conference on Decision and Control, pp. 1751–1757. IEEE (2006) – reference: MaierJHumenbergerMMovement detection based on dense optical flow for unmanned aerial vehiclesInt. J. Adv. Robot. Syst.20131011110.5772/52764 – reference: MajidiBBab-HadiasharAAerial tracking of elongated objects in rural environmentsMach. Vis. Appl.2009201233410.1007/s00138-007-0102-2 – reference: ChowdharyGJohnsonENMagreeDWuASheinAGps-denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraftJ. Field Robot.201330341543810.1002/rob.21454 – reference: TeraRanger: TeraRanger Rotating Lidar. http://www.teraranger.com/products/teraranger-lidar/ – reference: U.K Ministry of Defence: Unmanned Aircraft Systems: Terminology, Definitions and Classification – reference: HarmatATrentiniMSharfIMulti-camera tracking and mapping for unmanned aerial vehicles in unstructured environmentsJ. Intell. Robot. Syst.201578229131710.1007/s10846-014-0085-y – reference: Fucen, Z., Haiqing, S., Hong, W.: The object recognition and adaptive threshold selection in the vision system for landing an unmanned aerial vehicle. In: International Conference on Information and Automation (ICIA), pp. 117–122. IEEE (2009) – reference: HutchinsonSHagerGDCorkePIA tutorial on visual servo controlIEEE Trans. Robot. Autom.199612565167010.1109/70.538972 – reference: Zou, J.T., Tseng, Y.C.: Visual track system applied in quadrotor aerial robot. In: 2012 Third International Conference on Digital Manufacturing and Automation (ICDMA), pp. 1025–1028. IEEE (2012) – reference: Sa, I., Hrabar, S., Corke, P.: Inspection of pole-like structures using a vision-controlled vtol uav and shared autonomy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4819–4826. IEEE (2014) – reference: Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct ekf-based approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 298–304. IEEE (2015) – reference: Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for a quadrotor using a virtual spring approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5670–5676. IEEE (2011) – reference: Mejias, L., Correa, J.F., Mondragón, I., Campoy, P.: Colibri: A vision-guided uav for surveillance and visual inspection (2007) – reference: SchmidKLutzPTomićTMairEHirschmüllerHAutonomous vision-based micro air vehicle for indoor and outdoor navigationJ. Field Robot.201431453757010.1002/rob.21506 – reference: Alkowatly, M.T., Becerra, V.M., Holderbaum, W.: Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J. Guid. Control Dyn., 1–14 (2014) – reference: Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media (2010) – reference: BrysonMSukkariehSBuilding a robust implementation of bearing-only inertial slam for a uavJ. Field Robot.2007241–211314310.1002/rob.20178 – reference: Ascending Technologies: AscTec NEO. http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/ – reference: Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular multi-sensor fusion approach applied to mav navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929. IEEE (2013) – reference: BoṡnakMMatkoDBlaŻiċSQuadrocopter hovering using position-estimation information from inertial sensors and a high-delay video systemJ. Intell. Robot. Syst.2012671436010.1007/s10846-011-9646-5 – reference: MillsSJFordJJMejíasLVision based control for fixed wing uavs inspecting locally linear infrastructure using skid-to-turn maneuversJ. Intell. Robot. Syst.2011611–4294210.1007/s10846-010-9480-1 – volume: 33 start-page: 41 issue: 1–2 year: 2012 ident: 483_CR45 publication-title: Autonom. Robots doi: 10.1007/s10514-012-9286-z – ident: 483_CR109 doi: 10.1109/ROBOT.2009.5152680 – volume: 32 start-page: 1141 issue: 8 year: 2015 ident: 483_CR150 publication-title: J. Field Robot. doi: 10.1002/rob.21596 – ident: 483_CR32 doi: 10.1109/CDC.2006.376767 – ident: 483_CR2 – volume: 55 start-page: 62 issue: 1 year: 2007 ident: 483_CR73 publication-title: Robot. Autonom. Syst. doi: 10.1016/j.robot.2006.06.006 – ident: 483_CR114 doi: 10.1109/ROBOT.2006.1642134 – ident: 483_CR122 doi: 10.1007/978-3-642-40409-2_23 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 483_CR60 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 483_CR15 – ident: 483_CR120 doi: 10.1109/PIC.2014.6972318 – ident: 483_CR123 doi: 10.1117/12.876663 – ident: 483_CR139 doi: 10.2514/6.2012-5033 – ident: 483_CR56 doi: 10.1109/IROS.2013.6696917 – ident: 483_CR55 doi: 10.1109/ICRA.2015.7138988 – volume: 62 start-page: 6392 issue: 10 year: 2015 ident: 483_CR83 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2420036 – ident: 483_CR88 doi: 10.1109/ICRA.2016.7487292 – volume: 57 start-page: 217 issue: 1–4 year: 2010 ident: 483_CR37 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-009-9382-2 – ident: 483_CR27 doi: 10.3182/20120905-3-HR-2030.00036 – ident: 483_CR44 – ident: 483_CR101 – ident: 483_CR98 doi: 10.2514/6.2009-5678 – ident: 483_CR110 doi: 10.1109/CVPR.1994.323794 – ident: 483_CR90 doi: 10.1109/ICRA.2016.7487251 – ident: 483_CR20 doi: 10.1007/978-3-642-20144-8 – ident: 483_CR67 doi: 10.1109/IROS.2010.5650725 – ident: 483_CR36 doi: 10.1109/ICRA.2012.6224828 – ident: 483_CR52 doi: 10.1007/s10846-014-0085-y – volume: 16 start-page: 1406 issue: 9 year: 2016 ident: 483_CR136 publication-title: Sensors doi: 10.3390/s16091406 – ident: 483_CR8 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 483_CR62 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – ident: 483_CR71 – volume: 10 start-page: 387 issue: 5 year: 2013 ident: 483_CR65 publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-013-0735-8 – volume: 2 start-page: 275 issue: 3 year: 2008 ident: 483_CR24 publication-title: Int. J. Optomechatron. doi: 10.1080/15599610802303314 – ident: 483_CR11 doi: 10.1109/MED.2014.6961576 – ident: 483_CR96 doi: 10.1109/CISP.2011.6100621 – ident: 483_CR105 doi: 10.1109/AVSS.2006.23 – ident: 483_CR85 doi: 10.1109/IROS.2015.7353389 – ident: 483_CR4 doi: 10.6028/NIST.SP.1011-I-2.0 – ident: 483_CR116 doi: 10.1109/ICUAS.2014.6842242 – ident: 483_CR152 doi: 10.1109/IROS.2015.7353622 – ident: 483_CR121 – volume: 73 start-page: 513 issue: 1–4 year: 2014 ident: 483_CR58 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9918-3 – ident: 483_CR75 doi: 10.2514/6.2013-5246 – ident: 483_CR140 doi: 10.1109/ICUAS.2014.6842282 – volume: 33 start-page: 935 year: 2012 ident: 483_CR47 publication-title: Phys. Proced. doi: 10.1016/j.phpro.2012.05.157 – volume: 78 start-page: 291 issue: 2 year: 2015 ident: 483_CR84 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-014-0085-y – ident: 483_CR50 doi: 10.1109/IROS.2012.6385934 – volume: 55 start-page: 323 issue: 4–5 year: 2009 ident: 483_CR79 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-008-9305-7 – volume: 61 start-page: 495 issue: 1–4 year: 2011 ident: 483_CR41 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-010-9494-8 – volume: 19 start-page: 46 issue: 3 year: 2012 ident: 483_CR137 publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2012.2206473 – ident: 483_CR3 – ident: 483_CR31 doi: 10.1109/ROBOT.2006.1642080 – volume: 83 start-page: 397 issue: 6 year: 2011 ident: 483_CR99 publication-title: Aircraft Eng. Aeros. Technol. doi: 10.1108/00022661111173270 – volume: 22 start-page: 54 issue: 1 year: 2012 ident: 483_CR128 publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2011.08.003 – volume: 69 start-page: 447 issue: 1–4 year: 2013 ident: 483_CR145 publication-title: J. Int. Robot. Syst. doi: 10.1007/s10846-012-9705-6 – ident: 483_CR115 doi: 10.1109/ICCAS.2013.6704242 – ident: 483_CR95 doi: 10.1109/CYBER.2013.6705439 – ident: 483_CR91 doi: 10.1109/ICUAS.2014.6842355 – ident: 483_CR104 doi: 10.1109/ACC.2006.1657288 – ident: 483_CR135 doi: 10.1007/s10514-016-9564-2 – ident: 483_CR14 – ident: 483_CR39 doi: 10.3182/20080706-5-KR-1001.00966 – volume: 17 start-page: 3 issue: 1 year: 2007 ident: 483_CR29 publication-title: Autom. Construct. doi: 10.1016/j.autcon.2006.12.010 – ident: 483_CR144 doi: 10.1109/CARPI.2010.5624435 – volume: 61 start-page: 29 issue: 1–4 year: 2011 ident: 483_CR26 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-010-9480-1 – ident: 483_CR61 doi: 10.1109/ACC.2014.6858995 – ident: 483_CR76 doi: 10.1109/ACC.2011.5991109 – volume: 22 start-page: 1255 issue: 4 year: 2014 ident: 483_CR141 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2284790 – ident: 483_CR6 – volume: 30 start-page: 415 issue: 3 year: 2013 ident: 483_CR82 publication-title: J. Field Robot. doi: 10.1002/rob.21454 – ident: 483_CR46 doi: 10.1109/ICINFA.2009.5204904 – ident: 483_CR149 doi: 10.1109/ICRA.2016.7487281 – volume: 10 start-page: 1 year: 2013 ident: 483_CR125 publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/52764 – ident: 483_CR133 doi: 10.1109/TIE.2014.2345348 – volume: 6 start-page: 570 issue: 10 year: 2009 ident: 483_CR146 publication-title: J. Aeros. Comput. Inf. Commun. doi: 10.2514/1.40185 – volume: 55 start-page: 249 issue: 4–5 year: 2009 ident: 483_CR69 publication-title: J. Intell. Robot. Syst doi: 10.1007/s10846-008-9301-y – ident: 483_CR38 doi: 10.1109/ICEEE.2009.5393423 – volume: 69 start-page: 80 year: 2015 ident: 483_CR87 publication-title: Robot. Autonom. Syst. doi: 10.1016/j.robot.2014.08.006 – ident: 483_CR43 – volume: 31 start-page: 537 issue: 4 year: 2014 ident: 483_CR51 publication-title: J. Field Robot. doi: 10.1002/rob.21506 – ident: 483_CR64 doi: 10.1109/IROS.2013.6696805 – ident: 483_CR100 – ident: 483_CR97 doi: 10.1109/IROS.2009.5354361 – ident: 483_CR68 doi: 10.1155/2011/413074 – volume: 228 start-page: 2399 issue: 13 year: 2014 ident: 483_CR142 publication-title: Proc. Inst. Mech. Eng. Part G: J. Aeros. Eng. doi: 10.1177/0954410013517804 – ident: 483_CR5 doi: 10.1007/978-1-4020-6114-1 – ident: 483_CR103 doi: 10.1109/ROBOT.2006.1642130 – ident: 483_CR9 – ident: 483_CR1 – ident: 483_CR77 doi: 10.1109/IROS.2010.5652556 – volume: 12 start-page: 651 issue: 5 year: 1996 ident: 483_CR19 publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.538972 – volume: 15 start-page: 27,783 issue: 11 year: 2015 ident: 483_CR151 publication-title: Sensors doi: 10.3390/s151127783 – ident: 483_CR108 – ident: 483_CR34 doi: 10.1109/IROS.2013.6696412 – volume: 10 start-page: 92 issue: 1 year: 2014 ident: 483_CR74 publication-title: Int. J. Pervas. Comput. Commun. doi: 10.1108/IJPCC-01-2014-0010 – volume: 74 start-page: 97 issue: 1–2 year: 2014 ident: 483_CR53 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9914-7 – volume: 74 start-page: 17 issue: 1–2 year: 2014 ident: 483_CR94 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9967-7 – ident: 483_CR21 doi: 10.2316/Journal.206.2014.1.206-3942 – volume: 61 start-page: 119 issue: 1–4 year: 2011 ident: 483_CR126 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-010-9504-x – ident: 483_CR23 doi: 10.1109/MED.2014.6961575 – volume: 57 start-page: 591 issue: 6 year: 2009 ident: 483_CR40 publication-title: Robot. Autonom. Syst. doi: 10.1016/j.robot.2009.02.001 – volume: 15 start-page: 258 issue: 3 year: 2014 ident: 483_CR113 publication-title: Int. J. Aeronaut. Space Sci. doi: 10.5139/IJASS.2014.15.3.258 – ident: 483_CR124 doi: 10.1109/ICAL.2007.4338800 – ident: 483_CR16 – volume: 20 start-page: 23 issue: 1 year: 2009 ident: 483_CR127 publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-007-0102-2 – volume: 62 start-page: 1646 issue: 11 year: 2014 ident: 483_CR81 publication-title: Robot. Autonom. Syst. doi: 10.1016/j.robot.2014.03.012 – ident: 483_CR117 doi: 10.1109/ICSESS.2014.6933728 – volume: 67 start-page: 43 issue: 1 year: 2012 ident: 483_CR147 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-011-9646-5 – volume: 6 start-page: 679 year: 1986 ident: 483_CR78 publication-title: Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – ident: 483_CR92 doi: 10.1109/IROS.2013.6696922 – ident: 483_CR80 doi: 10.1007/978-3-642-37374-9_46 – ident: 483_CR111 – volume: 24 start-page: 113 issue: 1–2 year: 2007 ident: 483_CR72 publication-title: J. Field Robot. doi: 10.1002/rob.20178 – ident: 483_CR119 doi: 10.1109/IROS.2011.6094404 – ident: 483_CR118 doi: 10.1109/ICDMA.2012.240 – ident: 483_CR35 doi: 10.1109/ICUAS.2013.6564708 – volume: 41 start-page: 266 issue: 3 year: 2014 ident: 483_CR59 publication-title: Indus. Robot: Int. J. doi: 10.1108/IR-07-2013-378 – ident: 483_CR33 doi: 10.1109/ICCAS.2014.6987736 – volume: 65 start-page: 373 issue: 1-4 year: 2012 ident: 483_CR12 publication-title: J. Intelli. Robot. Syst. doi: 10.1007/s10846-011-9571-7 – ident: 483_CR70 doi: 10.5244/C.2.23 – ident: 483_CR102 doi: 10.1109/ICECC.2011.6066586 – ident: 483_CR93 doi: 10.1109/ICRA.2011.5980095 – ident: 483_CR86 doi: 10.1109/ICRA.2013.6630808 – volume: 55 start-page: 299 issue: 4–5 year: 2009 ident: 483_CR48 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-008-9304-8 – ident: 483_CR134 doi: 10.1109/IROS.2015.7353442 – ident: 483_CR10 doi: 10.1109/ROBOT.2007.363883 – ident: 483_CR25 doi: 10.1109/IROS.2014.6943247 – volume: 74 start-page: 1029 issue: 3–4 year: 2014 ident: 483_CR131 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9865-z – ident: 483_CR13 – ident: 483_CR129 doi: 10.1117/12.818717 – ident: 483_CR22 doi: 10.1109/ICRA.2011.5979645 – ident: 483_CR130 doi: 10.1109/ACC.2014.6858831 – ident: 483_CR7 – ident: 483_CR42 doi: 10.3182/20080706-5-KR-1001.00137 – ident: 483_CR49 doi: 10.1002/rob.21581 – ident: 483_CR17 doi: 10.1007/978-1-84882-935-0 – volume: 24 start-page: 331 issue: 2 year: 2008 ident: 483_CR28 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2008.916666 – ident: 483_CR57 doi: 10.1109/ICRA.2014.6907233 – volume: 43 start-page: 1975 issue: 11 year: 2007 ident: 483_CR30 publication-title: Automatica doi: 10.1016/j.automatica.2007.03.030 – ident: 483_CR106 doi: 10.1109/IROS.2005.1544998 – ident: 483_CR132 doi: 10.1109/WISP.2007.4447629 – volume: 29 start-page: 315 issue: 2 year: 2012 ident: 483_CR18 publication-title: J. Field Robot. doi: 10.1002/rob.20414 – ident: 483_CR148 doi: 10.2514/6.2007-6749 – ident: 483_CR112 doi: 10.1109/IROS.2013.6696331 – ident: 483_CR63 – ident: 483_CR143 doi: 10.1109/IROS.2014.6943040 – ident: 483_CR54 doi: 10.1109/ICRA.2014.6906584 – ident: 483_CR89 doi: 10.1109/ICRA.2015.7139761 – ident: 483_CR66 doi: 10.1109/UKRICIS.2010.5898125 – ident: 483_CR138 doi: 10.5772/56660 – ident: 483_CR107 doi: 10.1142/9789814417747_0199 |
| SSID | ssj0009859 |
| Score | 2.5806606 |
| Snippet | During last decade the scientific research on Unmanned Aerial Vehicless (UAVs) increased spectacularly and led to the design of multiple types of aerial... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 141 |
| SubjectTerms | Artificial Intelligence Attitude control Autonomy Computer vision Control Control Engineering Electrical Engineering Engineering Literature reviews Mechanical Engineering Mechatronics Obstacle avoidance Platforms Pose estimation Reglerteknik Robotics Target detection Tracking Trends Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoe9EUpbEmXNr6N6fBBhjhX9hbSpJXB6GTtBu6vN-nHVkUFfSs0vYb7yF17d78DuPRdQU0DpuUz3LZsO9DnIHOkvqIuFm0WZjjb3qPT77ujEXvK-7jjotq9SEmmJ3Wp2U37SsucqgYG3Vpuwpb2dq6Z1_A88NZIu247A9jD-jsZM1qkMr8j8dkZrSPMVVL0C4Bo6nR61X9tdx_28hgTdTKlOICNIKpBtZjfgHJzrsFuCYzwELqD-WwRvKNphFZLvbTzHOnAFg07XnyLcjgnVKo1ipGIFMpqa49g2Lt_6T5Y-YgFS9oUJ1bLZ02FzZ9Q6ivlEEJCRzIS6kCIKqFDm5Dp3UvhKKba2o_ZobZXKals-swmriDHUImmUXACiClfMp8REdiOHTZDn7YUxo5gbmBSi6QOzYLXXOb442YMxoSvkZMNy7hmGTcs48s6XK8eecvAN35b3CgEyHM7jHnLgNNgQhy7DjeFnEq3fyZ2lcl99V4Dw3039jp8Onvlk2TOTW8lPf0T1TPYwalCmGrfBlSS2Tw4h225SMbx7CJV4w-GXuua priority: 102 providerName: Springer Nature |
| Title | Survey on Computer Vision for UAVs: Current Developments and Trends |
| URI | https://link.springer.com/article/10.1007/s10846-017-0483-z https://www.proquest.com/docview/1902823374 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61786 |
| Volume | 87 |
| WOSCitedRecordID | wos000402236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1wfSw56UYK7SZs0XmR9ISjL4moRL6FNWhGkq9tdQX-9SZvuroJevIRC06ZkJjPTeXwDsBcHEbMFmDgWxMeelxg5KLgyVywgkS_SEmc7vOHtdvDwIDrO4Za7tMpKJhaCWveU9ZEfNS3MCKGUeyevb9h2jbLRVddCYxpmLUpCs0jd645BdwO_xNoj5peZCFZFNcvSOaN5sZXRFlQdf37XS2NjcxQf_YElWuify6X_fvkyLDrLE7VKVlmBqSRbhaWqqwNyh3wVFiYgCtfgrDvsvycfqJeh0dSwqEdHxtxF960wP0YO5AlNZCDlKMo0KjNu1-H-8uLu7Aq7xgtYeYwMcDMWDU2sf5TFWnNKacqVoKkxj5iOjMGTCrNpKuJaaN9oNy81p1gpphqx8GgQ0Q2YyXpZsglI6FiJWNAo8biXNtKYNTUhPBJBYgOOtAaNatulcqjktjnGixzjKVtKSUMpaSklP2twMHrktYTk-GvyTkUU6U5nLscUqcFhRd-J27-_bL9kgdG6Fpz7_DlsyV7_Sb4MhtJWXLKtvxfdhnlSMJ5N-t2BmUF_mOzCnHofPOf9OsyeXrQ7t3WYvua4XjC0GTv-oxlvu-EXa-753A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xgLS7B14L2vJYfIALK4vWTu0YCaEKFoFaKiSg4mYSO0FIKGWbFgQ_it-IJ4-2IMGNAzdLcWwl_mbG9sx8A7AR-oHABEwaKlannhc5PaikcS3hs6Cu4pxnu9OS7bZ_ealOJ-C5zIXBsMpSJ2aK2nYN3pFv15BmhHEuvb27_xSrRqF3tSyhkcOiGT0-uCNbunt84NZ3k7HDf-f7R7SoKkCNJ1if1kJVtQwv_0RoreScx9IoHjvbL2zgrHmsHKpNIK2ydae6vdhB1BhhqqHyuB9wN-43mHJNiXLVlHRE8uvXc24_5o7oTInSi5qn6jlLT9EmIIk7fXptB0eb26E_9g13aWbvDme_2p-ag5liZ00auSjMw0SULMBsWbWCFEpsAX6OUTD-gv2zQe8-eiTdhAy7drJ8e-K28-Si0Ul3SEFiRcYirFISJJbkEcWLcPEpH7YEk0k3iX4DUTY0KlQ8iDzpxdU4FDXLmAyUH6FDlVegWi6zNgXrOhb_uNUjvmhEhnbI0IgM_VSBreErdznlyEedV0sQ6EL7pHqEgAr8LfE09vj9wTZzyA3nRfLxg5tOQ3d71_q2P9CYUSqWP550Hb4fnZ-0dOu43VyBHywDPQY4r8JkvzeI1mDa3Pdv0t6fTHwIXH02Cl8A_aRQwQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xsEJwgOUlymt9gMuiiNZO7BgJoYpSgUBVpYUKcTGJnSAklELTguCn8evw5NEWpOXGYW-R4tiK_Xlm7Jn5BmA79AOOCZhOKKnnuG5k5aAU2j5xnwaejHOe7c65aLX8qyvZnoC3MhcGwypLmZgJatPVeEe-V0OaEcqYcPfiIiyi3WgePjw6WEEKPa1lOY0cImfRy7M9vqUHpw271juUNo8vjk6cosKAo11O-04tlFVD8SKQh8YIxlgstGSxtQO4Caxmj6VFuA6EkcazYtyNLVy15roaSpf5AbP9_oApYc-YGE7Y9q5HhL--l_P8UXtcp5KXHtU8bc9qfQf1AxK6O68fdeLI0B36Zj_xmGa6rzn_P8_aL5grLG5Sz7fIAkxEySLMl9UsSCHcFmF2jJpxCY7-DnpP0QvpJmTYtJPl4RNr5pPLeifdJwW5FRmLvEpJkBiSRxovw-W3_NgKTCbdJFoFIk2oZShZELnCjatxyGuGUhFIP0JHK6tAtVxypQs2diwKcq9GPNKIEmVRohAl6rUCf4afPORUJF813igBoQqplKoRGiqwW2Jr7PW_O9vJ4TccF0nJG3eduur2btV9f6Aw05SvfT3ob5i24FPnp62zdZihGf4x7nkDJvu9QbQJP_VT_y7tbWU7icDNd4PwHR4JWeU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+Computer+Vision+for+UAVs%3A+Current+Developments+and+Trends&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.date=2017-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=87&rft.issue=1&rft.spage=141&rft.epage=168&rft_id=info:doi/10.1007%2Fs10846-017-0483-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |